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Abstract. We say that a regular graph G of order n and degree r ≥ 1 (which is not

a complete graph) is strongly regular if there exist non-negative integers τ and θ such

that |Si ∩ Sj | = τ for any two adjacent vertices i and j, and |Si ∩ Sj | = θ for any

two distinct non-adjacent vertices i and j, where Sk denotes the neighborhood of the

vertex k. We here describe the parameters n, r, τ and θ for strongly regular graphs of

order 6(2p + 1), where 2p + 1 is a prime number.
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1. Introduction

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn of its (0,1) adjacency matrix A and is denoted by σ(G). We
say that a regular graph G of order n and degree r ≥ 1 (which is not the complete
graph Kn) is strongly regular if there exist non-negative integers τ and θ such
that |Si ∩Sj | = τ for any two adjacent vertices i and j, and |Si∩Sj | = θ for any
two distinct non-adjacent vertices i and j, where Sk denotes the neighborhood of
the vertex k. We say that a regular connected graph G is strongly regular if and
only if it has exactly three distinct eigenvalues [1]. Let λ1 = r, λ2 and λ3 denote
the distinct eigenvalues of G. Let m1 = 1, m2 and m3 denote the multiplicity of
r, λ2 and λ3, respectively.
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Theorem 1.1. [2] Let G be a connected strongly regular graph of order n and

degree r. Then m2m3δ
2 = nrr, where δ = λ2 − λ3 and r = (n − 1) − r.

Remark 1.2. Let r = (n − 1) − r, λ2 = −λ3 − 1 and λ3 = −λ2 − 1 denote
the distinct eigenvalues of the strongly regular graph G, where G denotes the
complement of G. Then τ = n− 2r − 2 + θ and θ = n− 2r + τ , where τ = τ (G)
and θ = θ(G).

Remark 1.3. (i) A strongly regular graph G of order 4n + 1 and degree r = 2n

with τ = n − 1 and θ = n is called the conference graph; (ii) a strongly regular
graph is the conference graph if and only if m2 = m3 and (iii) if m2 6= m3 then
G is an integral1 graph.

Remark 1.4. (i) If G is a disconnected strongly regular graph of degree r then
G = mKr+1 , where mH denotes the m-fold union of the graph H ; (ii) G is a
disconnected strongly regular graph if and only if θ = 0.

Due to Theorem 1.1 we have recently obtained the following results [2]: (i)
there is no strongly regular graph of order 4p+3 if 4p+3 is a prime number; (ii)
the only strongly regular graphs of order 4p+1 are conference graphs if 4p+1 is
a prime number. Beside [2, 3, 4], we have described the parameters n, r, τ and θ

for strongly regular graphs of order 2(2p+1), 3(2p+1), 4(2p+1) and 5(2p+1),
where 2p +1 is a prime number. We now proceed to establish the parameters of
strongly regular graphs of order 6(2p + 1) where 2p + 1 is a prime number, as
follows. First,

Proposition 1.5. [1] Let G be a connected or disconnected strongly regular graph

of order n and degree r. Then

r2 − (τ − θ + 1)r − (n − 1)θ = 0. (1)

Proposition 1.6. [1] Let G be a connected strongly regular graph of order n and

degree r. Then

2r + (τ − θ)(m2 + m3) + δ(m2 − m3) = 0, (2)

where δ = λ2 − λ3.

Second, in what follows (x, y) denotes the greatest common divisor of integers
x, y ∈ N while x | y means that x divides y.

2. Main Results

Remark 2.1. a) The connected strongly regular graphs of order 18 are (i) the
complete bipartite graph K9,9 of degree r = 9 with τ = 0 and θ = 9. Its

1 We say that a connected or disconnected graph G is integral if its spectrum σ(G)
consists of integral values.
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eigenvalues are λ2 = 0 and λ3 = −9 with m2 = 16 and m3 = 1; (ii) the strongly
regular graph 3K6 of degree r = 12 with τ = 6 and θ = 12. Its eigenvalues are
λ2 = 0 and λ3 = −6 with m2 = 15 and m3 = 2; (iii) the strongly regular graph
6K3 of degree r = 15 with τ = 12 and θ = 15. Its eigenvalues are λ2 = 0 and
λ3 = −3 with m2 = 12 and m3 = 5 and (iv) the cocktail-party graph 9K2 of
degree r = 16 with τ = 14 and θ = 16. Its eigenvalues are λ2 = 0 and λ3 = −2
with m2 = 9 and m3 = 8.

b) Since the strongly regular graphs of order n = 18 are completely described,
in the sequel it will be assumed that p ≥ 2.

c) In Theorem 2.2 the complements of strongly regular graphs appear in pairs

in (k0) and (k
0
) classes, where k denotes the corresponding number of a class.

Theorem 2.2. Let G be a connected strongly regular graph of order 6(2p + 1)
and degree r, where 2p + 1 is a prime number. Then G is one of the following

strongly regular graphs:

(10) G is the complete bipartite graph K6p+3,6p+3 of order n = 6(2p + 1) and

degree r = 6p + 3 with τ = 0 and θ = 6p + 3, where p ∈ N and 2p + 1
is a prime number. Its eigenvalues are λ2 = 0 and λ3 = −(6p + 3) with

m2 = 12p + 4 and m3 = 1;

(20) G is the strongly regular graph 3K4p+2 of order n = 6(2p + 1) and degree

r = 8p +4 with τ = 4p +2 and θ = 8p +4, where p ∈ N and 2p +1 is a prime

number. Its eigenvalues are λ2 = 0 and λ3 = −2(2p + 1) with m2 = 12p + 3
and m3 = 2;

(30) G is the strongly regular graph 6K2p+1 of order n = 6(2p + 1) and degree

r = 10p + 5 with τ = 8p + 4 and θ = 10p + 5, where p ∈ N and 2p + 1 is a

prime number. Its eigenvalues are λ2 = 0 and λ3 = −(2p + 1) with m2 = 12p

and m3 = 5;

(40)G is the strongly regular graph (2p + 1)K6 of order n = 6(2p+1) and degree

r = 12p with τ = 12p − 6 and θ = 12p, where p ∈ N and 2p + 1 is a prime

number. Its eigenvalues are λ2 = 0 and λ3 = −6 with m2 = 5(2p + 1) and

m3 = 2p;

(50)G is the strongly regular graph (4p + 2)K3 of order n = 6(2p+1) and degree

r = 12p+3 with τ = 12p and θ = 12p +3, where p ∈ N and 2p+ 1 is a prime

number. Its eigenvalues are λ2 = 0 and λ3 = −3 with m2 = 4(2p + 1) and

m3 = 4p + 1 ;

(60) G is the cocktail-party graph (6p + 3)K2 of order n = 6(2p + 1) and degree

r = 12p + 4 with τ = 12p + 2 and θ = 12p + 4, where p ∈ N and 2p + 1 is a

prime number. Its eigenvalues are λ2 = 0 and λ3 = −2 with m2 = 3(2p + 1)
and m3 = 6p + 2 ;

(70) G is the strongly regular graph of order n = 6(6k2 + 6k + 1) and degree

r = k(6k +1) with τ = k2 − 4k− 1 and θ = k2, where k ≥ 5 and 6k2 + 6k + 1
is a prime number. Its eigenvalues are λ2 = k and λ3 = − (5k + 1) with

m2 = 5(6k2 + 6k + 1) and m3 = 6k(k + 1);
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(7
0
) G is the strongly regular graph of order n = 6(6k2 + 6k + 1) and degree

r = 5(k +1)(6k + 1) with τ = 25k2 + 34k + 4 and θ = 5(k + 1)(5k + 1), where

k ≥ 5 and 6k2 + 6k + 1 is a prime number. Its eigenvalues are λ2 = 5k and

λ3 = − (k + 1) with m2 = 6k(k + 1) and m3 = 5(6k2 + 6k + 1);

(80) G is the strongly regular graph of order n = 6(6k2 + 6k + 1) and degree

r = (k + 1)(6k + 5) with τ = k2 + 6k + 4 and θ = (k + 1)2, where k ∈ N
and 6k2 + 6k + 1 is a prime number. Its eigenvalues are λ2 = 5k + 4 and

λ3 = − (k + 1) with m2 = 6k(k + 1) and m3 = 5(6k2 + 6k + 1);

(8
0
) G is the strongly regular graph of order n = 6(6k2 + 6k + 1) and degree

r = 5k(6k +5) with τ = 25k2 + 16k− 5 and θ = 5k(5k + 4), where k ∈ N and

6k2+6k+1 is a prime number. Its eigenvalues are λ2 = k and λ3 = − (5k+5)
with m2 = 5(6k2 + 6k + 1) and m3 = 6k(k + 1);

(90) G is the strongly regular graph of order n = 6(30k2 − 10k + 1) and degree

r = 5(3k−1)(6k−1) with τ = (3k−2)(15k−2) and θ = 3(3k−1)(5k−1), where

k ∈ N and 30k2 − 10k + 1 is a prime number. Its eigenvalues are λ2 = 3k − 1
and λ3 = − (15k − 2) with m2 = 5(30k2 − 10k + 1) and m3 = 10k(3k − 1);

(9
0
) G is the strongly regular graph of order n = 6(30k2 − 10k + 1) and degree

r = 15k(6k− 1) with τ = 3(3k +1)(5k− 1) and θ = 3k(15k− 2), where k ∈ N
and 30k2 − 10k + 1 is a prime number. Its eigenvalues are λ2 = 15k − 3 and

λ3 = − 3k with m2 = 10k(3k − 1) and m3 = 5(30k2 − 10k + 1);

(100) G is the strongly regular graph of order n = 6(30k2 − 10k + 1) and degree

r = 3(5k− 1)(6k − 1) with τ = 3k(15k− 4) and θ = 3(3k − 1)(5k − 1), where

k ∈ N and 30k2−10k+1 is a prime number. Its eigenvalues are λ2 = 15k−3
and λ3 = − 3k with m2 = 30k2 − 10k + 1 and m3 = 2(5k − 1)(15k − 2);

(10
0
) G is the strongly regular graph of order n = 6(30k2 − 10k + 1) and degree

r = (6k − 1)(15k − 2) with τ = (3k − 1)(15k − 1) and θ = 3k(15k − 2), where

k ∈ N and 30k2 − 10k + 1 is a prime number. Its eigenvalues are λ2 = 3k − 1
and λ3 = − (15k−2) with m2 = 2(5k−1)(15k−2) and m3 = 30k2 −10k +1;

(110) G is the strongly regular graph of order n = 6(30k2 + 10k + 1) and degree

r = 15k(6k + 1) with τ = 3(3k − 1)(5k + 1) and θ = 3k(15k + 2), where

k ∈ N and 30k2 +10k +1 is a prime number. Its eigenvalues are λ2 = 3k and

λ3 = − (15k + 3) with m2 = 5(30k2 + 10k + 1) and m3 = 10k(3k + 1);

(11
0
) G is the strongly regular graph of order n = 6(30k2 + 10k + 1) and degree

r = 5(3k+1)(6k+1) with τ = (3k+2)(15k+2) and θ = 3(3k+1)(5k+1), where

k ∈ N and 30k2 +10k+1 is a prime number. Its eigenvalues are λ2 = 15k+2
and λ3 = − (3k + 1) with m2 = 10k(3k + 1) and m3 = 5(30k2 + 10k + 1);

(120) G is the strongly regular graph of order n = 6(30k2 + 10k + 1) and degree

r = (6k + 1)(15k + 2) with τ = (3k + 1)(15k + 1) and θ = 3k(15k + 2), where

k ∈ N and 30k2 +10k+1 is a prime number. Its eigenvalues are λ2 = 15k+2
and λ3 = − (3k + 1) with m2 = 30k2 + 10k + 1 and m3 = 2(5k + 1)(15k + 2);

(12
0
) G is the strongly regular graph of order n = 6(30k2 + 10k + 1) and degree

r = 3(5k + 1)(6k + 1) with τ = 3k(15k + 4) and θ = 3(3k + 1)(5k + 1), where
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k ∈ N and 30k2 +10k +1 is a prime number. Its eigenvalues are λ2 = 3k and

λ3 = − (15k + 3) with m2 = 2(5k + 1)(15k + 2) and m3 = 30k2 + 10k + 1;

(130) G is the strongly regular graph of order n = 6(96k2 − 18k + 1) and degree

r = (12k−1)(16k−1) with τ = 4k(16k−3) and θ = 4k(16k−1), where k ∈ N
and 96k2 − 18k + 1 is a prime number. Its eigenvalues are λ2 = 8k − 1 and

λ3 = − (16k − 1) with m2 = 3(8k − 1)(16k − 1) and m3 = 2(96k2 − 18k + 1);

(13
0
) G is the strongly regular graph of order n = 6(96k2 − 18k + 1) and degree

r = 4(8k−1)(12k−1) with τ = 4(8k−1)2+2(4k−1) and θ = 4(8k−1)2, where

k ∈ N and 96k2−18k+1 is a prime number. Its eigenvalues are λ2 = 16k−2
and λ3 = − 8k with m2 = 2(96k2 − 18k + 1) and m3 = 3(8k − 1)(16k − 1);

(140) G is the strongly regular graph of order n = 6(96k2 + 18k + 1) and degree

r = (12k+1)(16k+1) with τ = 4k(16k+3) and θ = 4k(16k+1), where k ∈ N
and 96k2 + 18k + 1 is a prime number. Its eigenvalues are λ2 = 16k + 1 and

λ3 = − (8k + 1) with m2 = 2(96k2 + 18k + 1) and m3 = 3(8k + 1)(16k + 1);

(14
0
) G is the strongly regular graph of order n = 6(96k2 + 18k + 1) and degree

r = 4(8k+1)(12k+1) with τ = 4(8k+1)2−2(4k+1) and θ = 4(8k+1)2, where

k ∈ N and 96k2 +18k +1 is a prime number. Its eigenvalues are λ2 = 8k and

λ3 = − (16k + 2) with m2 = 3(8k + 1)(16k + 1) and m3 = 2(96k2 + 18k + 1);

(150) G is the strongly regular graph of order n = 6(150k2 − 54k +5) and degree

r = (6k−1)(25k−4) with τ = 25k2−24k+3 and θ = k(25k−4), where k ∈ N
and 150k2 − 54k + 5 is a prime number. Its eigenvalues are λ2 = 5k − 1 and

λ3 = − (25k − 4) with m2 = 6(5k − 1)(25k − 4) and m3 = 150k2 − 54k + 5;

(15
0
) G is the strongly regular graph of order n = 6(150k2 − 54k +5) and degree

r = 25(5k− 1)(6k − 1) with τ = 25(5k− 1)2 + 5(4k − 1) and θ = 25(5k− 1)2,
where k ∈ N and 150k2−54k +5 is a prime number. Its eigenvalues are λ2 =
25k−5 and λ3 = − 5k with m2 = 150k2−54k+5 and m3 = 6(5k−1)(25k−4);

(160) G is the strongly regular graph of order n = 6(150k2 +54k +5) and degree

r = (6k+1)(25k+4) with τ = 25k2+24k+3 and θ = k(25k+4), where k ≥ 0
and 150k2 + 54k +5 is a prime number. Its eigenvalues are λ2 = 25k + 4 and

λ3 = −(5k + 1) with m2 = 150k2 + 54k + 5 and m3 = 6(5k + 1)(25k + 4);

(16
0
) G is the strongly regular graph of order n = 6(150k2 +54k +5) and degree

r = 25(5k +1)(6k + 1) with τ = 25(5k + 1)2 − 5(4k +1) and θ = 25(5k + 1)2,
where k ≥ 0 and 150k2+54k+5 is a prime number. Its eigenvalues are λ2 = 5k

and λ3 = − (25k+5) with m2 = 6(5k+1)(25k+4) and m3 = 150k2 +54k+5;

(170) G is the strongly regular graph of order n = 6(240k2−198k+41) and degree

r = (12k−5)(40k−17) with τ = 4(40k2−29k+5) and θ = 2(2k−1)(40k−17),
where k ∈ N and 240k2 − 198k + 41 is a prime number. Its eigenvalues are

λ2 = 40k − 17 and λ3 = − (8k − 3) with m2 = 240k2 − 198k + 41 and

m3 = 6(5k − 2)(40k − 17);

(17
0
) G is the strongly regular graph of order n = 6(240k2−198k+41) and degree

r = 16(5k−2)(12k−5) with τ = 4(8k−3)(20k−9) and θ = 16(5k−2)(8k−3),
where k ∈ N and 240k2 − 198k + 41 is a prime number. Its eigenvalues are
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λ2 = 8k − 4 and λ3 = − (40k − 16) with m2 = 6(5k − 2)(40k − 17) and

m3 = 240k2 − 198k + 41;

(180) G is the strongly regular graph of order n = 6(240k2−102k+11) and degree

r = 4(5k− 1)(24k− 5) with τ = 2(80k2 − 42k + 5) and θ = 4(5k− 1)(8k− 1),
where k ∈ N and 240k2 − 102k + 11 is a prime number. Its eigenvalues are

λ2 = 8k − 2 and λ3 = − (40k − 8) with m2 = 6(5k − 1)(40k − 9) and m3 =
240k2 − 102k + 11;

(18
0
) G is the strongly regular graph of order n = 6(240k2−102k+11) and degree

r = (24k−5)(40k−9) with τ = 4(4k−1)(40k−7) and θ = 4(4k−1)(40k−9),
where k ∈ N and 240k2 − 102k + 11 is a prime number. Its eigenvalues are

λ2 = 40k − 9 and λ3 = − (8k − 1) with m2 = 240k2 − 102k + 11 and m3 =
6(5k − 1)(40k − 9);

(190) G is the strongly regular graph of order n = 6(240k2 − 30k +1) and degree

r = 5(8k−1)(12k−1) with τ = 4(40k2−17k +1) and θ = 2(8k−1)(10k−1),
where k ∈ N and 240k2 − 30k + 1 is a prime number. Its eigenvalues are

λ2 = 8k − 1 and λ3 = − (40k − 3) with m2 = 5(240k2 − 30k + 1) and

m3 = 30k(8k − 1);

(19
0
) G is the strongly regular graph of order n = 6(240k2 − 30k +1) and degree

r = 80k(12k − 1) with τ = 4(160k2 − 4k − 1) and θ = 16k(40k − 3), where

k ∈ N and 240k2−30k+1 is a prime number. Its eigenvalues are λ2 = 40k−4
and λ3 = − 8k with m2 = 30k(8k − 1) and m3 = 5(240k2 − 30k + 1);

(200) G is the strongly regular graph of order n = 6(240k2 − 30k +1) and degree

r = 20k(24k−1) with τ = 2(80k2+14k−1) and θ = 4k(40k−1), where k ∈ N
and 240k2 − 30k +1 is a prime number. Its eigenvalues are λ2 = 40k− 2 and

λ3 = − 8k with m2 = 30k(8k − 1) and m3 = 5(240k2 − 30k + 1);

(20
0
) G is the strongly regular graph of order n = 6(240k2 − 30k +1) and degree

r = 5(8k−1)(24k−1) with τ = 4(160k2−36k+1) and θ = 4(8k−1)(20k−1),
where k ∈ N and 240k2 − 30k + 1 is a prime number. Its eigenvalues are

λ2 = 8k − 1 and λ3 = − (40k − 1) with m2 = 5(240k2 − 30k + 1) and

m3 = 30k(8k − 1);

(210) G is the strongly regular graph of order n = 6(240k2 +30k +1) and degree

r = 20k(24k + 1) with τ = 2(80k2 − 14k − 1) and θ = 4k(40k + 1), where

k ∈ N and 240k2 + 30k + 1 is a prime number. Its eigenvalues are λ2 = 8k

and λ3 = − (40k + 2) with m2 = 5(240k2 + 30k + 1) and m3 = 30k(8k + 1);

(21
0
) G is the strongly regular graph of order n = 6(240k2 +30k +1) and degree

r = 5(8k+1)(24k+1) with τ = 4(160k2+36k+1) and θ = 4(8k+1)(20k+1),
where k ∈ N and 240k2 +30k +1 is a prime number. Its eigenvalues are λ2 =
40k+1 and λ3 = − (8k+1) with m2 = 30k(8k+1) and m3 = 5(240k2+30k+1);

(220) G is the strongly regular graph of order n = 6(240k2 +30k +1) and degree

r = 5(8k+1)(12k+1) with τ = 4(40k2 +17k +1) and θ = 2(8k+1)(10k +1),
where k ∈ N and 240k2 +30k +1 is a prime number. Its eigenvalues are λ2 =
40k+3 and λ3 = − (8k+1) with m2 = 30k(8k+1) and m3 = 5(240k2+30k+1);
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(22
0
) G is the strongly regular graph of order n = 6(240k2 +30k +1) and degree

r = 80k(12k + 1) with τ = 4(160k2 + 4k − 1) and θ = 16k(40k + 3), where

k ∈ N and 240k2 + 30k + 1 is a prime number. Its eigenvalues are λ2 = 8k

and λ3 = − (40k + 4) with m2 = 5(240k2 + 30k + 1) and m3 = 30k(8k + 1);

(230) G is the strongly regular graph of order n = 6(240k2+102k+11) and degree

r = 4(5k + 1)(24k +5) with τ = 2(80k2 + 42k + 5) and θ = 4(5k +1)(8k + 1),
where k ≥ 0 and 240k2 + 102k + 11 is a prime number. Its eigenvalues are

λ2 = 40k + 8 and λ3 = − (8k + 2) with m2 = 240k2 + 102k + 11 and m3 =
6(5k + 1)(40k + 9);

(23
0
) G is the strongly regular graph of order n = 6(240k2+102k+11) and degree

r = (24k+5)(40k+9) with τ = 4(4k+1)(40k+7) and θ = 4(4k+1)(40k+9),
where k ≥ 0 and 240k2 + 102k + 11 is a prime number. Its eigenvalues are

λ2 = 8k + 1 and λ3 = − (40k + 9) with m2 = 6(5k + 1)(40k + 9) and m3 =
240k2 + 102k + 11;

(240) G is the strongly regular graph of order n = 6(240k2+198k+41) and degree

r = (12k+5)(40k+17) with τ = 4(40k2+29k+5) and θ = 2(2k+1)(40k+17),
where k ≥ 0 and 240k2 + 198k + 41 is a prime number. Its eigenvalues are

λ2 = 8k + 3 and λ3 = − (40k + 17) with m2 = 6(5k + 2)(40k + 17) and

m3 = 240k2 + 198k + 41;

(24
0
) G is the strongly regular graph of order n = 6(240k2+198k+41) and degree

r = 16(5k+2)(12k+5) with τ = 4(8k+3)(20k+9) and θ = 16(5k+2)(8k+3),
where k ≥ 0 and 240k2 + 198k + 41 is a prime number. Its eigenvalues are

λ2 = 40k + 16 and λ3 = −(8k + 4) with m2 = 240k2 + 198k + 41 and

m3 = 6(5k + 2)(40k + 17) .

In order to prove Theorem 2.2, we need some propositions below:

Proposition 2.3. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p + 1 is a prime number. If δ = 2p + 1 then G belongs to

the class (30) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have (2p + 1)m2m3 = 6r r, which means that
(2p + 1) | r or (2p + 1) | r. Without loss of generality we may consider only the
case when (2p + 1) | r.

Case 1. (r = 2p + 1). Then m2m3 = 12(5p + 2) and m2 + m3 = 12p + 5,
which provides that m2 and m3 are the roots of the quadratic equation m2 −
(12p + 5)m + 12(5p + 2) = 0. So we find that m2 , m3 = 12p+5±∆

2 where ∆2 =
(12p− 5)2 − 96, a contradiction because ∆2 is not a perfect square.

Case 2. (r = 2(2p + 1)). Then m2m3 = 12(8p + 3) and m2 + m3 = 12p + 5. So
we obtain m2, m3 = 12p+5±∆

2 where ∆2 = (12p − 11)2 − 240. We can easily see
that ∆2 is a perfect square only for p = 6. In this case we find that m2 = 68
and m3 = 9. Using (2) we obtain 77(τ − θ) + 819 = 0, a contradiction because
77 - 819.
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Case 3. (r = 3(2p + 1)). Then m2m3 = 36(3p + 1) and m2 + m3 = 12p + 5. So
we obtain m2 , m3 = 12p+5±∆

2 where ∆2 = (12p − 13)2 − 288, a contradiction
because ∆2 is not a perfect square.

Case 4. (r = 4(2p + 1)). Then m2m3 = 24(4p + 1) and m2 + m3 = 12p + 5. So
we obtain m2, m3 = 12p+5±∆

2 where ∆2 = (12p − 11)2 − 192. We can easily see
that ∆2 is a perfect square only for p = 5. In this case we find that m2 = 56
and m3 = 9. Using (2) we obtain 65(τ − θ) + 605 = 0, a contradiction because
65 - 605.

Case 5. (r = 5(2p + 1)). Then m2m3 = 60p and m2 + m3 = 12p + 5, which
yields that m2 = 12p and m3 = 5 or m2 = 5 and m3 = 12p. Consider first the
case when m2 = 12p and m3 = 5. Using (2) we obtain τ − θ = −(2p + 1). Since
λ2,3 = τ−θ±δ

2 we get easily λ2 = 0 and λ3 = − (2p + 1), which proves that G is

the strongly regular graph 6K2p+1 of degree r = 10p + 5 with τ = 8p + 4 and
θ = 10p +5. Consider the case when m2 = 5 and m3 = 12p. Using (2) we obtain

τ − θ = (2p+1)(12p−15)
12p+5

, a contradiction because (12p + 5) - 12p− 15.

Proposition 2.4. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p + 1 is a prime number. If δ = 2(2p + 1) then G belongs

to the class (20) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have 2(2p + 1)m2m3 = 3r r, which means that
(2p+1) | r or (2p+1) | r. We shall here consider only the case when (2p+1) | r.

Case 1. (r = 2p + 1). Then m2m3 = 3(5p + 2) and m2 + m3 = 12p + 5 which
yields that m2, m3 = 12p+5±∆

2 , where ∆2 = (12p + 2)2 + 12p − 3 and ∆2 =
(12p +3)2 − (12p + 8). So we obtain (12p + 2) < ∆ < (12p + 3), a contradiction.

Case 2. (r = 2(2p +1)). Then m2m3 = 3(8p+ 3) and m2 + m3 = 12p +5. So we
obtain m2, m3 = 12p+5±∆

2
where ∆2 = (12p + 1)2 − 12, a contradiction because

∆2 is not a perfect square.

Case 3. (r = 3(2p + 1)). Then m2m3 = 9(3p + 1) and m2 + m3 = 12p + 5
which yields that m2, m3 = 12p+5±∆

2
, where ∆2 = 144p2 + 12p − 11 and ∆2 =

(12p + 1)2 − 12(p + 1). So we obtain 12p < ∆ < 12p + 1, a contradiction.

Case 4. (r = 4(2p + 1)). Then m2m3 = 24p + 6 and m2 + m3 = 12p + 5, which
means that m2 = 12p+3 and m3 = 2 or m2 = 2 and m3 = 12p+3. Consider first
the case when m2 = 12p+3 and m3 = 2. Using (2) we obtain τ −θ = −2(2p+1),
which provides that λ2 = 0 and λ3 = −2(2p + 1). So we obtain that G is the
strongly regular graph 3K4p+2 of degree r = 8p+4 with τ = 4p+2 and θ = 8p+4.
Consider the case when m2 = 2 and m3 = 12p + 3. Using Using (2) we obtain

τ − θ = 2(2p+1)(12p−3)
12p+5 , a contradiction because (12p + 5) - 12p− 3.

Case 5. (r = 5(2p + 1)). Then m2m3 = 15p and m2 + m3 = 12p + 5 which
yields that m2, m3 = 12p+5±∆

2 , where ∆2 = (12p + 2)2 + 3(4p + 7) and ∆2 =
(12p + 3)2 − 4(3p − 4). So we obtain (12p + 2) < ∆ < (12p + 3) for p ≥ 2, a
contradiction.
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Proposition 2.5. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p + 1 is a prime number. If δ = 3(2p + 1) then G belongs

to the class (10) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have 3(2p + 1)m2m3 = 2r r, which means that
(2p + 1) | r or (2p + 1) | r.

Case 1. (r = 2p+1). In this case we find that 3m2m3 = 20p+8 and 3(m2+m3) =
36p + 15, a contradiction.

Case 2. (r = 2(2p + 1)). In this case we find that 3m2m3 = 32p + 12 and
3(m2 + m3) = 36p + 15, a contradiction.

Case 3. (r = 3(2p + 1)). Then m2m3 = 12p + 4 and m2 + m3 = 12p + 5, which
means that m2 = 12p+4 and m3 = 1 or m2 = 1 and m3 = 12p+4. Consider first
the case when m2 = 12p+4 and m3 = 1. Using (2) we obtain τ −θ = −3(2p+1),
which provides that λ2 = 0 and λ3 = −3(2p + 1). So we obtain that G is the
complete bipartite graph K6p+3,6p+3 of degree r = 6p + 3 with τ = 0 and
θ = 6p + 3. Consider the case when m2 = 1 and m3 = 12p + 4. Using Using (2)

we obtain τ − θ = 3(2p+1)(12p+1)
12p+5

, a contradiction because (12p + 5) - 12p + 1.

Case 4. (r = 4(2p + 1)). In this case we find that 3m2m3 = 32p + 8 and 3(m2 +
m3) = 36p + 15, a contradiction.

Case 5. (r = 5(2p+1)). In this case we find that 3m2m3 = 20p and 3(m2+m3) =
36p + 15, a contradiction.

Proposition 2.6. There is no connected strongly regular graph G of order 6(2p+
1) and degree r with δ = 4(2p + 1), where 2p + 1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph
with δ = 4(2p + 1). Using Theorem 1.1 we have 8(2p + 1)m2m3 = 3r r, which
means that (2p + 1) | r or (2p + 1) | r. Consider the case when r = 2p + 1 and
r = 10p+4. Then 4m2m3 = 15p+6 and 4(m2 +m3) = 48p+20, a contradiction.
Consider the case when r = 2(2p+1) and r = 8p+3. Then 4m2m3 = 24p+9 and
4(m2+m3) = 48p+20, a contradiction. Consider the case when r = 3(2p+1) and
r = 6p+2. Then 4m2m3 = 27p+9 and 4(m2 +m3) = 48p+20, a contradiction.
Consider the case when r = 4(2p + 1) and r = 4p + 1. Then 2m2m3 = 12p + 3
and m2 + m3 = 12p + 5, a contradiction. Consider the case when r = 5(2p + 1)
and r = 2p. Then 4m2m3 = 15p and 4(m2 +m3) = 48p+20, a contradiction.

Proposition 2.7. There is no connected strongly regular graph G of order 6(2p+
1) and degree r with δ = 5(2p + 1), where 2p + 1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with
δ = 5(2p +1). Using Theorem 1.1 we have 25(2p +1)m2m3 = 6r r, which means
that (2p+1) | r or (2p+1) | r. Consider the case when r = 2p+1 and r = 10p+4.
Then 25m2m3 = 12(5p + 2), a contradiction because 5 - (5p + 2). Consider the
case when r = 2(2p + 1) and r = 8p + 3. Then 25m2m3 = 12(8p + 3) and
25(m2+m3) = 25(12p+5), a contradiction. Consider the case when r = 3(2p+1)
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and r = 6p + 2. Then 25m2m3 = 36(3p + 1) and 25(m2 + m3) = 25(12p + 5),
a contradiction. Consider the case when r = 4(2p + 1) and r = 4p + 1. Then
25m2m3 = 24(4p+1) and 25(m2 +m3) = 25(12p+5), a contradiction. Consider
the case when r = 5(2p + 1) and r = 2p. Then 5m2m3 = 12p and m2 + m3 =
12p + 5, a contradiction.

Proposition 2.8. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+ 1 is a prime number. If m2 = 2p+ 1 and m3 = 10p+ 4

then G belongs to the class (100) or (120) or (15
0
) or (160) or (170) or (18

0
) or

(230) or (24
0
) represented in Theorem 2.2.

Proof. Using (2) we obtain 2r−3δ+5(τ−θ) = 4p(|λ3|−λ2). Since δ = λ2−λ3 and
τ −θ = λ2 +λ3 we arrive at 2p(5|λ3|−λ2) = r+λ2 +4λ3. Since λ2 ≤ b12p+6

2 c−1

and |λ3| ≤ b12p+6
2 c (see [2]) it follows that −20p ≤ r + λ2 + 4λ3 ≤ 20p. Let

5|λ3|−λ2 = t where t = 0,±1, . . . ,±10. Let λ3 = −k where k is a positive integer.
Then (i) λ2 = 5k− t; (ii) τ −θ = 4k− t; (iii) δ = 6k− t and (iv) r = (2p+1)t−k.
Since δ2 = (τ−θ)2+4(r−θ) (see [1]) we obtain (v) θ = (2p+1)t−(5k2−(t−1)k).
Using (ii), (iv) and (v) it is not difficult to see that (1) is transformed into

(p + 1)t2 − 3(2p + 1)t + 15k2 − 3k(2t − 1) = 0. (3)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 1 and
λ3 = − k, τ − θ = 4k − 1, δ = 6k − 1, r = (2p + 1) − k and θ = (2p + 1) − 5k2.
Using (3) we find that 5p +2 = 3k(5k− 1). Replacing k with 5k +1 we arrive at
p = 75k2 + 27k + 2, where k is a non-negative integer. So we obtain that G is a
strongly regular graph of order 6(150k2+54k+5) and degree r = (6k+1)(25k+4)
with τ = 25k2 + 24k + 3 and θ = k(25k + 4).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 2 and
λ3 = − k, τ−θ = 4k−2, δ = 6k−2, r = 2(2p+1)−k and θ = 2(2p+1)−(5k2−k).
Using (3) we find that 2(4p+1) = 3k(5k−3). Replacing k with 8k +2 we arrive
at p = 120k2 + 51k + 5, where k is a non-negative integer. So we obtain that
G is a strongly regular graph of order 6(240k2 + 102k + 11) and degree r =
4(5k+1)(24k+5) with τ = 2(80k2+42k+5) and θ = 4(5k+1)(8k+1). Replacing
k with 8k−3 we arrive at p = 120k2−99k+20, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2−198k+41) and degree
r = (12k−5)(40k−17) with τ = 4(40k2 −29k +5) and θ = 2(2k−1)(40k−17).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 3 and
λ3 = − k, τ−θ = 4k−3, δ = 6k−3, r = 3(2p+1)−k and θ = 3(2p+1)−(5k2−2k).
Using (3) we find that 3p = 5k(k − 1). Replacing k with 3k we arrive at p =
15k2 − 5k, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(30k2 − 10k + 1) and degree r = 3(5k − 1)(6k − 1) with
τ = 3k(15k− 4) and θ = 3(3k− 1)(5k− 1). Replacing k with 3k +1 we arrive at
p = 15k2 + 5k, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(30k2 + 10k + 1) and degree r = (6k + 1)(15k + 2) with
τ = (3k + 1)(15k + 1) and θ = 3k(15k + 2).
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Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 4 and
λ3 = − k, τ−θ = 4k−4, δ = 6k−4, r = 4(2p+1)−k and θ = 4(2p+1)−(5k2−3k).
Using (3) we find that 4(2p−1) = 3k(5k−7). Replacing k with 8k +4 we arrive
at p = 120k2 +99k +20, where k is a non-negative integer. So we obtain that G

is a strongly regular graph of order 6(240k2 +198k +41) and degree r = 16(5k +
2)(12k +5) with τ = 4(8k +3)(20k +9) and θ = 16(5k +2)(8k +3). Replacing k

with 8k−1 we arrive at p = 120k2−51k+5, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2−102k+11) and degree
r = (24k − 5)(40k − 9) with τ = 4(4k − 1)(40k − 7) and θ = 4(4k − 1)(40k− 9).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 5 and
λ3 = − k, τ−θ = 4k−5, δ = 6k−5, r = 5(2p+1)−k and θ = 5(2p+1)−(5k2−4k).
Using (3) we find that 5(p − 2) = 3k(5k − 9). Replacing k with 5k we arrive at
p = 75k2−27k+2, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(150k2−54k +5) and degree r = 25(5k−1)(6k−1) with
τ = 25(5k − 1)2 + 5(4k − 1) and θ = 25(5k − 1)2.

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 6 and
λ3 = − k, τ−θ = 4k−6, δ = 6k−6, r = 6(2p+1)−k and θ = 6(2p+1)−(5k2−5k).
Using (3) we find that (k − 1)(5k − 6) = 0, a contradiction.

Case 7. (t ≥ 7). Using (3) we find that (a) 7p + 15k2 − 39k + 28 = 0; (b)
16p+15k2−45k+40 = 0; (c) 9p+5k2−17k+18 = 0 and (d) 40p+15k2−57k+70 =
0 for t = 7, t = 8, t = 9 and t = 10, respectively, a contradiction.

Case 8. (t ≤ 0). In this case we find that (p+1)t2 +3(2p+1)|t|+15k2+3k(2|t|+
1) = 0, a contradiction (see (3)).

Proposition 2.9. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+1 is a prime number. If m2 = 2(2p+1) and m3 = 8p+3

then G belongs to the class (13
0
) or (140) represented in Theorem 2.2.

Proof. Using (2) we obtain 8p(2|λ3| − λ2) = 2r + 5(τ − θ) − δ. Since δ = λ2 − λ3

and τ − θ = λ2 +λ3 we obtain 4p(|2λ3| −λ2) = r +2λ2 +3λ3. Let 2|λ3| −λ2 = t

where t = 0,±1,±2, . . . ,±6. Let λ3 = −k where k is a positive integer. Then (i)
λ2 = 2k − t; (ii) τ − θ = k − t; (iii) δ = 3k − t, (iv) r = 2(2p + 1)t − k and (v)
θ = 2(2p + 1)t − (2k2 − (t − 1)k). Using (ii), (iv) and (v) we can easily see that
(1) is reduced to

(4p + 3)t2 − 6(2p + 1)t + 6k2 − 3k(2t − 1) = 0. (4)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 1 and
λ3 = −k, τ − θ = k − 1, δ = 3k − 1, r = 2(2p + 1) − k and θ = 2(2p + 1) − 2k2.
Using (4) we find that 8p +3 = 3k(2k− 1). Replacing k with 8k +1 we arrive at
p = 48k2 + 9k, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(96k2 +18k + 1) and degree r = (12k +1)(16k +1) with
τ = 4k(16k + 3) and θ = 4k(16k + 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 2 and
λ3 = −k, τ −θ = k−2, δ = 3k−2, r = 4(2p+1)−k and θ = 4(2p+1)−(2k2−k).
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Using (4) we find that 8p = 3k(2k − 3). Replacing k with 8k we arrive at
p = 48k2 − 9k, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(96k2 − 18k + 1) and degree r = 4(8k− 1)(12k− 1) with
τ = 4(8k − 1)2 + 2(4k − 1) and θ = 4(8k − 1)2.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 3 and
λ3 = −k, τ−θ = k−3, δ = 3k−3, r = 6(2p+1)−k and θ = 6(2p+1)−(2k2−2k).
Using (4) we find that (k − 1)(2k − 3) = 0, a contradiction.

Case 4. (t ≥ 4). Using (4) we find that (a) 16p + 6k2 − 21k + 24 = 0; (b)
40p + 6k2 − 27k + 45 = 0 and (c) 24p + 2k2 − 11k + 24 = 0 for t = 4, t = 5 and
t = 6, respectively, a contradiction.

Case 5. (t ≤ 0). In this case we find that (4p+3)t2 +6(2p+1)|t|+6k2+3k(2|t|+
1) = 0, a contradiction (see (4)).

Proposition 2.10. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+1 is a prime number. If m2 = 3(2p+1) and m3 = 6p+2
then G belongs to the class (60) represented in Theorem 2.2.

Proof. Using (2) we obtain 12p(|λ3| − λ2) = 2r + 5(τ − θ) + δ. Since 2r + 5(τ −
θ) + δ = 2r + 6λ2 + 4λ3 it follows that − 24p ≤ 2r + 5(τ − θ) + δ ≤ 60p. Let
|λ3| −λ2 = t where −2 ≤ t ≤ 5. Let λ3 = −k where k is a positive integer. Then
(i) λ2 = k − t; (ii) τ − θ = − t; (iii) δ = 2k − t; (iv) r = 3(2p + 1)t − k and (v)
θ = 3(2p + 1)t − (k2 − (t − 1)k). Using (ii), (iv) and (v) we can easily see that
(1) is reduced to

(3p + 2)t2 − 3(2p + 1)t + k2 − k(2t − 1) = 0. (5)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k − 1 and
λ3 = − k, τ − θ = − 1, δ = 2k − 1, r = 3(2p + 1) − k and θ = 3(2p + 1) − k2.
Using (5) we find that 3p + 1 = k(k − 1), a contradiction because 3 - k2 − k − 1.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k − 2 and
λ3 = − k, τ −θ = − 2, δ = 2k−2, r = 6(2p+1)−k and θ = 6(2p+1)− (k2−k).
Using (5) we find that (k−1)(k−2) = 0. So we obtain that G is the cocktail-party
graph (6p + 3)K2 of degree r = 12p + 4 with τ = 12p + 2 and θ = 12p + 4.

Case 3. (t ≥ 3). Using (5) we find that (a) 9p + k2 − 5k + 9 = 0; (b) 24p + k2 −
7k+20 = 0 and (c) 45p+k2−9k+35 = 0 for t = 3, t = 4 and t = 5, respectively,
a contradiction.

Case 4. (t ≤ 0). In this case we find that (3p+2)t2+3(2p+1)|t|+k2+k(2|t|+1) =
0, a contradiction (see (5)).

Proposition 2.11. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+1 is a prime number. If m2 = 4(2p+1) and m3 = 4p+1
then G belongs to the class (50) represented in Theorem 2.2.

Proof. Using (2) we obtain 8p(|λ3|−2λ2) = 2r +5(τ −θ)+3δ. Let |λ3|−2λ2 = t

where t ∈ N. Let λ2 = k where k is a non-negative integer. Then (i) λ3 =
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−(2k + t); (ii) τ − θ = −(k + t); (iii) δ = 3k + t, (iv) r = 2(2p + 1)t − (2k + t)
and (v) θ = 2(2p + 1)t − (k + 1)(2k + t). Using (ii), (iv) and (v) we can easily
see that (1) is reduced to

(4p + 1)(t − 3)t + 6k(k + 1) = 0. (6)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (2k + 1), τ − θ = − (k + 1), δ = 3k + 1, r = 2(2p + 1) − (2k + 1) and
θ = 2(2p + 1) − (k + 1)(2k + 1). Using (6) we find that 4p + 1 = 3k(k + 1), a
contradiction because 2 - 4p + 1.

Case 2. (t = 2). Using (6) we find that 4p + 1 = 3k(k + 1), a contradiction
because 2 - 4p + 1.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (2k + 3), τ − θ = − (k + 3), δ = 3k + 3, r = 6(2p + 1) − (2k + 3) and
θ = 6(2p + 1) − (k + 1)(2k + 3). Using (6) we find that k(k + 1) = 0. So we
obtain that G is the strongly regular graph (4p + 2)K3 of degree r = 12p + 3
with τ = 12p and θ = 12p + 3.

Case 4. (t ≥ 4). In this case we find that (4p + 1)(t − 3)t + 6k(k + 1) > 0, a
contradiction (see (6)).

Proposition 2.12. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p + 1 is a prime number. If m2 = 5(2p + 1) and m3 = 2p

then G belongs to the class (40) or (70) or (8
0
) or (90) or (110) or (190) or (20

0
)

or (210) or (22
0
) represented in Theorem 2.2.

Proof. Using (2) we obtain 4p(|λ3|−5λ2) = 2r +5(τ −θ)+5δ. Let |λ3|−5λ2 = t

where t ∈ N. Let λ2 = k where k is a non-negative integer. Then (i) λ3 =
−(5k + t); (ii) τ − θ = −(4k + t); (iii) δ = 6k + t, (iv) r = (2p + 1)t − (5k + t)
and (v) θ = (2p + 1)t− (k + 1)(5k + t). Using (ii), (iv) and (v) we can easily see
that (1) is reduced to

p(t − 6)t + 15k(k + 1) = 0. (7)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 1), τ − θ = − (4k + 1), δ = 6k + 1, r = (2p + 1) − (5k + 1) and
θ = (2p + 1) − (k + 1)(5k + 1). Using (7) we find that p = 3k(k + 1). So we
obtain that G is a strongly regular graph of order 6(6k2 + 6k + 1) and degree
r = k(6k + 1) with τ = k2 − 4k − 1 and θ = k2.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 2), τ − θ = − (4k + 2), δ = 6k + 2, r = 2(2p + 1) − (5k + 2) and
θ = 2(2p+1)−(k+1)(5k+2). Using (7) we find that 8p = 15k(k+1). Replacing
k with 8k we arrive at p = 120k2 + 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2 +30k +1) and degree
r = 20k(24k + 1) with τ = 2(80k2 − 14k − 1) and θ = 4k(40k + 1). Replacing k

with 8k − 1 we arrive at p = 120k2 − 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2−30k +1) and degree
r = 5(8k − 1)(12k − 1) with τ = 4(40k2 − 17k + 1) and θ = 2(8k − 1)(10k − 1).
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Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 3), τ − θ = − (4k + 3), δ = 6k + 3, r = 3(2p + 1) − (5k + 3)
and θ = 3(2p + 1) − (k + 1)(5k + 3). Using (7) we find that 3p = 5k(k + 1).
Replacing k with 3k we arrive at p = 15k2 + 5k, where k is a positive integer.
So we obtain that G is a strongly regular graph of order 6(30k2 + 10k + 1) and
degree r = 15k(6k+1) with τ = 3(3k−1)(5k+1) and θ = 3k(15k+2). Replacing
k with 3k − 1 we arrive at p = 15k2 − 5k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(30k2 − 10k + 1) and degree
r = 5(3k − 1)(6k − 1) with τ = (3k − 2)(15k − 2) and θ = 3(3k − 1)(5k − 1).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 4), τ − θ = − (4k + 4), δ = 6k + 4, r = 4(2p + 1) − (5k + 4) and
θ = 4(2p+1)−(k+1)(5k+4). Using (7) we find that 8p = 15k(k+1). Replacing
k with 8k we arrive at p = 120k2 + 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2 +30k +1) and degree
r = 80k(12k + 1) with τ = 4(160k2 + 4k − 1) and θ = 16k(40k + 3). Replacing
k with 8k − 1 we arrive at p = 120k2 − 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2−30k +1) and degree
r = 5(8k− 1)(24k − 1) with τ = 4(160k2 − 36k + 1) and θ = 4(8k− 1)(20k− 1).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 5), τ − θ = − (4k + 5), δ = 6k + 5, r = 5(2p + 1) − (5k + 5) and
θ = 5(2p + 1) − (k + 1)(5k + 5). Using (7) we find that p = 3k(k + 1). So we
obtain that G is a strongly regular graph of order 6(6k2 + 6k + 1) and degree
r = 5k(6k + 5) with τ = 25k2 + 16k − 5 and θ = 5k(5k + 4).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 6), τ − θ = − (4k + 6), δ = 6k + 6, r = 6(2p + 1) − (5k + 6) and
θ = 6(2p + 1) − (k + 1)(5k + 6). Using (7) we find that k(k + 1) = 0. So we
obtain that G is the strongly regular graph (2p + 1)K6 of degree r = 12p with
τ = 12p− 6 and θ = 12p.

Case 7. (t ≥ 7). In this case we find that p(t−6)t+15k(k+1) > 0, a contradiction
(see (7)).

Proposition 2.13. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+ 1 is a prime number. If m3 = 2p+ 1 and m2 = 10p+ 4

then G belongs to the class (10
0
) or (12

0
) or (150) or (16

0
) or (17

0
) or (180) or

(23
0
) or (240) represented in Theorem 2.2.

Proof. Using (2) we obtain 2p(|λ3|−5λ2) = r+4λ2+λ3. Let |λ3|−5λ2 = t where
t ∈ N. Let λ2 = k where k is a non-negative integer. Then (i) λ3 = − (5k + t);
(ii) τ − θ = − (4k + t); (iii) δ = 6k + t and (iv) r = (2p + 1)t + k and (v)
θ = (2p + 1)t − (5k2 + (t − 1)k). Using (ii), (iv) and (v) we can easily see that
(1) is reduced to

(p + 1)t2 − 3(2p + 1)t + 15k2 + 3k(2t − 1) = 0. (8)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =
− (5k+1), τ −θ = − (4k+1), δ = 6k+1, r = (2p+1)+k and θ = (2p+1)−5k2.
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Using (8) we find that 5p +2 = 3k(5k +1). Replacing k with 5k− 1 we arrive at
p = 75k2−27k+2, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(150k2− 54k +5) and degree r = (6k− 1)(25k− 4) with
τ = 25k2 − 24k + 3 and θ = k(25k − 4).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 2), τ − θ = − (4k + 2), δ = 6k + 2, r = 2(2p + 1) + k and
θ = 2(2p+1)−(5k2 +k). Using (8) we find that 2(4p+1) = 3k(5k+3). Replacing
k with 8k+3 we arrive at p = 120k2+99k+20, where k is a non-negative integer.
So we obtain that G is a strongly regular graph of order 6(240k2 + 198k + 41)
and degree r = (12k + 5)(40k + 17) with τ = 4(40k2 + 29k + 5) and θ =
2(2k+1)(40k+17). Replacing k with 8k−2 we arrive at p = 120k2−51k+5, where
k is a positive integer. So we obtain that G is a strongly regular graph of order
6(240k2−102k+11) and degree r = 4(5k−1)(24k−5) with τ = 2(80k2−42k+5)
and θ = 4(5k − 1)(8k − 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 3), τ − θ = − (4k + 3), δ = 6k + 3, r = 3(2p + 1) + k and
θ = 3(2p + 1) − (5k2 + 2k). Using (8) we find that 3p = 5k(k + 1). Replacing
k with 3k we arrive at p = 15k2 + 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(30k2 + 10k + 1) and degree
r = 3(5k+1)(6k +1) with τ = 3k(15k+4) and θ = 3(3k +1)(5k +1). Replacing
k with 3k − 1 we arrive at p = 15k2 − 5k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(30k2 − 10k + 1) and degree
r = (6k − 1)(15k − 2) with τ = (3k − 1)(15k − 1) and θ = 3k(15k − 2).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 4), τ − θ = − (4k + 4), δ = 6k + 4, r = 4(2p + 1) + k and
θ = 4(2p+1)−(5k2+3k). Using (8) we find that 4(2p−1) = 3k(5k+7). Replacing
k with 8k+1 we arrive at p = 120k2 +51k+5, where k is a non-negative integer.
So we obtain that G is a strongly regular graph of order 6(240k2 + 102k + 11)
and degree r = (24k + 5)(40k + 9) with τ = 4(4k + 1)(40k + 7) and θ = 4(4k +
1)(40k + 9). Replacing k with 8k − 4 we arrive at p = 120k2 − 99k + 20, where
k is a positive integer. So we obtain that G is a strongly regular graph of order
6(240k2−198k+41) and degree r = 16(5k−2)(12k−5) with τ = 4(8k−3)(20k−9)
and θ = 16(5k − 2)(8k − 3).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 5), τ − θ = − (4k + 5), δ = 6k + 5, r = 5(2p + 1) + k and
θ = 5(2p+1)−(5k2 +4k). Using (8) we find that 5(p−1) = 3k(5k+9). Replacing
k with 5k we arrive at p = 75k2 + 27k + 2, where k is a non-negative integer.
So we obtain that G is a strongly regular graph of order 6(150k2 +54k + 5) and
degree r = 25(5k+1)(6k+1) with τ = 25(5k+1)2−5(4k+1) and θ = 25(5k+1)2.

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (5k + 6), τ − θ = − (4k + 6), δ = 6k + 6, r = 5(2p + 1) + 6 and
θ = 5(2p + 1) − (5k2 + 5k). Using (8) we find that (k + 1)(5k + 6) = 0, a
contradiction.
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Case 7. (t ≥ 7). In this case we find that (p+1)t2−3(2p+1)t+15k2+3k(2t−1) >

0, a contradiction (see (8)).

Proposition 2.14. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p+1 is a prime number. If m3 = 2(2p+1) and m2 = 8p+3

then G belongs to the class (130) or (14
0
) represented in Theorem 2.2.

Proof. Using (2) we obtain 8p(|λ3| − 2λ2) = 2r + 5(τ − θ) + δ. Since δ = λ2 − λ3

and τ − θ = λ2 +λ3 we obtain 4p(|λ3| − 2λ2) = r +3λ2 +2λ3. Let 2|λ3| −λ2 = t

where −2 ≤ t ≤ 8. Let λ2 = k where k is a non-negative integer. Then (i)
λ3 = − (2k + t); (ii) τ − θ = − (k + t); (iii) δ = 3k + t, (iv) r = 2(2p + 1)t + k

and (v) θ = 2(2p + 1)t − (2k2 + (t − 1)k). Using (ii), (iv) and (v) we can easily
see that (1) is reduced to

(4p + 3)t2 − 6(2p + 1)t + 6k2 + 3k(2t − 1) = 0. (9)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =
− (2k+1), τ −θ = − (k+1), δ = 3k+1, r = 2(2p+1)+k and θ = 2(2p+1)−2k2.
Using (9) we find that 8p +3 = 3k(2k +1). Replacing k with 8k− 1 we arrive at
p = 48k2 − 9k, where k is a positive integer. So we obtain that G is a strongly
regular graph of order 6(96k2 − 18k + 1) and degree r = (12k− 1)(16k− 1) with
τ = 4k(16k − 3) and θ = 4k(16k − 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (2k + 2), τ − θ = − (k + 2), δ = 3k + 2, r = 4(2p + 1) + k and θ =
4(2p+1)−(2k2+k). Using (9) we find that 8p = 3k(2k+3). Replacing k with 8k

we arrive at p = 48k2+9k, where k is a positive integer. So we obtain that G is a
strongly regular graph of order 6(96k2+18k+1) and degree r = 4(8k+1)(12k+1)
with τ = 4(8k + 1)2 − 2(4k + 1) and θ = 4(8k + 1)2.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (2k + 3), τ − θ = − (k + 3), δ = 3k + 3, r = 6(2p + 1) + k and θ =
6(2p+1)−(2k2 +2k). Using (9) we find that (k+1)(2k+3) = 0, a contradiction.

Case 4. (t ≥ 4). In this case we find that (4p+3)t2−6(2p+1)t+6k2 +3k(2t−1) >

0, a contradiction (see (9)).

Case 5. (t ≤ 0). Using (9) we find that (a) k(2k−1) = 0; (b) 16p+6k2−9k+9 = 0
and (c) 40p + 6k2 − 15k + 24 = 0 for t = 0, t = −1 and t = −2, respectively, a
contradiction.

Proposition 2.15. There is no connected strongly regular graph G of order

6(2p + 1) and degree r with m3 = 3(2p + 1) and m2 = 6p + 2, where 2p + 1
is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph
with m3 = 3(2p + 1) and m2 = 6p + 2. Using (2) we obtain 12p(|λ3| − λ2) =
2r + 5(τ − θ) − δ. Let |λ3| − λ2 = t where t ∈ Z. Let λ3 = −k where k is a
positive integer. Then (i) λ2 = k − t; (ii) τ − θ = − t; (iii) δ = 2k − t; (iv)
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r = 3(2p +1)t + k− t and (v) θ = 3(2p +1)t− (k− 1)(k− t). Using (ii), (iv) and
(v) we can easily see that (1) is reduced to

(3p + 1)(t − 2)t + k(k − 1) = 0. (10)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k − 1 and
λ3 = − k, τ−θ = − 1, δ = 2k−1, r = 3(2p+1)+k−1 and θ = 3(2p+1)−(k−1)2 .
Using (10) we find that 3p+1 = k(k−1), a contradiction because 3 - k2−k−1.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k−2 and λ3 =
− k, τ−θ = − 2, δ = 2k−2, r = 6(2p+1)+k−2 and θ = 6(2p+1)−(k−1)(k−2).
Using (10) we find that k(k − 1) = 0, a contradiction.

Case 3. (t ≥ 3). In this case we find that (3p + 1)(t − 2)t + k(k − 1) > 0, a
contradiction (see (10)).

Case 4. (t ≤ 0). In this case we find that (3p + 1)(|t| + 2)|t| + k(k − 1) = 0, a
contradiction (see (10)).

Proposition 2.16. There is no connected strongly regular graph G of order

6(2p + 1) and degree r with m3 = 4(2p + 1) and m2 = 4p + 1, where 2p + 1
is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph
with m3 = 4(2p + 1) and m2 = 4p + 1. Using (2) we obtain 8p(2|λ3| − λ2) =
2r + 5(τ − θ) − 3δ. Let 2|λ3| − λ2 = t where t ∈ Z. Let λ3 = −k where k is a
positive integer. Then (i) λ2 = 2k − t; (ii) τ − θ = k − t; (iii) δ = 3k − t; (iv)
r = 2(2p + 1)t + 2k − t and (v) θ = 2(2p + 1)t − (k − 1)(2k − t). Using (ii), (iv)
and (v) we can easily see that (1) is reduced to

(4p + 1)(t − 3)t + 6k(k − 1) = 0. (11)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 1
and λ3 = − k, τ − θ = k − 1, δ = 3k − 1, r = 2(2p + 1) + 2k − 1 and θ =
2(2p + 1) − (k − 1)(2k − 1). Using (11) we find that 4p + 1 = 3k(k − 1), a
contradiction because 2 - 4p + 1.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 2
and λ3 = − k, τ − θ = k − 2, δ = 3k − 2, r = 4(2p + 1) + 2k − 2 and θ =
4(2p + 1) − (k − 1)(2k − 2). Using (11) we find that 4p + 1 = 3k(k − 1), a
contradiction because 2 - 4p + 1.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 3
and λ3 = − k, τ − θ = k − 3, δ = 3k − 3, r = 6(2p + 1) + 2k − 3 and θ =
6(2p+1)− (k−1)(2k−3). Using (11) we find that k(k−1) = 0, a contradiction.

Case 4. (t ≥ 4). In this case we find that (4p + 1)(t − 3)t + 6k(k − 1) > 0, a
contradiction (see (11)).

Case 5. (t ≤ 0). In this case we find that (4p + 1)(|t| + 3)|t| + 6k(k − 1) = 0, a
contradiction (see (11)).
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Proposition 2.17. Let G be a connected strongly regular graph of order 6(2p+1)
and degree r, where 2p + 1 is a prime number. If m3 = 5(2p + 1) and m2 = 2p

then G belongs to the class (7
0
) or (80) or (9

0
) or (11

0
) or (19

0
) or (200) or

(21
0
) or (220) represented in Theorem 2.2.

Proof. Using (2) we obtain 4p(5|λ3|−λ2) = 2r +5(τ −θ)−5δ. Let 5|λ3|−λ2 = t

where t ∈ Z. Let λ2 = − k where k is a positive integer. Then (i) λ2 = 5k − t;
(ii) τ − θ = 4k − t; (iii) δ = 6k − t, (iv) r = (2p + 1)t + (5k − t) and (v)
θ = (2p+ 1)t− (k− 1)(5k− t). Using (ii), (iv) and (v) we can easily see that (1)
is reduced to

p(t − 6)t + 15k(k − 1) = 0. (12)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 1
and λ3 = − k, τ − θ = 4k − 1, δ = 6k − 1, r = (2p + 1) + (5k − 1) and
θ = (2p + 1)− (k − 1)(5k− 1). Using (12) we find that p = 3k(k − 1). Replacing
k with k + 1 we arrive at p = 3k2 + 3k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(6k2 + 6k + 1) and degree
r = (k + 1)(6k + 5) with τ = k2 + 6k + 4 and θ = (k + 1)2.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 2
and λ3 = − k, τ − θ = 4k − 2, δ = 6k − 2, r = 2(2p + 1) + (5k − 2) and
θ = 2(2p + 1) − (k − 1)(5k − 2). Using (12) we find that 8p = 15k(k − 1).
Replacing k with 8k we arrive at p = 120k2 − 15k, where k is a positive integer.
So we obtain that G is a strongly regular graph of order 6(240k2 − 30k + 1) and
degree r = 20k(24k−1) with τ = 2(80k2+14k−1) and θ = 4k(40k−1). Replacing
k with 8k + 1 we arrive at p = 120k2 + 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2 +30k +1) and degree
r = 5(8k + 1)(12k + 1) with τ = 4(40k2 + 17k + 1) and θ = 2(8k + 1)(10k + 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 3
and λ3 = − k, τ − θ = 4k − 3, δ = 6k − 3, r = 3(2p + 1) + (5k − 3) and
θ = 3(2p+1)−(k−1)(5k−3). Using (12) we find that 3p = 5k(k−1). Replacing
k with 3k we arrive at p = 15k2 − 5k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(30k2 − 10k + 1) and degree
r = 15k(6k − 1) with τ = 3(3k + 1)(5k − 1) and θ = 3k(15k − 2). Replacing
k with 3k + 1 we arrive at p = 15k2 + 5k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(30k2 + 10k + 1) and degree
r = 5(3k + 1)(6k + 1) with τ = (3k + 2)(15k + 2) and θ = 3(3k + 1)(5k + 1).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 4
and λ3 = − k, τ − θ = 4k − 4, δ = 6k − 4, r = 4(2p + 1) + (5k − 4) and
θ = 4(2p+1)−(k−1)(5k−4). Using (12) we find that 8p = 15k(k−1). Replacing
k with 8k we arrive at p = 120k2 − 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2−30k +1) and degree
r = 80k(12k − 1) with τ = 4(160k2 − 4k − 1) and θ = 16k(40k − 3). Replacing
k with 8k + 1 we arrive at p = 120k2 + 15k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(240k2 +30k +1) and degree
r = 5(8k + 1)(24k + 1) with τ = 4(160k2 + 36k + 1) and θ = 4(8k + 1)(20k + 1).
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Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 5
and λ3 = − k, τ − θ = 4k − 5, δ = 6k − 5, r = 5(2p + 1) + (5k − 5) and
θ = 5(2p+1)− (k−1)(5k−5). Using (12) we find that p = 3k(k−1). Replacing
k with k + 1 we arrive at p = 3k2 + 3k, where k is a positive integer. So we
obtain that G is a strongly regular graph of order 6(6k2 + 6k + 1) and degree
r = 5(k + 1)(6k + 1) with τ = 25k2 + 34k + 4 and θ = 5(k + 1)(5k + 1).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k − 5
and λ3 = − k, τ − θ = 4k − 6, δ = 6k − 6, r = 6(2p + 1) + (5k − 6) and
θ = 6(2p + 1) − (k − 1)(5k − 6). Using (12) we find that k(k − 1) = 0, a
contradiction.

Case 7. (t ≥ 7). In this case we find that p(t−6)t+15k(k−1) > 0, a contradiction
(see (12)).

Case 8. (t ≤ 0). In this case we find that p(|t| + 6)|t| + 15k(k − 1) = 0, a
contradiction (see (12)).

Proof of Theorem 2.2. Using Theorem 1.1 we have m2m3δ
2 = 6(2p + 1)r r. We

shall now consider the following three cases.

Case 1. ((2p + 1) | δ2). In this case (2p + 1) | δ because G is an integral graph.
Since δ = λ2 + |λ3| < 12p +6 (see [2]) it follows that δ = 2p +1 or δ = 2(2p + 1)
or δ = 3(2p + 1) or δ = 4(2p + 1) or δ = 5(2p + 1). Using Propositions 2.3, 2.4,
2.5, 2.6 and 2.7 it turns out that G belongs to the class (10) or (20) or (30).

Case 2. ((2p + 1) | m2). Since m2 + m3 = 12p + 5 it follows that m2 = 2p + 1
and m3 = 10p + 4 or m2 = 2(2p + 1) and m3 = 8p + 3 or m2 = 3(2p + 1) and
m3 = 6p+2 or m2 = 4(2p+1) and m3 = 4p+1 or m2 = 5(2p+1) and m3 = 2p.
Using Propositions 2.8, 2.9, 2.10, 2.11 and 2.12 it turns out that G belongs to

the class (40) or (50) or (60) or (70) or (8
0
) or (90) or (100) or (110) or (120) or

(13
0
) or (140) or (15

0
) or (160) or (170) or (18

0
) or (190) or (20

0
) or (210) or

(22
0
) or (230) or (24

0
).

Case 3. ((2p + 1) | m3). Since m3 + m2 = 12p + 5 it follows that m3 = 2p + 1
and m2 = 10p + 4 or m3 = 2(2p + 1) and m2 = 8p + 3 or m3 = 3(2p + 1) and
m2 = 6p+2 or m3 = 4(2p+1) and m2 = 4p+1 or m3 = 5(2p+1) and m2 = 2p.
Using Propositions 2.13, 2.14, 2.15, 2.16 and 2.17 it turns out that G belongs to

the class (7
0
) or (80) or (9

0
) or (10

0
) or (11

0
) or (12

0
) or (130) or (14

0
) or (150)

or (16
0
) or (17

0
) or (180) or (19

0
) or (200) or (21

0
) or (220) or (23

0
) or (240).
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