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1. Introduction

The stable cooperative Lotka-Volterra equation

{

ẋt = (a1 + b12yt − b11xt)xt,

ẏt = (a2 + b21xt − b22yt)yt,
(1)

where ai, bij (i, j = 1, 2) are positive constants, has attracted a lot attentions
of works. For the stochastic Lotka-Volterra equations of two species, there are
some but not too much in mathematical literature, and almost nothing in sta-
tistical inference. Here, we mention one of the first attempts in this direction,
a very interesting paper of Arnold et al. [1] where the authors used the theory
of Brownian motion processes and the related white noise models to study the
sample paths of the equation
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{

dXt = (a1 + b12Yt − b11Xt)Xtdt + σXtdWt,

dYt = (a2 + b21Xt − b22Yt)Ytdt + ρYtdWt,
(2)

where the stochastic processes Xt and Yt represent the quantities of two species;
ai, bij, σ, ρ are constants, bii > 0 (i, j = 1, 2); σ, ρ are the coefficients of the
effects of environmental stochastic perturbations on the populations and Wt

is a standard Wiener processes. This model is called a competitive model if
ai > 0, bij < 0, i 6= j, a prey-predator model if a1 > 0, b12 < 0, a2 < 0, b21 > 0,
a cooperative model if ai > 0, bij > 0. In these cases, the random factor makes
influences on the intrinsic growth rates of species.

Recently, this model has been considered by Mao et al. [4], Du et al. [2] due to
the sample path of the solutions. In these works, the authors showed the upper
growth rate and lower growth rate of the solutions of equation (2). By research
on long-time behaviour of densities of the distributions of the solutions, Rudnicki
[7] has been considered a prey-predator model and Yashima et al. [10] has been
considered a competitive model and they showed the densities can converge in
L1 to an invariant density or can converge weakly to a singular measure. Then
in [8], Rudnicki assumed that the environmental influence on both populations
is described by stochastic perturbations and it is proportional to the number of
individuals.

To continue those researches, in this paper, we consider a cooperative model.
It means that we study the following system

{

dXt = (a1 + b12Yt − b11Xt)Xtdt + Xt(σ1dW 1
t + σ2dW 2

t ),

dYt = (a2 + b21Xt − b22Yt)Ytdt + Yt(ρ1dW 1
t + ρ2dW 2

t ),
(3)

where ai, bij are positive constants, σi, ρi are nonnegative constants (i, j = 1, 2)
and W 1

t , W 2
t are two independent standard Wiener processes. For ecological

reason, we will consider only solutions of the system with X0 > 0 and Y0 > 0.
Through this paper we assume that the solution with such initial values are
unique and globally positive.

Generally, we will assume that our system is not deterministic (at least one
coefficient σ1, σ2, ρ1 or ρ2 is not equal to zero). There are two kinds of stochastic
perturbations: weak correlation (σ1ρ2 6= σ2ρ1) and strong correlation (σ1ρ2 =
σ2ρ1).

By putting

Xt = eξt , Yt = eηt , σ =
√

σ2
1 + σ2

2 , ρ =
√

ρ2
1 + ρ2

2, σ∗ = σ1 + σ2,

ρ∗ = ρ1 + ρ2, c1 = a1 −
σ2

2
, c2 = a2 −

ρ2

2
.

and substituting this transformation into equation (3) we obtain
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{

dξt = (c1 + b12e
ηt − b11e

ξt)dt + σ1dW 1
t + σ2dW 2

t ,

dηt = (c2 + b21e
ξt − b22e

ηt )dt + ρ1dW 1
t + ρ2dW 2

t .
(4)

We have 6 cases in total:

[I] σ1ρ2 6= σ2ρ1,

[II] σ = 0, ρ > 0, b11b22 − b12b21 6= 0,

[III] σ > 0, ρ = 0, b11b22 − b12b21 6= 0,

[IV] σ = 0, ρ > 0, b11b22 − b12b21 = 0,

[V] σ > 0, ρ = 0, b11b22 − b12b21 = 0,

[VI] σ1ρ2 = σ2ρ1 , σ > 0, ρ > 0.

The aim of this paper is to study further the asymptotic behaviour of system
(4) by considering the convergence of the density of the solution in all cases of
the coefficients. The study of such a problem is motivated by the question of
influence of stochastic perturbations on time evolution of population sizes.

The paper is organized as follows. In Sec. 2 we show some properties of Markov
semigroup and Fokker-Planck equation associated with system (4). In Sec. 3, we
study asymptotic properties of the semigroup including asymptotic stability and
sweeping. The theorem concerning with asymptotic stability and sweeping allow
us to formulate the Forguel alternative. This alternative says that under suitable
conditions a Markov semigroup is asymptotically stable or sweeping. By virtue of
the Hasminskii function, it excludes sweeping and we obtain asymptotic stability.

2. Markov Semigroups and Fokker-Planck Equation

In this section we recall some properties of Markov semigroups and Fokker-
Planck equation that have been dealt with in [7] and use them to study the
asymptotic stability of (4).

Let the triple (X, Σ, m) be a σ-finite measure space. Denote by D the subset
of the space L1 = L1(X, Σ, m), consisting of the densities, i.e. D = {f ∈ L1 :
f ≥ 0, ‖f‖ = 1}. A linear mapping P : L1 → L1 is called a Markov operator
if P (D) ⊂ D. The Markov operator P is called an integral or kernel operator
if there exists a measurable function k : X × X → [0,∞) such that Pf(x) =
∫

X
k(x, y)f(y)m(dy) for every density f . Let {P (t)}t≥0 be a semigroup of linear

operators on L1. The family {P (t)}t≥0 is said to be a Markov semigroup if P (t) is
a semigroup and for every t ≥ 0, P (t) is a Markov operator. {P (t)}t≥0 is called
integral, if for each t > 0, the operator P (t) is an integral Markov operator.
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The semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant
density f∗ such that lim

t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D (a density f∗ is called

invariant under the semigroup {P (t)}t≥0 if P (t)f∗ = f∗ for each t ≥ 0). The
Makov semigroup {P (t)}t≥0 is called sweeping with respect to a set A ∈ Σ if
for every f ∈ D,

lim
t→∞

∫

A

P (t)f(x)m(dx) = 0.

If the semigroup is either asymptotically stable or “sweeping” with respect to
compact sets then we say that the semigroup has the “Foguel alternative”.

Consider the space (R2,B(R2), m), where B(R2) is the σ-algebra of Borel
subsets of R

2 and m is the Lebesgue measure on (R2,B(R2)). Let (ξt, ηt) be a
solution of (4). The density of the random variable (ξt, ηt), if it exists and is
smooth, can be found from the Fokker-Planck equation:

∂u

∂t
=

1

2
σ2 ∂2v

∂x2
+

1

2
ρ2 ∂2v

∂y2
+ (σ1ρ1 + σ2ρ2)

∂2v

∂x∂y
−

∂(f1v)

∂x
−

∂(f2v)

∂y
(5)

and the infinitessimal operator of equation (4) is

Lv =
∂v

∂t
+

1

2
σ2 ∂2v

∂x2
+

1

2
ρ2 ∂2v

∂y2
+ (σ1ρ1 + σ2ρ2)

∂2v

∂x∂y
+ f1

∂v

∂x
+ f2

∂v

∂y
, (6)

where

f1(x, y) = c1 − b11e
x + b12e

y,

f2(x, y) = c2 + b21e
x − b22e

y.

Let P(t, x0, y0, A) be the transition probability function of the Markov diffusion
process (ξt, ηt), i.e., P(t, x0, y0, A) = Prob{(ξt, ηt) ∈ A} with the initial condition
ξ0 = x0, η0 = y0 and k(t, x, y, x0, y0) be the density of P(t, x0, y0, ·) (if it exists).
It is known that if the initial random variable (ξ0, η0) has the density v(x, y),
then for any t > 0, (ξt, ηt) has the density u(t, x, y) given by

u(t, x, y) =

∞
∫

−∞

∞
∫

−∞

k(t, x, y; ξ, η)v(ξ, η)dξdη.

For any t ≥ 0, we consider the operator P (t) defined by

P (t)v(x, y) = u(t, x, y); v(x, y) ∈ D, (x, y) ∈ R
2.

By the contractivity of the operator P (t) on D, we can extend it to a contraction
one on L1(R2,B(R2), m). For more detail, we refer to [7].
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3. Asymptotic Stability

In this section, we prove the main results of our paper. To prove the main
theorems, we need some lemmas

Lemma 3.1. If one of three conditions [I], [II], [III] holds, then the transition

probability function P(t, x0, y0, ·) has a density k(t, x, y, x0, y0) with respect to m

and k ∈ C∞((0,∞)× R
2 × R

2).

Proof. We apply Hormander Theorem on the existence of smooth densities of the
transition probability function for the degenerate diffusion processes described
by system (4).

If X(x) = (X1 , ..., Xd) and Y (x) = (Y1, ..., Yd) are vector fields on R
d then

the Lie bracket [X, Y ] is a vector field given by

[X, Y ]j(x) =

d
∑

k=1

(

Xk

∂Yj

∂xk

(x) − Yk

∂Xj

∂xk

(x)

)

, j = 1, . . . , d.

Let

a0(x, y) =

[

c1 − b11e
x + b12e

y

c2 + b21e
x − b22e

y

]

, a1 =

[

σ1

ρ1

]

and a2 =

[

σ2

ρ2

]

.

It is easy to get that

[a0, ai] =

[

σib11e
x − ρib12e

y

ρib22e
y − σib21e

x

]

,

[a0, [a0, ai]] =

[

σic1b11e
x − ρic2b12e

y + (σi − ρi)b12(b21 + b11)e
x+y

−σic1b21e
x + ρic2b22e

y − (σi − ρi)b21(b12 + b22)e
x+y

]

,

[a1, [a0, ai]] =

[

σ2
i b11e

x − ρ2
i b12e

y

ρ2
i b22e

y − σ2
i b21e

x

]

, i = 1, 2.

First, we consider the case [I] holds, then two vectors a1, a2 span the space R
2.

Second, if [II] holds, then we can assume that ρ1 6= 0. Thus it is easy to see that
[a0, a1] and [a1, [a0, a1]] span the space R

2. Finally, the case [III] is similar to the
case [II] and we get the Hormander condition:

(H) For every (ξ, η) ∈ R
2 vectors

a1, a2, [ai, aj](ξ, η)0≤i,j≤2, [ai, [aj, ak]](ξ, η)0≤i,j,k≤2, · · ·

span the space R
2.

Under the condition (H), the transition probability function P(t, x0, y0, ·) has
a density k(t, x, y, x0, y0) and k ∈ C∞((0,∞) × R

2 × R
2) (see [5]).

By Lemma 3.1, we see that {P (t)}t≥0 is an integral Markov semigroup with
a continuous kerner k. Now we follow the method dealt with in [7] to check the
positivity of k. Fix a point (x0, y0) ∈ R

2 and a function
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φ =

[

φ1

φ2

]

∈ C([0, T ]; R2).

Consider the following system of differential equations

{

x′
φ = σ1φ1(t) + σ2φ2(t) + c1 + b12e

yφ − b11e
xφ ,

y′φ = ρ1φ1(t) + ρ2φ2(t) + c2 + b21e
xφ − b22e

yφ .
(7)

Put

f̄1(x, y) = σ1φ1(t) + σ2φ2(t) + c1 + b12e
y − b11e

x,

f̄2(x, y) = ρ1φ1(t) + ρ2φ2(t) + c2 + b21e
x − b22e

y,

we can rewrite (7) under the form

{

x′
φ(t) = f̄1(xφ(t), yφ(t)),

y′φ(t) = f̄2(xφ(t), yφ(t)).

Let xφ =

[

xφ

yφ

]

be the solution of (7) with the initial condition xφ(0) =

x0; yφ(0) = y0. Let F : C([0, T ], R2) → R
2 be a map defined by F (h) = xφ+h(T ).

We calculate the Frechet derivative Dx0,y0,φ of F at φ. Let f = (f̄1, f̄2) and
Λ(t) = f ′(xφ(t), yφ(t)). Denote Q(t, s), for 0 ≤ s ≤ t ≤ T , the fundamental
solution matrix of the equation

Ẏ = Λ(t)Y,

that is ∂Q(t,s)
∂t

= Λ(t)Q(t, s) and Q(s, s) = I. Then

Dx0,y0,φh =

T
∫

0

Q(T, s) q h(s)ds, where q =

[

σ1 σ2

ρ1 ρ2

]

.

Let ε ∈ (0, T ) and h(t) =

[

h1(t)
h2(t)

]

, where

h1(t) = h2(t) =

{

0 if 0 ≤ t ≤ T − ε,
1
ε
(t − T + ε) if T − ε ≤ t ≤ T.

By Taylor formula we have Q(T, s) = I − Λ(T )(T − s) + o(T − s) as s → T .
Thus,
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Dx0,y0,φh =





T
∫

T−ε

s − T + ε

ε
ds





[

σ∗

ρ∗

]

+

+





T
∫

T−ε

s − T + ε

ε
(s − T )ds



Λ(T )

[

σ∗

ρ∗

]

+ o(ε2)

=
ε

2

[

σ∗

ρ∗

]

−
ε2

6
Λ(T )

[

σ∗

ρ∗

]

+ o(ε2).

Put x̄ = xφ(T ), ȳ = yφ(T ), c̄ = φ(T ). By a direct calculation we obtain

Λ(T ) =

[

−b11e
x̄ b12e

ȳ

b21e
x̄ −b22e

ȳ

]

,

and

Λ(T )

[

σ∗

ρ∗

]

=

[

−b11σ
∗ex̄ + b12ρ

∗eȳ

b21σ
∗ex̄ − b22ρ

∗eȳ

]

= ex̄

[

−b11σ
∗ + b12ρ

∗eȳ−x̄

b21σ
∗ − b22ρ

∗eȳ−x̄

]

.

It is easy to see that there is a constant c such that the vectors

[

σ∗

ρ∗

]

and

Λ(T )

[

σ∗

ρ∗

]

are linearly independent if ȳ − x̄ 6= c. Thus rank Dx0,y0,φ = 2.

Summing up, we have

Lemma 3.2. There exists a constant c such that rank(Dx0,y0,φ) = 2 if yφ(T ) 6=
xφ(T ) + c.

We now consider the controlability of system (7). We have the following lemma

Lemma 3.3. If one of the conditions [I], [II], [III] holds, then system (7) is

controlable in R
2 i.e., for all (x0, y0), (x1, y1) ∈ R

2, there exist a piecewise-

continuous control function φ =

[

φ1

φ2

]

and T > 0 such that xφ(0) = x0, yφ(0) =

y0, xφ(T ) = x1, yφ(T ) = y1.

Proof. First, we consider the case [I]. It follows that σ.ρ 6= 0. Then, we can
assume that σ1 6= 0. Using the substitution

zφ(t) = yφ(t) −
ρ1

σ1
xφ(t), (8)

system (7) becomes

{

x′
φ = σ1φ1 + g1(xφ, zφ),

z′φ = g2(xφ, zφ),
(9)

where
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g1(x, z) = c1 + σ2φ2 − b11e
x + b12e

zerx, g2(x, z) = A + Bex − Cezerx,

where A = c2 − rc1 + (ρ2 − rσ2)φ2, B = rb11 + b21, C = rb12 + b22, r = ρ1σ1
−1.

We have the following claims

Claim 1. Fix z0, z1 ∈ R and z1 < z0. Since ρ2 − rσ2 6= 0, then we can choose
φ2(t) = constant such that A < 0. Since lim

x→−∞
g2(x, z) = A uniformly in z ∈

[z0, z1], it follows that there exists x0 (sufficiently small) such that g2(x0, z) ≤
A
2

< 0 for any z ∈ [z1, z0]. Thus, we can find φ1(t) and T > 0 such that system
(9) has the solution (xφ(t), zφ(t)) satisfying xφ ≡ x0 and zφ(0) = z0, zφ(T ) = z1.

Claim 2. Fix z0, z1 ∈ R and z0 < z1. It is similar to Claim 1 that we can
also choose φ2(t) = constant such that A > 0 and then we can find φ1(t) and
T > 0 such that system (9) has the solution (xφ(t), zφ(t)) satisfying xφ ≡ x0

and zφ(0) = z0, zφ(T ) = z1.

Claim 3. Fix x0 ∈ R, L > 0, A1 > A0 and ε > 0 such that ε < min
{

L
4
, A1−A0

4

}

.
Let φ2(t) ≡ 0,

m = max{|g1(x, z)| + |g2(x, z)| : x ∈ [x0, x0 + L], z ∈ [A0, A1]},

and t0 = ε
m

, φ1(t) ≡
3mL
4σ1ε

. For every z0 ∈ [A0+ε, A1−ε], we see that the solution
of system (9) with xφ(0) = x0, zφ(0) = z0 satisfies

xφ(t0) ∈

(

x0 +
L

2
, x0 + L

)

and zφ(t) ∈ [z0 − ε, z0 + ε], for all t ∈ [0, t0]. (10)

Indeed, from system (9), we have

x′
φ(t) ≥ σ1φ1 − m >

mL

2ε
> 0and x′

φ(t) ≤ σ1φ1 + m = m

(

3L

4ε
+ 1

)

.

Then

xφ(t0) ≥ x0 +
mL

2ε
t0 = x0 +

L

2
, xφ(t0) > xφ(t) > x0

and

xφ(t0) ≤ mt0

(

3L

4ε
+ 1

)

+ x0 < x0 + L

for all t ∈ [0, t0].

Further,

|zφ(t) − zφ(0)| =

∣

∣

∣

∣

∣

∣

t
∫

0

g2(xφ(s), zφ(s))ds

∣

∣

∣

∣

∣

∣

≤

t0
∫

0

mds = mt0 = ε ∀t ∈ [0, t0].

From (10) it follows that for (x1, z1) ∈ (x0 , x0 + L
2

]

× [A0 + 2ε, A1 − 2ε] there
exists z0 ∈ [z1 − ε, z1 + ε] and T ∈ (0, t0) such that xφ(T ) = x1 and zφ(T ) = z1.
The same proof works for x1 ∈ (x0 − L

2 , x0

]

. Then we get that for all (x1, z1) ∈
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(

x0 −
L
2 , x0 + L

2

)

× [A0 +2ε, A1 − 2ε], there exist z0 ∈ [z1 − ε, z1 + ε], T ∈ (0, t0)
and a piecewise-continuous control function φ such that xφ(T ) = x1, zφ(T ) = z1.
By Claims 1-3, the lemma is true for the case [I].

Second, consider the case [II]. We choose φ1(t) = φ2(t), system (7) becomes

{

x′
φ(t) = f1(xφ(t), yφ(t)),

y′φ(t) = f2(xφ(t), yφ(t)) + ρ∗φ1(t).
(11)

Since for every y ∈ R, lim
x→∞

f1(x, y) = −∞, and for sufficiently large y ∈ R,

lim
x→−∞

f1(x, y) = c1 + b12e
y > 0 and by the same arguments as Claims 1-3, the

lemma is also true for the case [II]. Similarly, the lemma holds for the case [III].

By the continuity with respect to the initial condition, we conclude that in-
stead of using piecewise-continuous controls we can use continuous controls, i.e.,
φ ∈ C(0, T ; R2).

It is known that (see [7]), if φ ∈ C([0, T ]; R2) such that the derivative Dx0,y0,φ

has the rank 2 then k(T, x̄, ȳ, x0, y0) > 0 for x̄ = xφ(T ), ȳ = yφ(T ). Therefore, it
follows from Lemmas 3.1-3.3 that

Lemma 3.4. If one of the conditions [I], [II], [III] holds, then for any point

(x0, y0) and for almost (x, y) in R
2, there exists T > 0 such that k(T, x, y, x0, y0) >

0.

Theorem 3.5. Let (ξt, ηt) be a solution of system (4) under one of the condi-

tions [I], [II], [III]. Then for every t > 0 the distribution of (ξt, ηt) has a density

u(t, x, y) which satisfies (5). Further, the semigroup {P (t)}t≥0 is asymptotically

stable on R
2, i.e., there exists a unique stationary density u∗(x, y) of (5) such

that

lim
t→∞

∫∫

R2

|u(t, x, y) − u∗(x, y)|dxdy = 0.

Proof. By virtue of Lemma 3.1 it follows that {P (t)}t≥0 is an integral Markov
semigroup with a continuous kernel k(t, x, y, x0, y0) for t > 0. Then, the distri-
bution of (ξt, ηt) has a density u(t, x, y) which satisfies (5). According to Lemma
3.4, corresponding to the assumptions of the theorem, for every f ∈ D we have

∫ ∞

0

P (t)fdt > 0 a.e. on E. (12)

From Corollary 1 in [7] it follows immediately that the semigroup {P (t)}t≥0 is
asymptotically stable or is sweeping with respect to compact sets. Now, we will
exclude the sweeping of the semigroup by construction a Khasminskii function.
Such a function is a nonnegative C2−function V such that

sup
‖(x,y)‖>R

LV (x, y) < 0 for some R > 0, i.e.,
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sup
‖(x,y)‖>R

{

1

2
σ2 ∂2V

∂x2
+

1

2
ρ2 ∂2V

∂y2
+ (σ1ρ1 + σ2ρ2)

∂2V

∂x∂y
+ f1

∂V

∂x
+ f2

∂V

∂y

}

< 0.

(13)

Γ

Γ ′

x

y

Fig. 1

The function V (x, y) can be constructed similarly as one that is constructed
graphically by Rudnicki [7]. We recall that method. First, for sufficiently large
x2+y2 , let Γ, Γ ′ be two curves constructed from line segments and from segments
of circles with a constant and sufficiently large radius r. The line segments and
segments of circles get in touch with other at intersection points and satisfy that
the distance d between the parallel segments of Γ and Γ ′ is constant. Then, the
function V (x, y) is constant on Γ and Γ ′ (see Fig. 1) and V (x1, y1)−V (x, y) = d

for (x, y) ∈ Γ and (x1, y1) ∈ Γ ′. Fig. 2 shows the graphs of Γ and Γ ′ near a
“vertice”. For sufficiently large x2+y2 , the vectors [f1(x, y), f2(x, y)] direct inside
the domains bounded by the curves Γ and Γ ′. Then there exist constants C0 > 0
and R0 > 0 such that
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f1
∂V

∂x
+ f2

∂V

∂y
≤ −C0 for all (x, y) such that x2 + y2 > R2

0.

We have
1

2
σ2 ∂2V

∂x2
+

1

2
ρ2 ∂2V

∂y2
+ (σ1ρ1 + σ2ρ2)

∂2V

∂x∂y
= O

(

1

r

)

for points from segments of circles of Γ and

1

2
σ2 ∂2V

∂x2
+

1

2
ρ2 ∂2V

∂y2
+ (σ1ρ1 + σ2ρ2)

∂2V

∂x∂y
= 0

for other points. Then, choose r sufficiently large, there exists R > R0 such that
LV (x, y) ≤ −C0

2
when x2 + y2 > R2.

Fig. 2

Using a similar argument as in [6] one can check that the existence of a
Khasminskii function ensures that the semigroup is not sweeping from the ball
BR = {(x, y) : x2 + y2 ≤ R}. Thus, the semigroup {P (t)}t≥0 is asymptotically
stable on E, i.e., there exists a unique stationary density u∗(x, y) of (5) and

lim
t→∞

∫∫

R2

|u(t, x, y) − u∗(x, y)|dxdy = 0.
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We complete the proof.

Next, we consider the case [VI]. Then we can transfer system (4) to the
following system

{

dξt = (c1 + b12e
ηt − b11e

ξt)dt + σdWt,

dηt = (c2 + b21e
ξt − b22e

ηt)dt + ρdWt,
(14)

where Wt = σ1

σ
W 1

t + σ2

σ
W 2

t = ρ1

ρ
W 1

t + ρ2

ρ
W 2

t is a standard Wiener process. Since

system (14) has been studied by Ton [9], we will only recall the results of this
case.

Theorem 3.6 ([9]). Let (ξt, ηt) be a solution of system (4) under the condition

[VI]. Then for every t > 0 the distribution of (ξt, ηt) has a density u(t, x, y)
which satisfies the Fokker-Planck equation

∂u

∂t
=

1

2
σ2 ∂2v

∂x2
+

1

2
ρ2 ∂2v

∂y2
+ σρ

∂2v

∂x∂y
−

∂(f1v)

∂x
−

∂(f2v)

∂y
·

And the semigroup {P (t)}t≥0 is asymptotically stable on E, where

E :=















R
2 if ρc1 > σc2 and σ > ρ or ρc1 < σc2 and σ < ρ,

{

(x, y) ∈ R
2 : y ≤ ρ

σ
x + M0

}

if ρc1 > σc2 and σ ≤ ρ,
{

(x, y) ∈ R
2 : x ≤ σ

ρ
y + M1

}

if ρc1 < σc2 and ρ ≤ σ,

i.e., there exists a unique stationary density u∗(x, y) of the Fokker-Planck equa-

tion
1

2
σ2 ∂2v

∂x2
+

1

2
ρ2 ∂2v

∂y2
+ σρ

∂2v

∂x∂y
−

∂(f1v)

∂x
−

∂(f2v)

∂y
= 0,

such that

lim
t→∞

∫∫

E

|u(t, x, y) − u∗(x, y)|dxdy = 0.

Further, if σ
ρ

= c2

c1

= 1 then lim
t→∞

(ξt − etat) = ln b12+b22

b11+b21

a.s. and

(a) If (b21 − b11)
√

b12+b22

b11+b21

+ (b12 − b22)
√

b11+b21

b12+b22

≥ 0 then

lim
t→∞

(ξt + ηt) = ∞ a.s..

(b)(b21 − b11)
√

b12+b22

b11+b21

+ (b12 − b22)
√

b11+b21

b12+b22

< 0 then

limt→∞(ξt + ηt) = ∞, limt→∞(ξt + ηt) = −∞ a.s..

Next, we consider the case [IV]. Put Wt = ρ1

ρ
W 1

t + ρ2

ρ
W 2

t , then Wt is a

standard Wiener process and system (4) becomes
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{

dξt = (c1 + b12e
ηt − b11e

ξt )dt,

dηt = (c2 + b21e
ξt − b22e

ηt)dt + ρdWt.
(15)

We have

Theorem 3.7. If the condition [IV] holds, then for every t ≥ 0,

b11ηt + b21ξt = b11η0 + b21ξ0 + (c2b11 + b21c1)t + ρb11Wt.

Proof. It follows from
b21

b11
=

b22

b12
and system (15) that

d

(

ηt +
b21

b11
ξt

)

=

(

c2 +
b21

b11
c1

)

dt + ρdWt.

Thus ηt +
b21

b11
ξt = η0 +

b21

b11
ξ0 +

(

c2 +
b21

b11
c1

)

t+ρWt. So, we complete the proof.

Similarly, we have

Theorem 3.8. If the condition [V] holds, then for every t ≥ 0,

b22ξt + b12ηt = b22ξ0 + b12η0 + (c1b22 + b12c2)t + σb22W
∗
t ,

where the standard Wiener process W ∗
t =

ρ1

ρ
W 1

t +
ρ2

ρ
W 2

t .
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