
Vietnam Journal of Mathematics 38:2(2010) 157-168

 

� �� ���� � �	 
���

��


����
�� �� �

 © VAST 2010 

  

 

 

 

 

 

 

 

 

Minimum Connected Dominating Sets in Finite
Graphs ?

Le Cong Thanh

Institute of Mathematics, 18 Hoang Quoc Viet road, 10307 Hanoi, Vietnam

Received July 02, 2009

Abstract. The minimum connected dominating set problem asks for a minimum size

subset of vertices with the following property: each vertex is required to be either in

the subset, or adjacent to some vertex in the subset, and the subgraph induced by the

subset is connected. This problem is known to be NP-hard and, for any small ε > 0, it

cannot be solved by a polynomial time approximation algorithm with the performance

ratio less than (1− ε) ln |V | for any graph G = (V, E) unless P = NP .

The present work deals with almost-every-case analysis of a simple greedy algorithm

for this problem. We show that for almost every graph instance G = (V, E) of the

problem, the greedy algorithm produces a connected dominating set with at most

log |V | vertices and achieves the performance ratio less than 1 + 3 log log |V |
log |V | . Thus in

almost every-case, the algorithm finds in polynomial time a solution that is extremely

close to optimal.

2000 Mathematics Subject Classification: 68Q17.
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1. Introduction

A dominating set of a graph is a subset of vertices such that every vertex of the
graph is either in the subset, or adjacent to some vertex in the subset, and a
connected dominating set has an additional condition that the subgraph induced
by the dominating set is connected.

? This research was partially supported by the National Foundation for Science and
Technology Development (NAFOSTED), Vietnam.



158 Le Cong Thanh

The minimum connected dominating set (Min-CDS) problem is defined as
follows: Given a graph G = (V, E), find a minimum size subset D of vertices,
such that D forms a dominating set and the subgraph induced by D is connected.
This problem is closely related to the maximum leaf spanning tree problem [4],
and recently it is received much attention in study of wireless networks [1-3].
The terminology is that of [4].

The Min-CDS problem is known to be a fundamential NP-hard problem in
graph theory [4] and moreover, for any small ε > 0, it cannot be solved by a
polynomial time approximation algorithm with the performance ratio less than
(1 − ε) ln |V | for any graph G = (V, E) unless P = NP [6]. Nevertheless, this
problem can be approximated by some greedy algorithms with performance ra-
tios ln∆ + 3 [5] and ln∆ + 2 [7], where ∆ is the maximum degree of a vertex in
the graph instance of the problem.

Notice that approximation algorithms are usually evaluated by analysing the
performance on some particular instances, and so performance guarantees are in
their nature worst-case bounds. Hence the algorithms often behave significantly
better in practice than their guarantees would suggest, whereas performance
analysis from “almost every-case” point of view gives us information about per-
formance guarantees for approximation algorithms on almost all instances one
expects to encounter in practice. The performance analysis of greedy algorithms
for some basis problems in graph theory, it has been discussed in [8], tends to
confirm our observation that the behaviour of algorithms in almost every-case
is generally much better than worst-case behaviour.

The present work deals with almost every-case analysis of a polynomial time
natural greedy algorithm for the minimum connected dominating set problem.

Namely, we are able to show that its performance ratio is at most 1 + 3 log log |V |
log |V |

for almost every graph instance G = (V, E). Thus the greedy algorithm for the
Min-CDS problem finds in almost every-case a solution that is extremely close
to optimal.

In Sec. 2 we shall established a lower bound of the domination number, namely
the optimal value for the dominating set problem. The performance of the greedy
algorithm for this problem will be analysed in Sec. 3.

2. Dominating Sets and Domination Number

Let G = (V, E) be a graph with vertex set V and edge set E. The domination

number of G, denoted by γ(G), is defined as the minimum cardimality of a
dominating set of a graph G.

Let V be a set of n distinguishable vertices. Denote by Gn the set of all graphs

with vertex set V . Clearly the set Gn has p = 2(n
2) graphs, and for it we write

Gn = {Gi/i = 1, 2, ..., p}. Denote also by ∂k(G) the number of dominating sets
with k vertices of G and by ∂k(n) the mean value of ∂k(G) over Gn, 1 ≤ k ≤ n,
i.e.,
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∂k(n) =
1

p

p
∑

i=1

∂k(Gi).

Lemma 2.1.

∂k(n) =

(

n

k

)(

1 −
1

2k

)n−k

.

Proof. Denote by Dk(n) the collection of subsets with k vertices in V . For every
graph Gi ∈ Gn, 1 ≤ i ≤ p, and every set Dj ∈ Dk(n), 1 ≤ j ≤ q =

(

n

k

)

, we define
the variable x(Gi, Dj) as

x(Gi, Dj) =

{

1 if Dj is a dominating set of Gi,

0 if otherwise.

Then by the definition of ∂k(n) we have

∂k(n) =
1

p

p
∑

i=1

q
∑

j=1

x(Gi, Dj) =
1

p

q
∑

j=1

p
∑

i=1

x(Gi, Dj) =
1

p

q
∑

j=1

g(Dj),

where g(Dj) is the number of graphs in Gn such that Dj is their dominating set.

Clearly, for any Dj (j = 1, 2, . . . , q),

g(Dj) = (2k − 1)n−k.2(n

2)−k(n−k).

Consequently

∂k(n) =
q

p
(2k − 1)n−k.2(n

2)−k(n−k) =

(

n

k

) (

1 −
1

2k

)n−k

and so the proof is complete.

We now give an upper bound for the mean value ∂k(n) with a fixed k. As
customary for short, log x denotes the logarithm to the base 2.

Lemma 2.2. Let k0 = blog n − 2 log lognc. Then

∂k0
(n) <

1

nlog log n
,

when n is sufficiently large.

Proof. Clearly
(

n

k0

)

< nk0, and (1− 1
a
)a < 1

e
< 1

2
for any positive integer a. Then

we have
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∂k0
(n) =

(

n

k0

) (

1 −
1

2k0

)n−k0

< nk0.2
−n−k0

2k0

≤ nk0.2−(n−k0)
log2 n

n

= nk0−(n−k0)
log n

n

≤ n−2 log log n+ log2 n

n
− 2 log n. log log n

n

≤ n− log log n,

showing the assertion of the lemma.

Theorem 2.3. For almost every graph G any dominating set contains more than

logn − 2 log logn vertices, where n is the number of vertices of G.

Proof. Let ζn,k be a random variable taking the value d with the probability
Hn,k(d)/|Gn|, where Hn,k(d) is the number of graphs G ∈ Gn such that ∂k(G) =
d. Denote by Eζn,k the expectation of the variable ζn,k. Then we have

Eζn,k = ∂k(n)

and so for t > 0

Prob(ζn,k < t.Eζn,k) = Prob(∂k(G) < t.∂k(n)).

Therefore, applying Markov’s inequality Prob(ζn,k < t.Eζn,k) > 1 − 1
t

for the
random variable ζn,k with k = k0 (where k0 = blog n − 2 log log nc) and also by
Lemma 2.2, we find that

Prob(∂k0
(G) < t.n− log log n) > Prob(∂k0

(G) < t.∂k0
(n)) > 1 −

1

t
.

Let us choose t = n. Then ∂k0
(G) < n1−log log n < 1 when n is sufficiently

large. Hence we have

Prob(∂k0
(G) = 0) > 1 −

1

n
−→ 1 as n −→ ∞.

This means that almost every graph G has no dominating set with k0 vertices
(k0 = blogn − 2 log log nc) and so G has no one with less than logn− 2 log log n
vertices, where n is the number of vertices of the graph G.

Thus the proof is complete.

Corollary 2.4. For almost every graph G with n vertices the domination number

γ(G) satisfies

logn − 2 log log n ≤ γ(G) ≤ log n.

The lower bound on γ(G) is easily obtained from the theorem above. And the
upper bound will be obtained by constructing a dominating set with at most
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logn vertices using a greedy algorithm, which will be considered in the next
section.

3. Greedy Algorithm for Min-CDS

The Min-CDS problem has been introduced in the previous section. This problem
is known to be NP-hard and can be solved by a simple greedy algorithm in
polynomial time. However, as other approximation algorithms for the Min-CDS

problem, this algorithm in worst-case has the performance ratio greater than
(1−ε) ln |V | (for any small ε > 0 and on some graph instance G = (V, E)). In this
section we investigate almost every-case performance of the greedy algorithm. We
will show that the algorithm in almost-case has the performance ratio arbitrarily
close to 1.

3.1. Algorithm Gr|CDS

To describe the greedy algorithm for the Min-CDS problem, it is appropriate to
say a few words about the terminology. A star is a graph in which some vertex
is incident to each of the edges of the graph. Equivalently, a star consists of
a vertex designated center along with a set of leaves adjacent to it, and also
consists of all edges that join the center and the leaves. We say that the center
of a star covers its leaf vertices

The natural idea behind the greedy algorithm for Min-CDS, donoted Gr|CDS,
is the following: Grow a tree T , starting from the star with the maximum number
of leaves in a given graph. At each step (after the first) we will pick a star that
consists of a center in T along with the maximum number of leaves outside T .
In the end we will find a spanning tree (if the graph is connected), and will pick
the non-leaf vertices, or the star centers, as the connected dominating set.

Let Ti be the tree constructed by the algorithm at Step i, i = 1, 2, . . .. Then
vertices of Ti are dominated and vertices outside Ti are undominated at the
time. Thus the algorithm Gr|CDS consists in finding a connected dominating
set by starting with some vertex that covers the maximum number of vertices
and iteratively adding dominated vertices that covers the maximum number of
undominated vertices until it is no longer possible.

3.2. Preliminaries

Given a graph G = (V, E) with |V | = n and a non-empty subset U ⊆ V with
|U | = m, 1 ≤ m ≤ n. Let 1 ≤ k ≤ m − 1 and 1 ≤ h ≤ n − m. Throughout the
section we use the following notations:

Zk,h(u) - the star that has a center u ∈ U , and that consists of k leaves in
U and h leaves outside U ;

Sk,h
U (G) - the number of stars of G = (V, E) that have centers in U and

that consist of k leaves in U and h leaves outside U ;
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SB
U (G) - the number of stars of G that have centers in U , and that contain

at least m
2 leaves in U and at least n−m

2 leaves outside U (the number of “bright”

stars of G);

SB
U (n) - the mean value of SB

U (G) over Gn;

CB
U (n) - the collection of stars that have centers in U , and that contain at

least m
2 leaves in U and at least n−m

2 leaves outside U .

Put k∗ =
⌈

m
2

⌉

and h∗ =
⌈

n−m
2

⌉

. Then it is easy to see that the collection
CB

U(n) consists of s such stars, where

s = m

m−1
∑

k=k∗

n−m
∑

h=h∗

(

m − 1

k

)(

n − m

h

)

.

We calculate now the mean value SB
U (n).

Lemma 3.1.

SB
U (n) =

m

2n−1

m−1
∑

k=k∗

n−m
∑

h=h∗

(

m − 1

k

)(

n − m

h

)

.

Proof. As in the proof of Lemma 2.1, we have

SB
U (n) =

1

p

p
∑

i=1

SB
U (Gi) =

1

p

s
∑

j=1

g∗(Zk,h
j (u)),

where g∗(Zk,h
j (u)) is the number of graphs in Gn that contain Zk,h

j (u) as a
maximal star, i.e. in the graphs no orther star properly contains it. Clearly, for
each star Zk,h

j (u) with j = 1, 2, ..., s,

g∗(Zk,h
j (u)) = 2(n

2)−(n−1).

Therefore

SB
U (n) =

1

p

s
∑

j=1

g∗(Zk,h
j (u)) =

s

p
2(n

2)−(n−1) =
s

2n−1
,

implying the assertion of the lemma.

Let ξU,n be a random variable taking the value r with the probability
HU,n(r)/|Gn|, where HU,n(r) is the number of graphs G ∈ Gn such that
SB

U(G) = r. Then we find the expectation of ξU,n that

EξU,n = SB
U (n) =

m

2n−1

m−1
∑

k=k∗

n−m
∑

h=h∗

(

m − 1

k

)(

n − m

h

)

.

Lemma 3.2. Let U be a subset of m vertices of V such that n
2 ≤ m ≤ n. Then
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Var ξU,n ≤
2

log2 n
(EξU,n)2.

Proof. By definition Var ξU,n = E(ξU,n)2 − (EξU,n)2. In order to find an upper
bound for the variance Var ξU,n, we now estimate the expectation E(ξU,n)2.

Similarly to the proof of Lemma 2.1, it is easily shown that

E(ξU,n)2 =
1

p

p
∑

i=1

(SB
U (Gi))

2 =
1

p

s
∑

j,l=1

g∗(Zk1,h1

j (u1), Z
k2,h2

l (u2)),

where the summation is over all ordered star pairs (Zk1,h1

j (u1), Z
k2,h2

l (u2)) in

CB
U(n) × CB

U (n), and g∗(Zk1,h1

j (u1), Z
k2,h2

l (u2)) is the number of graphs in Gn

that contain both stars Zk1,h1

j (u1) and Zk2,h2

l (u2) as maximal.

Now let us examine the three possibilities of the pairs of the stars Zk1,h1

j (u1)

and Zk2,h2

l (u2):
(a) The stars have the common center u = u1 = u2.

(b) The stars have no centers in common, i.e., u1 6= u2, but have the common

edge, namely the edge with endpoints u1 and u2.

(c) The stars have no centers and also edges in common.

Put F(x) = 1
p

∑

(x) g∗(Zk1,h1

j (u1), Z
k2,h2

l (u2)), where
∑

(x) means that the

summation is over all pairs (Zk1,h1

j (u1), Z
k2,h2

l (u2)) of stars that satisfy the above

conditions (x) for x = a, b, c. Then, according to the above formula for E(ξU,n)2,
we have

E(ξU,n)2 = F(a) + F(b) + F(c). (1)

We now calculate and estimate the F(a), F(b) and F(c) on the assumption that
n
2 ≤ m ≤ n.

(A) By the definition of g∗(Zk1,h1

j (u1), Z
k2,h2

l (u2)) we have

F(a) =







m
2n−1

m−1
∑

k=k∗

n−m
∑

h=h∗

(

m−1
k

)(

n−m
h

)

if Zk1,h1

j (u1) = Zk2,h2

l (u2),

0 if otherwise.

Clearly
m−1
∑

k=k∗

(

m−1
k

)

> 2m−3 with k∗ =
⌈

m
2

⌉

and
n−m
∑

h=h∗

(

n−m

h

)

> 2n−m−2 with

h∗ =
⌈

n−m
2

⌉

. By the assumption m ≥ n
2
, it is easily shown that

F(a) = EξU,n ≥
n

32
,

and so

F(a) ≤
32

n
(EξU,n)2.
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(B) Now let us estimate the F(b). By the definition of F(b) and since
(

m−2
k2−1

)

=
(

m−1
k2

)

k2

m−1 we obtain that

F(b) =
1

p

m−1
∑

k1,k2=k∗

n−m
∑

h1,h2=h∗

m

(

m − 1

k1

)(

n − m

h1

)

k1

(

m − 2

k2 − 1

)(

n − m

h2

)

.2(n

2)−2(n−1)+1

=
2m

(m − 1).22(n−1)

m−1
∑

k1,k2=k∗

n−m
∑

h1,h2=h∗

(

m− 1

k1

)

k1

(

n − m

h1

)(

m − 1

k2

)

k2

(

n − m

h2

)

.

Let us consider the summation
m−1
∑

k=k∗

(

m−1
k

)

k. Clearly

m−1
∑

k=k∗

(

m − 1

k

)

k =

m−k∗−1
∑

i=0

(

m− 1

k∗ + i

)

(k∗ + i)

= k∗
m−1
∑

k=k∗

(

m− 1

k

)

+

m−k∗−1
∑

i=1

(

m− 1

k∗ + i

)

i.

We shall show that

m−k∗−1
∑

i=1

(

m− 1

k∗ + i

)

i ≤
m

log2 m

m−1
∑

k=k∗

(

m − 1

k

)

, (2)

and so
m−1
∑

k=k∗

(

m − 1

k

)

k ≤

(

m + 1

2
+

m

log2 m

) m−1
∑

k=k∗

(

m − 1

k

)

, (3)

since k∗ ≤ m+1
2 . Indeed putting Ai =

(

m−1
k∗+i

)

i for i = 1, 2, . . . , m−k∗−1. It is easy

to see that Ai−1 < Ai for 1 < i ≤
√

m−1
2 and Ai > Ai+1 for

√
m−1
2 ≤ i ≤ m−k∗,

and so

max

{(

m − 1

k∗ + i

)

i : i = 1, 2, . . . , m− k∗ − 1

}

=

(

m − 1

k∗ + i0

)

i0,

where i0 =
⌈√

m−1
2

⌉

. Now put Bi =
(

m−1
k∗+i

)

m
log2 m

for i = 0, 1, 2, . . . , m − k∗ − 1.

Clearly Bi ≥ Bi+1 and B0 ≥ B1 ≥ B2 ≥ . . . ≥ Bi0 ≥ Ai0

⌈

2
√

m

log2 m

⌉

. Hence

i0
∑

i=0

Bi ≥

i1
∑

i=1

Ai,
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where i1 =
⌈

m
log2 m

⌉

and it is less than (i0 + 1)
⌈

2
√

m

log2 m

⌉

. Furthermore, it is

obvious that Bi0+j ≥ Ai1+j for j = 1, 2, . . . , m − i1. Then, combining the last
two inequalities, we have (2).

Thus, according to the above formula for F(b), applying inequality (3) with
k = k1, k2, and by the assumption m ≥ n

2
, we find that

F(b) ≤
2

m(m − 1)

(

m + 1

2
+

m

log2 n

)2

(EξU,n)2 ≤

(

1

2
+

3

log2 n

)

(EξU,n)2.

(C) By the definition of F(c), since the equality
(

m−2
k

)

=
(

m−1
k

)

m−k−1
m−1 and

the inequality m− k − 1 ≤ m
2 hold for each k such that

⌈

m
2

⌉

= k∗ ≤ k ≤ m− 1,
and since m ≥ n

2 , we have

F(c) =
1

p

m−1
∑

k1,k2=k∗

n−m
∑

h1,h2=h∗

m

(

m − 1

k1

)(

n − m

h1

)

(m − k1 − 1)

(

m− 2

k2

)(

n − m

h2

)

×

× 2(n

2)−2(n−1)+1

≤
m

2(m − 1)
.

m2

22(n−1)

m−1
∑

k1,k2=k∗

n−m
∑

h1,h2=h∗

(

m− 1

k1

)(

n − m

h1

)(

m − 1

k2

)(

n − m

h2

)

=
m

2(m − 1)
(EξU,n)2

≤

(

1

2
+

1

n

)

(EξU,n)2.

Finally, according to (1) and combining (A)-(C), when n is sufficiently large
we obtain that

E(ξU,n)2 ≤

(

32

n
+ 1 +

3

log2 n
+

1

n

)

.(EξU,n)2

≤

(

1 +
4

log2 n

)

.(EξU,n)2,

so

Var ξU,n = E(ξU,n)2 − (EξU,n)2 ≤
4

log2 n
(EξU,n)2.

Thus the proof is complete.

Theorem 3.3. Let U be a subset of vertices of a graph G = (V, E) with |V | = n
such that |U | ≥ n

2 . Then

Prob(SB
U (G) ≥ 1) ≥ 1 −

(

2 log logn

log n

)2

.
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Proof. Applying Chebyshev’s inequality for the variable ξU,n and t such that
0 < t < EξU,n, we have

Prob(ξU,n = 0) ≤ Prob(|ξU,n − EξU,n| ≥ t) ≤
Var ξU,n

t2
.

Then, by choosing t =
EξU,n

log log n
and also by Lemma 3.2, we obtain that

Prob(ξU,n = 0) ≤

(

2 log log n

log n

)2

.

Therefore, by the definitions of ξU,n and SB
U (G), we have

Prob(SB
U (G) = 0) ≤

(

2 log logn

logn

)2

,

implying the assertion of the theorem.

Note that for U = V , SB
V (G) is the number of stars of G = (V, E) with |V | = n

that contain at least n
2 leaves in V . (In other words, SB

V (G) is the number of
vertices of the maxinum degree at least n

2
in G). Now, for each subset U ⊂ V

such that |U | = m, let us denote by SB.o
U (G) the number of stars of G that have

centers in U and contain at least n−m
2 leaves outside U . It is obvious that the

assertions SB
V (G) ≥ 1 and SB.o

U (G) ≥ 1 concern the performance of the greedy
algorithm Gr|CDS. Since SB.o

U (G) ≥ SB
U (G), Theorem 3.3 has the following

immediate consequence.

Corollary 3.4. Let U be a subset of vertices of a graph G = (V, E) with |V | = n
such that n

2 ≤ |U | < n. Then

(i)Prob(SB
V (G) ≥ 1) ≥ 1 − (2 log log n

log n
)2,

(ii) Prob(SB.o
U (G) ≥ 1) ≥ 1 − (2 log log n

log n
)2.

3.3. Performance of Algorithm Gr|CDS

The object of this subsection is to analyse the algorithm Gr|CDS in almost
every-case. The analysis will be based on Corollary 3.4.

Let us return to the algorithm Gr|CDS described in Subsec. 3.1. As we noted
earlier, the algorithm Gr|CDS finds at the first step a star with the maximum
number of leaves in a given graph, namely it finds a vertex that covers the max-
imum number of undominated vertices, and at each step (after the first) it finds
a dominated vertex that covers the maximum number of undominated vertices.
Clearly, the last value closely relates with the performance of the algorithm. As
a matter of fact, the algorithm Gr|CDS will be quickly terminated if it can find
at each step a vertex that covers as much as possible the undominated vertices.
This motivates us to do the following definition.
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The algorithm Gr|CDS is said to be well-performance on an instance G if at
each step of the algorithm for G it finds a vertex that covers at least half the
undominated vertices.

Theorem 3.5. For almost every graph instance G = (V, E) of the Min-CDS

problem, the algorithm Gr|CDS is well-performance and so terminated after no

more than log |V | steps.

Proof. Given a graph G with vertex set V of n elements. Let us consider a family
Fn of subsets Ui for i = 1, 2, . . ., such that U1 ⊂ U2 ⊂ . . . ⊂ Ui ⊂ . . . ⊂ V , and

U1 ≥ n
2

and |Ui+1| ≥ |Ui| +
n−|Ui|

2
.

Since n > |Ui| ≥ n(1 − 1
2i ) for each i = 1, 2, . . ., the family Fn consists of at

most logn subsets and so every Ui in Fn satisfies the condition of Corollary 3.4,
namely n

2
≤ |Ui| < n. Then applying (ii) of Corollary 3.4 to Ui for i = 1, 2, . . .,

we obtain that

Prob(SB.o
Ui

(G) ≥ 1) ≥ 1 −

(

2 log logn

logn

)2

.

Now to complete the proof it suffices to show that asssertion (i) of Corollary
3.4 and the above assertions are all true at the same time. Indeed, since the
family Fn has at most log n subsets, we obtain that

Prob(SB
V (G) ≥ 1 & SB.o

Ui
(G) ≥ 1, ∀Ui ∈ Fn) ≥ 1 −

(2 log log n)2

log n
.

Clearly the last probability tends to 1 as n −→ ∞. This shows that, for almost
every problem instance, vertex sets of the trees constructed by the algorithm
Gr|CDS at each step form a family such as Fn, and so the theorem is proved.

Let now RGr|CDS(G) be the performance ratio of the greedy algorithm
Gr|CDS on a graph instance G. It is defined by

RGr|CDS(G) =
Gr|CDS(G)

OPTCDS(G)
,

where Gr|CDS(G) is the value of the solution found by Gr|CDS when applied
to G, and OPTCDS(G) is the optimal value of the Min-CDS problem for G.

In order to estimate the ratio RGr|CDS(G), we note that for almost every
graph G = (V, E), the value Gr|CDS(G) is smaller than log |V |, since the dom-
inating set found by the algorithm Gr|CDS consists of all centers of the stars
which are picked at each step and also the algorithm is terminated after no more
than log |V | steps. Note now that OPTCDS(G) ≥ γ(G), the domination number
of G. Hence the lower bound on γ(G), which was presented in Corollary 2.4,
follows that the value OPTCDS(G) is more than log |V | − 2 log log |V |. Then the
upper bound on RGr|CDS(G) is easily obtained for almost every G.
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In conclusion, we have the following result.

Theorem 3.6. For almost every graph instance G = (V, E) of the Min-CDS

problem, the following assertions hold:

(i)The algorithm Gr|CDS finds a connected dominating set with at most log |V |
vertices, and

(ii) The performance ratio RGr|CDS(G) of the algorithm on an instance G is

less than 1 + 3 log log |V |
log |V | .

Thus, for almost every instance of the problem, the algorithm Gr|CDS finds
a solution that is extremely close to optimal. In particular, from assertion (i)
above we easily get the upper bound on the domination number γ(G), which
was formulated in Corollary 2.4.
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