Vietnam Journal of Mathematics 38:2(2010) 169-187

Vietnam Journal of MATHEMATICS © VAST 2010

On Strongly Regular Graphs of Order 6(2p+1)where 2p+1 is a Prime Number

Mirko Lepović

Tihomira Vuksanovića 32, 34000, Kragujevac, Serbia

Received August 25, 2009 Revised October 28, 2009

Abstract. We say that a regular graph G of order n and degree $r \ge 1$ (which is not a complete graph) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where S_k denotes the neighborhood of the vertex k. We here describe the parameters n, r, τ and θ for strongly regular graphs of order 6(2p + 1), where 2p + 1 is a prime number.

2000 Mathematics Subject Classification: 05C50.

Key words: Strongly regular graph, conference graph, integral graph.

1. Introduction

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \geq 1$ (which is not the complete graph K_n) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where S_k denotes the neighborhood of the vertex k. We say that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1]. Let $\lambda_1 = r$, λ_2 and λ_3 denote the distinct eigenvalues of G. Let $m_1 = 1$, m_2 and m_3 denote the multiplicity of r, λ_2 and λ_3 , respectively.

Theorem 1.1. [2] Let G be a connected strongly regular graph of order n and degree r. Then $m_2m_3\delta^2 = nr\overline{r}$, where $\delta = \lambda_2 - \lambda_3$ and $\overline{r} = (n-1) - r$.

Remark 1.2. Let $\overline{r} = (n-1) - r$, $\overline{\lambda}_2 = -\lambda_3 - 1$ and $\overline{\lambda}_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} , where \overline{G} denotes the complement of G. Then $\overline{\tau} = n - 2r - 2 + \theta$ and $\overline{\theta} = n - 2r + \tau$, where $\overline{\tau} = \tau(\overline{G})$ and $\overline{\theta} = \theta(\overline{G})$.

Remark 1.3. (i) A strongly regular graph G of order 4n + 1 and degree r = 2n with $\tau = n - 1$ and $\theta = n$ is called the conference graph; (ii) a strongly regular graph is the conference graph if and only if $m_2 = m_3$ and (iii) if $m_2 \neq m_3$ then G is an integral¹ graph.

Remark 1.4. (i) If G is a disconnected strongly regular graph of degree r then $G = mK_{r+1}$, where mH denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta = 0$.

Due to Theorem 1.1 we have recently obtained the following results [2]: (i) there is no strongly regular graph of order 4p+3 if 4p+3 is a prime number; (ii) the only strongly regular graphs of order 4p+1 are conference graphs if 4p+1 is a prime number. Beside [2, 3, 4], we have described the parameters n, r, τ and θ for strongly regular graphs of order 2(2p+1), 3(2p+1), 4(2p+1) and 5(2p+1), where 2p+1 is a prime number. We now proceed to establish the parameters of strongly regular graphs of order 6(2p+1) where 2p+1 is a prime number, as follows. First,

Proposition 1.5. [1] Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

$$r^{2} - (\tau - \theta + 1)r - (n - 1)\theta = 0.$$
(1)

Proposition 1.6. [1] Let G be a connected strongly regular graph of order n and degree r. Then

$$2r + (\tau - \theta)(m_2 + m_3) + \delta(m_2 - m_3) = 0, \qquad (2)$$

where $\delta = \lambda_2 - \lambda_3$.

Second, in what follows (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$ while $x \mid y$ means that x divides y.

2. Main Results

Remark 2.1. a) The connected strongly regular graphs of order 18 are (i) the complete bipartite graph $K_{9,9}$ of degree r = 9 with $\tau = 0$ and $\theta = 9$. Its

¹ We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists of integral values.

eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -9$ with $m_2 = 16$ and $m_3 = 1$; (ii) the strongly regular graph $\overline{3K_6}$ of degree r = 12 with $\tau = 6$ and $\theta = 12$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -6$ with $m_2 = 15$ and $m_3 = 2$; (iii) the strongly regular graph $\overline{6K_3}$ of degree r = 15 with $\tau = 12$ and $\theta = 15$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 12$ and $m_3 = 5$ and (iv) the cocktail-party graph $\overline{9K_2}$ of degree r = 16 with $\tau = 14$ and $\theta = 16$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 9$ and $m_3 = 8$.

b) Since the strongly regular graphs of order n = 18 are completely described, in the sequel it will be assumed that $p \ge 2$.

c) In Theorem 2.2 the complements of strongly regular graphs appear in pairs in (k^0) and (\overline{k}^0) classes, where k denotes the corresponding number of a class.

Theorem 2.2. Let G be a connected strongly regular graph of order 6(2p + 1) and degree r, where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

- (1^0) G is the complete bipartite graph $K_{6p+3,6p+3}$ of order n = 6(2p + 1) and degree r = 6p + 3 with $\tau = 0$ and $\theta = 6p + 3$, where $p \in \mathbb{N}$ and 2p + 1is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -(6p + 3)$ with $m_2 = 12p + 4$ and $m_3 = 1$;
- (2^0) G is the strongly regular graph $\overline{3K_{4p+2}}$ of order n = 6(2p+1) and degree r = 8p+4 with $\tau = 4p+2$ and $\theta = 8p+4$, where $p \in \mathbb{N}$ and 2p+1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2(2p+1)$ with $m_2 = 12p+3$ and $m_3 = 2$;
- (3⁰) G is the strongly regular graph $\overline{6K_{2p+1}}$ of order n = 6(2p+1) and degree r = 10p + 5 with $\tau = 8p + 4$ and $\theta = 10p + 5$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -(2p+1)$ with $m_2 = 12p$ and $m_3 = 5$;
- (4^0) G is the strongly regular graph $(2p+1)K_6$ of order n = 6(2p+1) and degree r = 12p with $\tau = 12p 6$ and $\theta = 12p$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -6$ with $m_2 = 5(2p+1)$ and $m_3 = 2p$;
- (5^0) G is the strongly regular graph $\overline{(4p+2)K_3}$ of order n = 6(2p+1) and degree r = 12p+3 with $\tau = 12p$ and $\theta = 12p+3$, where $p \in \mathbb{N}$ and 2p+1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 4(2p+1)$ and $m_3 = 4p+1$;
- (6⁰) G is the cocktail-party graph $\overline{(6p+3)K_2}$ of order n = 6(2p+1) and degree r = 12p + 4 with $\tau = 12p + 2$ and $\theta = 12p + 4$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 3(2p+1)$ and $m_3 = 6p + 2$;
- (7⁰) G is the strongly regular graph of order $n = 6(6k^2 + 6k + 1)$ and degree r = k(6k+1) with $\tau = k^2 4k 1$ and $\theta = k^2$, where $k \ge 5$ and $6k^2 + 6k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(5k+1)$ with $m_2 = 5(6k^2 + 6k + 1)$ and $m_3 = 6k(k+1)$;

- $(\overline{7}^0)$ G is the strongly regular graph of order $n = 6(6k^2 + 6k + 1)$ and degree r = 5(k+1)(6k+1) with $\tau = 25k^2 + 34k + 4$ and $\theta = 5(k+1)(5k+1)$, where $k \ge 5$ and $6k^2 + 6k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(k+1)$ with $m_2 = 6k(k+1)$ and $m_3 = 5(6k^2 + 6k + 1)$;
- (8⁰) G is the strongly regular graph of order $n = 6(6k^2 + 6k + 1)$ and degree r = (k+1)(6k+5) with $\tau = k^2 + 6k + 4$ and $\theta = (k+1)^2$, where $k \in \mathbb{N}$ and $6k^2 + 6k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 5k + 4$ and $\lambda_3 = -(k+1)$ with $m_2 = 6k(k+1)$ and $m_3 = 5(6k^2 + 6k + 1)$;
- $(\overline{8}^0)$ G is the strongly regular graph of order $n = 6(6k^2 + 6k + 1)$ and degree r = 5k(6k+5) with $\tau = 25k^2 + 16k 5$ and $\theta = 5k(5k+4)$, where $k \in \mathbb{N}$ and $6k^2 + 6k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(5k+5)$ with $m_2 = 5(6k^2 + 6k + 1)$ and $m_3 = 6k(k+1)$;
- (9⁰) G is the strongly regular graph of order $n = 6(30k^2 10k + 1)$ and degree r = 5(3k-1)(6k-1) with $\tau = (3k-2)(15k-2)$ and $\theta = 3(3k-1)(5k-1)$, where $k \in \mathbb{N}$ and $30k^2 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(15k-2)$ with $m_2 = 5(30k^2 10k + 1)$ and $m_3 = 10k(3k-1)$;
- $(\overline{9}^0)$ G is the strongly regular graph of order $n = 6(30k^2 10k + 1)$ and degree r = 15k(6k 1) with $\tau = 3(3k + 1)(5k 1)$ and $\theta = 3k(15k 2)$, where $k \in \mathbb{N}$ and $30k^2 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 15k 3$ and $\lambda_3 = -3k$ with $m_2 = 10k(3k 1)$ and $m_3 = 5(30k^2 10k + 1)$;
- (10⁰) G is the strongly regular graph of order $n = 6(30k^2 10k + 1)$ and degree r = 3(5k 1)(6k 1) with $\tau = 3k(15k 4)$ and $\theta = 3(3k 1)(5k 1)$, where $k \in \mathbb{N}$ and $30k^2 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 15k 3$ and $\lambda_3 = -3k$ with $m_2 = 30k^2 10k + 1$ and $m_3 = 2(5k 1)(15k 2)$;
- $(\overline{10}^0)$ G is the strongly regular graph of order $n = 6(30k^2 10k + 1)$ and degree r = (6k 1)(15k 2) with $\tau = (3k 1)(15k 1)$ and $\theta = 3k(15k 2)$, where $k \in \mathbb{N}$ and $30k^2 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(15k 2)$ with $m_2 = 2(5k 1)(15k 2)$ and $m_3 = 30k^2 10k + 1$;
- (11⁰) G is the strongly regular graph of order $n = 6(30k^2 + 10k + 1)$ and degree r = 15k(6k + 1) with $\tau = 3(3k 1)(5k + 1)$ and $\theta = 3k(15k + 2)$, where $k \in \mathbb{N}$ and $30k^2 + 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(15k + 3)$ with $m_2 = 5(30k^2 + 10k + 1)$ and $m_3 = 10k(3k + 1)$;
- $(\overline{11}^0)$ G is the strongly regular graph of order $n = 6(30k^2 + 10k + 1)$ and degree r = 5(3k+1)(6k+1) with $\tau = (3k+2)(15k+2)$ and $\theta = 3(3k+1)(5k+1)$, where $k \in \mathbb{N}$ and $30k^2 + 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 15k+2$ and $\lambda_3 = -(3k+1)$ with $m_2 = 10k(3k+1)$ and $m_3 = 5(30k^2 + 10k + 1)$;
- (12⁰) G is the strongly regular graph of order $n = 6(30k^2 + 10k + 1)$ and degree r = (6k + 1)(15k + 2) with $\tau = (3k + 1)(15k + 1)$ and $\theta = 3k(15k + 2)$, where $k \in \mathbb{N}$ and $30k^2 + 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 15k + 2$ and $\lambda_3 = -(3k + 1)$ with $m_2 = 30k^2 + 10k + 1$ and $m_3 = 2(5k + 1)(15k + 2)$;
- $(\overline{12}^0)$ G is the strongly regular graph of order $n = 6(30k^2 + 10k + 1)$ and degree r = 3(5k+1)(6k+1) with $\tau = 3k(15k+4)$ and $\theta = 3(3k+1)(5k+1)$, where

 $k \in \mathbb{N}$ and $30k^2 + 10k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(15k+3)$ with $m_2 = 2(5k+1)(15k+2)$ and $m_3 = 30k^2 + 10k + 1$;

- (13⁰) G is the strongly regular graph of order $n = 6(96k^2 18k + 1)$ and degree r = (12k-1)(16k-1) with $\tau = 4k(16k-3)$ and $\theta = 4k(16k-1)$, where $k \in \mathbb{N}$ and $96k^2 18k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 8k 1$ and $\lambda_3 = -(16k-1)$ with $m_2 = 3(8k-1)(16k-1)$ and $m_3 = 2(96k^2 18k + 1)$;
- (13) G is the strongly regular graph of order $n = 6(96k^2 18k + 1)$ and degree r = 4(8k-1)(12k-1) with $\tau = 4(8k-1)^2 + 2(4k-1)$ and $\theta = 4(8k-1)^2$, where $k \in \mathbb{N}$ and $96k^2 18k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 16k-2$ and $\lambda_3 = -8k$ with $m_2 = 2(96k^2 18k + 1)$ and $m_3 = 3(8k-1)(16k-1)$;
- (14⁰) G is the strongly regular graph of order $n = 6(96k^2 + 18k + 1)$ and degree r = (12k+1)(16k+1) with $\tau = 4k(16k+3)$ and $\theta = 4k(16k+1)$, where $k \in \mathbb{N}$ and $96k^2 + 18k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 16k + 1$ and $\lambda_3 = -(8k+1)$ with $m_2 = 2(96k^2 + 18k + 1)$ and $m_3 = 3(8k+1)(16k+1)$;
- $(\overline{14}^0)$ G is the strongly regular graph of order $n = 6(96k^2 + 18k + 1)$ and degree r = 4(8k+1)(12k+1) with $\tau = 4(8k+1)^2 2(4k+1)$ and $\theta = 4(8k+1)^2$, where $k \in \mathbb{N}$ and $96k^2 + 18k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 8k$ and $\lambda_3 = -(16k+2)$ with $m_2 = 3(8k+1)(16k+1)$ and $m_3 = 2(96k^2 + 18k + 1);$
- (15⁰) G is the strongly regular graph of order $n = 6(150k^2 54k + 5)$ and degree r = (6k-1)(25k-4) with $\tau = 25k^2 24k + 3$ and $\theta = k(25k-4)$, where $k \in \mathbb{N}$ and $150k^2 54k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 5k 1$ and $\lambda_3 = -(25k-4)$ with $m_2 = 6(5k-1)(25k-4)$ and $m_3 = 150k^2 54k + 5$;
- (15⁰) G is the strongly regular graph of order $n = 6(150k^2 54k + 5)$ and degree r = 25(5k 1)(6k 1) with $\tau = 25(5k 1)^2 + 5(4k 1)$ and $\theta = 25(5k 1)^2$, where $k \in \mathbb{N}$ and $150k^2 54k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 25k 5$ and $\lambda_3 = -5k$ with $m_2 = 150k^2 54k + 5$ and $m_3 = 6(5k 1)(25k 4)$;
- (16⁰) G is the strongly regular graph of order $n = 6(150k^2 + 54k + 5)$ and degree r = (6k+1)(25k+4) with $\tau = 25k^2 + 24k + 3$ and $\theta = k(25k+4)$, where $k \ge 0$ and $150k^2 + 54k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 25k + 4$ and $\lambda_3 = -(5k+1)$ with $m_2 = 150k^2 + 54k + 5$ and $m_3 = 6(5k+1)(25k+4)$;
- $(\overline{16}^0)$ G is the strongly regular graph of order $n = 6(150k^2 + 54k + 5)$ and degree r = 25(5k+1)(6k+1) with $\tau = 25(5k+1)^2 5(4k+1)$ and $\theta = 25(5k+1)^2$, where $k \ge 0$ and $150k^2 + 54k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(25k+5)$ with $m_2 = 6(5k+1)(25k+4)$ and $m_3 = 150k^2 + 54k + 5$;
- (17⁰) G is the strongly regular graph of order $n = 6(240k^2 198k + 41)$ and degree r = (12k-5)(40k-17) with $\tau = 4(40k^2 29k+5)$ and $\theta = 2(2k-1)(40k-17)$, where $k \in \mathbb{N}$ and $240k^2 198k + 41$ is a prime number. Its eigenvalues are $\lambda_2 = 40k 17$ and $\lambda_3 = -(8k-3)$ with $m_2 = 240k^2 198k + 41$ and $m_3 = 6(5k-2)(40k-17)$;
- $(\overline{17}^{0})$ G is the strongly regular graph of order $n = 6(240k^{2}-198k+41)$ and degree r = 16(5k-2)(12k-5) with $\tau = 4(8k-3)(20k-9)$ and $\theta = 16(5k-2)(8k-3)$, where $k \in \mathbb{N}$ and $240k^{2} 198k + 41$ is a prime number. Its eigenvalues are

 $\lambda_2 = 8k - 4$ and $\lambda_3 = -(40k - 16)$ with $m_2 = 6(5k - 2)(40k - 17)$ and $m_3 = 240k^2 - 198k + 41;$

- (18⁰) G is the strongly regular graph of order $n = 6(240k^2 102k + 11)$ and degree r = 4(5k 1)(24k 5) with $\tau = 2(80k^2 42k + 5)$ and $\theta = 4(5k 1)(8k 1)$, where $k \in \mathbb{N}$ and $240k^2 102k + 11$ is a prime number. Its eigenvalues are $\lambda_2 = 8k 2$ and $\lambda_3 = -(40k 8)$ with $m_2 = 6(5k 1)(40k 9)$ and $m_3 = 240k^2 102k + 11$;
- (18) G is the strongly regular graph of order $n = 6(240k^2 102k + 11)$ and degree r = (24k 5)(40k 9) with $\tau = 4(4k 1)(40k 7)$ and $\theta = 4(4k 1)(40k 9)$, where $k \in \mathbb{N}$ and $240k^2 102k + 11$ is a prime number. Its eigenvalues are $\lambda_2 = 40k 9$ and $\lambda_3 = -(8k 1)$ with $m_2 = 240k^2 102k + 11$ and $m_3 = 6(5k 1)(40k 9)$;
- (19⁰) G is the strongly regular graph of order $n = 6(240k^2 30k + 1)$ and degree r = 5(8k-1)(12k-1) with $\tau = 4(40k^2 17k + 1)$ and $\theta = 2(8k-1)(10k-1)$, where $k \in \mathbb{N}$ and $240k^2 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 8k 1$ and $\lambda_3 = -(40k 3)$ with $m_2 = 5(240k^2 30k + 1)$ and $m_3 = 30k(8k 1)$;
- $(\overline{19}^0)$ G is the strongly regular graph of order $n = 6(240k^2 30k + 1)$ and degree r = 80k(12k 1) with $\tau = 4(160k^2 4k 1)$ and $\theta = 16k(40k 3)$, where $k \in \mathbb{N}$ and $240k^2 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 40k 4$ and $\lambda_3 = -8k$ with $m_2 = 30k(8k 1)$ and $m_3 = 5(240k^2 30k + 1)$;
- (20⁰) G is the strongly regular graph of order $n = 6(240k^2 30k + 1)$ and degree r = 20k(24k-1) with $\tau = 2(80k^2 + 14k 1)$ and $\theta = 4k(40k-1)$, where $k \in \mathbb{N}$ and $240k^2 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 40k 2$ and $\lambda_3 = -8k$ with $m_2 = 30k(8k-1)$ and $m_3 = 5(240k^2 30k + 1)$;
- $\begin{array}{l} (\overline{20}^{0}) \ G \ is the strongly regular graph of order \ n = 6(240k^{2} 30k + 1) \ and \ degree \\ r = 5(8k 1)(24k 1) \ with \ \tau = 4(160k^{2} 36k + 1) \ and \ \theta = 4(8k 1)(20k 1), \\ where \ k \in \mathbb{N} \ and \ 240k^{2} 30k + 1 \ is \ a \ prime \ number. \ Its \ eigenvalues \ are \\ \lambda_{2} = 8k 1 \ and \ \lambda_{3} = -(40k 1) \ with \ m_{2} = 5(240k^{2} 30k + 1) \ and \\ m_{3} = 30k(8k 1); \end{array}$
- (21⁰) G is the strongly regular graph of order $n = 6(240k^2 + 30k + 1)$ and degree r = 20k(24k + 1) with $\tau = 2(80k^2 14k 1)$ and $\theta = 4k(40k + 1)$, where $k \in \mathbb{N}$ and $240k^2 + 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 8k$ and $\lambda_3 = -(40k + 2)$ with $m_2 = 5(240k^2 + 30k + 1)$ and $m_3 = 30k(8k + 1)$;
- (21) G is the strongly regular graph of order $n = 6(240k^2 + 30k + 1)$ and degree r = 5(8k+1)(24k+1) with $\tau = 4(160k^2 + 36k+1)$ and $\theta = 4(8k+1)(20k+1)$, where $k \in \mathbb{N}$ and $240k^2 + 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 40k+1$ and $\lambda_3 = -(8k+1)$ with $m_2 = 30k(8k+1)$ and $m_3 = 5(240k^2 + 30k+1)$;
- (22⁰) G is the strongly regular graph of order $n = 6(240k^2 + 30k + 1)$ and degree r = 5(8k+1)(12k+1) with $\tau = 4(40k^2 + 17k + 1)$ and $\theta = 2(8k+1)(10k+1)$, where $k \in \mathbb{N}$ and $240k^2 + 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 40k+3$ and $\lambda_3 = -(8k+1)$ with $m_2 = 30k(8k+1)$ and $m_3 = 5(240k^2 + 30k + 1)$;

- (22) G is the strongly regular graph of order $n = 6(240k^2 + 30k + 1)$ and degree r = 80k(12k + 1) with $\tau = 4(160k^2 + 4k 1)$ and $\theta = 16k(40k + 3)$, where $k \in \mathbb{N}$ and $240k^2 + 30k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 8k$ and $\lambda_3 = -(40k + 4)$ with $m_2 = 5(240k^2 + 30k + 1)$ and $m_3 = 30k(8k + 1)$;
- (23⁰) G is the strongly regular graph of order $n = 6(240k^2 + 102k + 11)$ and degree r = 4(5k+1)(24k+5) with $\tau = 2(80k^2 + 42k+5)$ and $\theta = 4(5k+1)(8k+1)$, where $k \ge 0$ and $240k^2 + 102k + 11$ is a prime number. Its eigenvalues are $\lambda_2 = 40k + 8$ and $\lambda_3 = -(8k+2)$ with $m_2 = 240k^2 + 102k + 11$ and $m_3 = 6(5k+1)(40k+9)$;
- (23) G is the strongly regular graph of order $n = 6(240k^2 + 102k + 11)$ and degree r = (24k+5)(40k+9) with $\tau = 4(4k+1)(40k+7)$ and $\theta = 4(4k+1)(40k+9)$, where $k \ge 0$ and $240k^2 + 102k + 11$ is a prime number. Its eigenvalues are $\lambda_2 = 8k + 1$ and $\lambda_3 = -(40k+9)$ with $m_2 = 6(5k+1)(40k+9)$ and $m_3 = 240k^2 + 102k + 11$;
- (24⁰) G is the strongly regular graph of order $n = 6(240k^2 + 198k + 41)$ and degree r = (12k+5)(40k+17) with $\tau = 4(40k^2 + 29k+5)$ and $\theta = 2(2k+1)(40k+17)$, where $k \ge 0$ and $240k^2 + 198k + 41$ is a prime number. Its eigenvalues are $\lambda_2 = 8k + 3$ and $\lambda_3 = -(40k + 17)$ with $m_2 = 6(5k + 2)(40k + 17)$ and $m_3 = 240k^2 + 198k + 41$;
- $\begin{array}{l} (\overline{24}^0) \ G \ is the strongly regular graph of order \ n = 6(240k^2 + 198k + 41) \ and \ degree \\ r = 16(5k+2)(12k+5) \ with \ \tau = 4(8k+3)(20k+9) \ and \ \theta = 16(5k+2)(8k+3), \\ where \ k \geq 0 \ and \ 240k^2 + 198k + 41 \ is \ a \ prime \ number. \ Its \ eigenvalues \ are \\ \lambda_2 = 40k + 16 \ and \ \lambda_3 = -(8k+4) \ with \ m_2 = 240k^2 + 198k + 41 \ and \\ m_3 = 6(5k+2)(40k+17) \ . \end{array}$

In order to prove Theorem 2.2, we need some propositions below:

Proposition 2.3. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p + 1 is a prime number. If $\delta = 2p + 1$ then G belongs to the class (3^0) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $(2p + 1)m_2m_3 = 6r \overline{r}$, which means that (2p + 1) | r or $(2p + 1) | \overline{r}$. Without loss of generality we may consider only the case when (2p + 1) | r.

Case 1. (r = 2p + 1). Then $m_2m_3 = 12(5p + 2)$ and $m_2 + m_3 = 12p + 5$, which provides that m_2 and m_3 are the roots of the quadratic equation $m^2 - (12p + 5)m + 12(5p + 2) = 0$. So we find that $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$ where $\Delta^2 = (12p - 5)^2 - 96$, a contradiction because Δ^2 is not a perfect square.

Case 2. (r = 2(2p + 1)). Then $m_2m_3 = 12(8p + 3)$ and $m_2 + m_3 = 12p + 5$. So we obtain $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$ where $\Delta^2 = (12p - 11)^2 - 240$. We can easily see that Δ^2 is a perfect square only for p = 6. In this case we find that $m_2 = 68$ and $m_3 = 9$. Using (2) we obtain $77(\tau - \theta) + 819 = 0$, a contradiction because $77 \nmid 819$.

Case 3. (r = 3(2p + 1)). Then $m_2m_3 = 36(3p + 1)$ and $m_2 + m_3 = 12p + 5$. So we obtain $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$ where $\Delta^2 = (12p - 13)^2 - 288$, a contradiction because Δ^2 is not a perfect square.

Case 4. (r = 4(2p + 1)). Then $m_2m_3 = 24(4p + 1)$ and $m_2 + m_3 = 12p + 5$. So we obtain $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$ where $\Delta^2 = (12p - 11)^2 - 192$. We can easily see that Δ^2 is a perfect square only for p = 5. In this case we find that $m_2 = 56$ and $m_3 = 9$. Using (2) we obtain $65(\tau - \theta) + 605 = 0$, a contradiction because $65 \nmid 605$.

Case 5. (r = 5(2p + 1)). Then $m_2m_3 = 60p$ and $m_2 + m_3 = 12p + 5$, which yields that $m_2 = 12p$ and $m_3 = 5$ or $m_2 = 5$ and $m_3 = 12p$. Consider first the case when $m_2 = 12p$ and $m_3 = 5$. Using (2) we obtain $\tau - \theta = -(2p + 1)$. Since $\lambda_{2,3} = \frac{\tau - \theta \pm \delta}{2}$ we get easily $\lambda_2 = 0$ and $\lambda_3 = -(2p + 1)$, which proves that G is the strongly regular graph $\overline{6K_{2p+1}}$ of degree r = 10p + 5 with $\tau = 8p + 4$ and $\theta = 10p + 5$. Consider the case when $m_2 = 5$ and $m_3 = 12p$. Using (2) we obtain $\tau - \theta = \frac{(2p+1)(12p-15)}{12p+5}$, a contradiction because $(12p + 5) \nmid 12p - 15$.

Proposition 2.4. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p + 1 is a prime number. If $\delta = 2(2p+1)$ then G belongs to the class (2^0) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $2(2p+1)m_2m_3 = 3r\overline{r}$, which means that (2p+1) | r or $(2p+1) | \overline{r}$. We shall here consider only the case when (2p+1) | r. Case 1. (r = 2p + 1). Then $m_2m_3 = 3(5p + 2)$ and $m_2 + m_3 = 12p + 5$ which yields that $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$, where $\Delta^2 = (12p+2)^2 + 12p - 3$ and $\Delta^2 = (12p+3)^2 - (12p+8)$. So we obtain $(12p+2) < \Delta < (12p+3)$, a contradiction. Case 2. (r = 2(2p+1)). Then $m_2m_3 = 3(8p+3)$ and $m_2 + m_3 = 12p + 5$. So we obtain $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$ where $\Delta^2 = (12p+1)^2 - 12$, a contradiction because Δ^2 is not a perfect square.

Case 3. (r = 3(2p + 1)). Then $m_2m_3 = 9(3p + 1)$ and $m_2 + m_3 = 12p + 5$ which yields that $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$, where $\Delta^2 = 144p^2 + 12p - 11$ and $\Delta^2 = (12p+1)^2 - 12(p+1)$. So we obtain $12p < \Delta < 12p + 1$, a contradiction.

Case 4. (r = 4(2p + 1)). Then $m_2m_3 = 24p + 6$ and $m_2 + m_3 = 12p + 5$, which means that $m_2 = 12p + 3$ and $m_3 = 2$ or $m_2 = 2$ and $m_3 = 12p + 3$. Consider first the case when $m_2 = 12p + 3$ and $m_3 = 2$. Using (2) we obtain $\tau - \theta = -2(2p + 1)$, which provides that $\lambda_2 = 0$ and $\lambda_3 = -2(2p + 1)$. So we obtain that G is the strongly regular graph $\overline{3K_{4p+2}}$ of degree r = 8p + 4 with $\tau = 4p + 2$ and $\theta = 8p + 4$. Consider the case when $m_2 = 2$ and $m_3 = 12p + 3$. Using Using (2) we obtain $\tau - \theta = \frac{2(2p+1)(12p-3)}{12p+5}$, a contradiction because $(12p + 5) \nmid 12p - 3$.

Case 5. (r = 5(2p + 1)). Then $m_2m_3 = 15p$ and $m_2 + m_3 = 12p + 5$ which yields that $m_2, m_3 = \frac{12p+5\pm\Delta}{2}$, where $\Delta^2 = (12p+2)^2 + 3(4p+7)$ and $\Delta^2 = (12p+3)^2 - 4(3p-4)$. So we obtain $(12p+2) < \Delta < (12p+3)$ for $p \ge 2$, a contradiction.

Proposition 2.5. Let G be a connected strongly regular graph of order 6(2p+1)and degree r, where 2p + 1 is a prime number. If $\delta = 3(2p+1)$ then G belongs to the class (1^0) represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $3(2p+1)m_2m_3 = 2r\overline{r}$, which means that (2p+1) | r or $(2p+1) | \overline{r}$.

Case 1. (r = 2p+1). In this case we find that $3m_2m_3 = 20p+8$ and $3(m_2+m_3) = 36p+15$, a contradiction.

Case 2. (r = 2(2p + 1)). In this case we find that $3m_2m_3 = 32p + 12$ and $3(m_2 + m_3) = 36p + 15$, a contradiction.

Case 3. (r = 3(2p + 1)). Then $m_2m_3 = 12p + 4$ and $m_2 + m_3 = 12p + 5$, which means that $m_2 = 12p + 4$ and $m_3 = 1$ or $m_2 = 1$ and $m_3 = 12p + 4$. Consider first the case when $m_2 = 12p + 4$ and $m_3 = 1$. Using (2) we obtain $\tau - \theta = -3(2p + 1)$, which provides that $\lambda_2 = 0$ and $\lambda_3 = -3(2p + 1)$. So we obtain that G is the complete bipartite graph $K_{6p+3,6p+3}$ of degree r = 6p + 3 with $\tau = 0$ and $\theta = 6p + 3$. Consider the case when $m_2 = 1$ and $m_3 = 12p + 4$. Using Using (2) we obtain $\tau - \theta = \frac{3(2p+1)(12p+1)}{12p+5}$, a contradiction because $(12p+5) \nmid 12p + 1$.

Case 4. (r = 4(2p + 1)). In this case we find that $3m_2m_3 = 32p + 8$ and $3(m_2 + m_3) = 36p + 15$, a contradiction.

Case 5. (r = 5(2p+1)). In this case we find that $3m_2m_3 = 20p$ and $3(m_2+m_3) = 36p + 15$, a contradiction.

Proposition 2.6. There is no connected strongly regular graph G of order 6(2p+1) and degree r with $\delta = 4(2p+1)$, where 2p+1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $\delta = 4(2p+1)$. Using Theorem 1.1 we have $8(2p+1)m_2m_3 = 3r\overline{r}$, which means that $(2p+1) \mid r$ or $(2p+1) \mid \overline{r}$. Consider the case when r = 2p+1 and $\overline{r} = 10p+4$. Then $4m_2m_3 = 15p+6$ and $4(m_2+m_3) = 48p+20$, a contradiction. Consider the case when r = 2(2p+1) and $\overline{r} = 8p+3$. Then $4m_2m_3 = 24p+9$ and $4(m_2+m_3) = 48p+20$, a contradiction. Consider the case when r = 3(2p+1) and $\overline{r} = 6p+2$. Then $4m_2m_3 = 27p+9$ and $4(m_2+m_3) = 48p+20$, a contradiction. Consider the case when r = 3(2p+1) and $\overline{r} = 6p+2$. Then $4m_2m_3 = 27p+9$ and $4(m_2+m_3) = 48p+20$, a contradiction. Consider the case when r = 5(2p+1) and $\overline{r} = 2p$. Then $4m_2m_3 = 15p$ and $4(m_2+m_3) = 48p+20$, a contradiction.

Proposition 2.7. There is no connected strongly regular graph G of order 6(2p+1) and degree r with $\delta = 5(2p+1)$, where 2p+1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $\delta = 5(2p+1)$. Using Theorem 1.1 we have $25(2p+1)m_2m_3 = 6r \overline{r}$, which means that (2p+1) | r or $(2p+1) | \overline{r}$. Consider the case when r = 2p+1 and $\overline{r} = 10p+4$. Then $25m_2m_3 = 12(5p+2)$, a contradiction because $5 \nmid (5p+2)$. Consider the case when r = 2(2p+1) and $\overline{r} = 8p+3$. Then $25m_2m_3 = 12(8p+3)$ and $25(m_2+m_3) = 25(12p+5)$, a contradiction. Consider the case when r = 3(2p+1)

and $\overline{r} = 6p + 2$. Then $25m_2m_3 = 36(3p + 1)$ and $25(m_2 + m_3) = 25(12p + 5)$, a contradiction. Consider the case when r = 4(2p + 1) and $\overline{r} = 4p + 1$. Then $25m_2m_3 = 24(4p + 1)$ and $25(m_2 + m_3) = 25(12p + 5)$, a contradiction. Consider the case when r = 5(2p + 1) and $\overline{r} = 2p$. Then $5m_2m_3 = 12p$ and $m_2 + m_3 = 12p + 5$, a contradiction.

Proposition 2.8. Let G be a connected strongly regular graph of order 6(2p+1)and degree r, where 2p+1 is a prime number. If $m_2 = 2p+1$ and $m_3 = 10p+4$ then G belongs to the class (10^0) or (12^0) or $(\overline{15}^0)$ or (16^0) or (17^0) or $(\overline{18}^0)$ or (23^0) or $(\overline{24}^0)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $2r - 3\delta + 5(\tau - \theta) = 4p(|\lambda_3| - \lambda_2)$. Since $\delta = \lambda_2 - \lambda_3$ and $\tau - \theta = \lambda_2 + \lambda_3$ we arrive at $2p(5|\lambda_3| - \lambda_2) = r + \lambda_2 + 4\lambda_3$. Since $\lambda_2 \leq \lfloor \frac{12p+6}{2} \rfloor - 1$ and $|\lambda_3| \leq \lfloor \frac{12p+6}{2} \rfloor$ (see [2]) it follows that $-20p \leq r + \lambda_2 + 4\lambda_3 \leq 20p$. Let $5|\lambda_3| - \lambda_2 = t$ where $t = 0, \pm 1, \ldots, \pm 10$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 5k - t$; (ii) $\tau - \theta = 4k - t$; (iii) $\delta = 6k - t$ and (iv) r = (2p+1)t - k. Since $\delta^2 = (\tau - \theta)^2 + 4(r - \theta)$ (see [1]) we obtain (v) $\theta = (2p+1)t - (5k^2 - (t-1)k)$. Using (ii), (iv) and (v) it is not difficult to see that (1) is transformed into

$$(p+1)t^2 - 3(2p+1)t + 15k^2 - 3k(2t-1) = 0.$$
(3)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 1$ and $\lambda_3 = -k, \tau - \theta = 4k - 1, \delta = 6k - 1, r = (2p + 1) - k$ and $\theta = (2p + 1) - 5k^2$. Using (3) we find that 5p + 2 = 3k(5k - 1). Replacing k with 5k + 1 we arrive at $p = 75k^2 + 27k + 2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(150k^2 + 54k + 5)$ and degree r = (6k+1)(25k+4) with $\tau = 25k^2 + 24k + 3$ and $\theta = k(25k + 4)$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 2$ and $\lambda_3 = -k, \tau - \theta = 4k - 2, \delta = 6k - 2, r = 2(2p+1) - k \text{ and } \theta = 2(2p+1) - (5k^2 - k).$ Using (3) we find that 2(4p+1) = 3k(5k-3). Replacing k with 8k+2 we arrive at $p = 120k^2 + 51k + 5$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 102k + 11)$ and degree r =4(5k+1)(24k+5) with $\tau = 2(80k^2+42k+5)$ and $\theta = 4(5k+1)(8k+1)$. Replacing k with 8k-3 we arrive at $p = 120k^2 - 99k + 20$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 198k + 41)$ and degree r = (12k-5)(40k-17) with $\tau = 4(40k^2-29k+5)$ and $\theta = 2(2k-1)(40k-17)$. Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 3$ and $\lambda_3 = -k, \tau - \theta = 4k - 3, \delta = 6k - 3, r = 3(2p + 1) - k \text{ and } \theta = 3(2p + 1) - (5k^2 - 2k).$ Using (3) we find that 3p = 5k(k-1). Replacing k with 3k we arrive at p = $15k^2 - 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 - 10k + 1)$ and degree r = 3(5k - 1)(6k - 1) with $\tau = 3k(15k-4)$ and $\theta = 3(3k-1)(5k-1)$. Replacing k with 3k+1 we arrive at $p = 15k^2 + 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 + 10k + 1)$ and degree r = (6k + 1)(15k + 2) with $\tau = (3k+1)(15k+1)$ and $\theta = 3k(15k+2)$.

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 4$ and $\lambda_3 = -k, \tau - \theta = 4k - 4, \delta = 6k - 4, r = 4(2p+1) - k$ and $\theta = 4(2p+1) - (5k^2 - 3k)$. Using (3) we find that 4(2p-1) = 3k(5k-7). Replacing k with 8k + 4 we arrive at $p = 120k^2 + 99k + 20$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 198k + 41)$ and degree r = 16(5k + 2)(12k + 5) with $\tau = 4(8k + 3)(20k + 9)$ and $\theta = 16(5k + 2)(8k + 3)$. Replacing k with 8k - 1 we arrive at $p = 120k^2 - 51k + 5$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 102k + 11)$ and degree r = (24k - 5)(40k - 9) with $\tau = 4(4k - 1)(40k - 7)$ and $\theta = 4(4k - 1)(40k - 9)$. Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 5$ and $\lambda_3 = -k, \tau - \theta = 4k - 5, \delta = 6k - 5, r = 5(2p+1) - k$ and $\theta = 5(2p+1) - (5k^2 - 4k)$. Using (3) we find that 5(p-2) = 3k(5k - 9). Replacing k with 5k we arrive at $p = 75k^2 - 27k + 2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(150k^2 - 54k + 5)$ and degree r = 25(5k - 1)(6k - 1) with $\tau = 25(5k - 1)^2 + 5(4k - 1)$ and $\theta = 25(5k - 1)^2$.

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 6$ and $\lambda_3 = -k, \tau - \theta = 4k - 6, \delta = 6k - 6, r = 6(2p+1) - k$ and $\theta = 6(2p+1) - (5k^2 - 5k)$. Using (3) we find that (k - 1)(5k - 6) = 0, a contradiction.

Case 7. $(t \ge 7)$. Using (3) we find that (a) $7p + 15k^2 - 39k + 28 = 0$; (b) $16p + 15k^2 - 45k + 40 = 0$; (c) $9p + 5k^2 - 17k + 18 = 0$ and (d) $40p + 15k^2 - 57k + 70 = 0$ for t = 7, t = 8, t = 9 and t = 10, respectively, a contradiction.

Case 8. $(t \le 0)$. In this case we find that $(p+1)t^2 + 3(2p+1)|t| + 15k^2 + 3k(2|t| + 1) = 0$, a contradiction (see (3)).

Proposition 2.9. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p+1 is a prime number. If $m_2 = 2(2p+1)$ and $m_3 = 8p+3$ then G belongs to the class $(\overline{13}^0)$ or (14^0) represented in Theorem 2.2.

Proof. Using (2) we obtain $8p(2|\lambda_3| - \lambda_2) = 2r + 5(\tau - \theta) - \delta$. Since $\delta = \lambda_2 - \lambda_3$ and $\tau - \theta = \lambda_2 + \lambda_3$ we obtain $4p(|2\lambda_3| - \lambda_2) = r + 2\lambda_2 + 3\lambda_3$. Let $2|\lambda_3| - \lambda_2 = t$ where $t = 0, \pm 1, \pm 2, \ldots, \pm 6$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$, (iv) r = 2(2p + 1)t - k and (v) $\theta = 2(2p + 1)t - (2k^2 - (t - 1)k)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(4p+3)t^2 - 6(2p+1)t + 6k^2 - 3k(2t-1) = 0.$$
(4)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k, \tau - \theta = k - 1, \delta = 3k - 1, r = 2(2p + 1) - k$ and $\theta = 2(2p + 1) - 2k^2$. Using (4) we find that 8p + 3 = 3k(2k - 1). Replacing k with 8k + 1 we arrive at $p = 48k^2 + 9k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(96k^2 + 18k + 1)$ and degree r = (12k + 1)(16k + 1) with $\tau = 4k(16k + 3)$ and $\theta = 4k(16k + 1)$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 2$ and $\lambda_3 = -k, \tau - \theta = k - 2, \delta = 3k - 2, r = 4(2p+1) - k$ and $\theta = 4(2p+1) - (2k^2 - k)$.

Using (4) we find that 8p = 3k(2k - 3). Replacing k with 8k we arrive at $p = 48k^2 - 9k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(96k^2 - 18k + 1)$ and degree r = 4(8k - 1)(12k - 1) with $\tau = 4(8k - 1)^2 + 2(4k - 1)$ and $\theta = 4(8k - 1)^2$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k, \tau - \theta = k - 3, \delta = 3k - 3, r = 6(2p+1) - k$ and $\theta = 6(2p+1) - (2k^2 - 2k)$. Using (4) we find that (k - 1)(2k - 3) = 0, a contradiction.

Case 4. $(t \ge 4)$. Using (4) we find that (a) $16p + 6k^2 - 21k + 24 = 0$; (b) $40p + 6k^2 - 27k + 45 = 0$ and (c) $24p + 2k^2 - 11k + 24 = 0$ for t = 4, t = 5 and t = 6, respectively, a contradiction.

Case 5. $(t \le 0)$. In this case we find that $(4p+3)t^2 + 6(2p+1)|t| + 6k^2 + 3k(2|t| + 1) = 0$, a contradiction (see (4)).

Proposition 2.10. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p+1 is a prime number. If $m_2 = 3(2p+1)$ and $m_3 = 6p+2$ then G belongs to the class (6^0) represented in Theorem 2.2.

Proof. Using (2) we obtain $12p(|\lambda_3| - \lambda_2) = 2r + 5(\tau - \theta) + \delta$. Since $2r + 5(\tau - \theta) + \delta = 2r + 6\lambda_2 + 4\lambda_3$ it follows that $-24p \leq 2r + 5(\tau - \theta) + \delta \leq 60p$. Let $|\lambda_3| - \lambda_2 = t$ where $-2 \leq t \leq 5$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = k - t$; (ii) $\tau - \theta = -t$; (iii) $\delta = 2k - t$; (iv) r = 3(2p + 1)t - k and (v) $\theta = 3(2p + 1)t - (k^2 - (t - 1)k)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(3p+2)t^{2} - 3(2p+1)t + k^{2} - k(2t-1) = 0.$$
(5)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k - 1$ and $\lambda_3 = -k, \tau - \theta = -1, \delta = 2k - 1, r = 3(2p + 1) - k$ and $\theta = 3(2p + 1) - k^2$. Using (5) we find that 3p + 1 = k(k - 1), a contradiction because $3 \nmid k^2 - k - 1$. Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k - 2$ and $\lambda_3 = -k, \tau - \theta = -2, \delta = 2k - 2, r = 6(2p + 1) - k$ and $\theta = 6(2p + 1) - (k^2 - k)$. Using (5) we find that (k-1)(k-2) = 0. So we obtain that G is the cocktail-party graph $(6p + 3)K_2$ of degree r = 12p + 4 with $\tau = 12p + 2$ and $\theta = 12p + 4$.

Case 3. $(t \ge 3)$. Using (5) we find that (a) $9p + k^2 - 5k + 9 = 0$; (b) $24p + k^2 - 7k + 20 = 0$ and (c) $45p + k^2 - 9k + 35 = 0$ for t = 3, t = 4 and t = 5, respectively, a contradiction.

Case 4. $(t \le 0)$. In this case we find that $(3p+2)t^2+3(2p+1)|t|+k^2+k(2|t|+1) = 0$, a contradiction (see (5)).

Proposition 2.11. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p+1 is a prime number. If $m_2 = 4(2p+1)$ and $m_3 = 4p+1$ then G belongs to the class (5^0) represented in Theorem 2.2.

Proof. Using (2) we obtain $8p(|\lambda_3| - 2\lambda_2) = 2r + 5(\tau - \theta) + 3\delta$. Let $|\lambda_3| - 2\lambda_2 = t$ where $t \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = 1$

-(2k+t); (ii) $\tau - \theta = -(k+t)$; (iii) $\delta = 3k+t$, (iv) r = 2(2p+1)t - (2k+t)and (v) $\theta = 2(2p+1)t - (k+1)(2k+t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(4p+1)(t-3)t + 6k(k+1) = 0.$$
(6)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+1), \tau - \theta = -(k+1), \delta = 3k+1, r = 2(2p+1) - (2k+1)$ and $\theta = 2(2p+1) - (k+1)(2k+1)$. Using (6) we find that 4p + 1 = 3k(k+1), a contradiction because $2 \nmid 4p + 1$.

Case 2. (t = 2). Using (6) we find that 4p + 1 = 3k(k + 1), a contradiction because $2 \nmid 4p + 1$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+3)$, $\tau - \theta = -(k+3)$, $\delta = 3k+3$, r = 6(2p+1) - (2k+3) and $\theta = 6(2p+1) - (k+1)(2k+3)$. Using (6) we find that k(k+1) = 0. So we obtain that G is the strongly regular graph $(4p+2)K_3$ of degree r = 12p+3 with $\tau = 12p$ and $\theta = 12p+3$.

Case 4. $(t \ge 4)$. In this case we find that (4p+1)(t-3)t+6k(k+1) > 0, a contradiction (see (6)).

Proposition 2.12. Let G be a connected strongly regular graph of order 6(2p+1)and degree r, where 2p + 1 is a prime number. If $m_2 = 5(2p+1)$ and $m_3 = 2p$ then G belongs to the class (4^0) or (7^0) or $(\overline{8}^0)$ or (9^0) or (11^0) or (19^0) or $(\overline{20}^0)$ or (21^0) or $(\overline{22}^0)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $4p(|\lambda_3| - 5\lambda_2) = 2r + 5(\tau - \theta) + 5\delta$. Let $|\lambda_3| - 5\lambda_2 = t$ where $t \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(5k+t)$; (ii) $\tau - \theta = -(4k+t)$; (iii) $\delta = 6k+t$, (iv) r = (2p+1)t - (5k+t)and (v) $\theta = (2p+1)t - (k+1)(5k+t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$p(t-6)t + 15k(k+1) = 0.$$
(7)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+1)$, $\tau - \theta = -(4k+1)$, $\delta = 6k+1$, r = (2p+1) - (5k+1) and $\theta = (2p+1) - (k+1)(5k+1)$. Using (7) we find that p = 3k(k+1). So we obtain that G is a strongly regular graph of order $6(6k^2 + 6k + 1)$ and degree r = k(6k+1) with $\tau = k^2 - 4k - 1$ and $\theta = k^2$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+2), \tau - \theta = -(4k+2), \delta = 6k+2, r = 2(2p+1) - (5k+2)$ and $\theta = 2(2p+1) - (k+1)(5k+2)$. Using (7) we find that 8p = 15k(k+1). Replacing k with 8k we arrive at $p = 120k^2 + 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 30k+1)$ and degree r = 20k(24k+1) with $\tau = 2(80k^2 - 14k - 1)$ and $\theta = 4k(40k+1)$. Replacing k with 8k - 1 we arrive at $p = 120k^2 - 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 30k+1)$ and degree r = 5(8k-1)(12k-1) with $\tau = 4(40k^2 - 17k+1)$ and $\theta = 2(8k-1)(10k-1)$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+3)$, $\tau - \theta = -(4k+3)$, $\delta = 6k+3$, r = 3(2p+1) - (5k+3) and $\theta = 3(2p+1) - (k+1)(5k+3)$. Using (7) we find that 3p = 5k(k+1). Replacing k with 3k we arrive at $p = 15k^2 + 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 + 10k + 1)$ and degree r = 15k(6k+1) with $\tau = 3(3k-1)(5k+1)$ and $\theta = 3k(15k+2)$. Replacing k with 3k - 1 we arrive at $p = 15k^2 - 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 - 10k + 1)$ and degree r = 5(3k-1)(6k-1) with $\tau = (3k-2)(15k-2)$ and $\theta = 3(3k-1)(5k-1)$. Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+4)$, $\tau - \theta = -(4k+4)$, $\delta = 6k+4$, r = 4(2p+1) - (5k+4) and $\theta = 4(2p+1) - (k+1)(5k+4)$. Using (7) we find that 8p = 15k(k+1). Replacing k with 8k we arrive at $p = 120k^2 + 15k$ where k is a positive integer.

 $\theta = 4(2p+1) - (k+1)(5k+4)$. Using (7) we find that 8p = 15k(k+1). Replacing k with 8k we arrive at $p = 120k^2 + 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 30k + 1)$ and degree r = 80k(12k+1) with $\tau = 4(160k^2 + 4k - 1)$ and $\theta = 16k(40k+3)$. Replacing k with 8k - 1 we arrive at $p = 120k^2 - 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 30k + 1)$ and degree r = 5(8k-1)(24k-1) with $\tau = 4(160k^2 - 36k + 1)$ and $\theta = 4(8k-1)(20k-1)$. Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+5)$, $\tau - \theta = -(4k+5)$, $\delta = 6k+5$, r = 5(2p+1) - (5k+5) and $\theta = 5(2p+1) - (k+1)(5k+5)$. Using (7) we find that p = 3k(k+1). So we obtain that G is a strongly regular graph of order $6(6k^2 + 6k + 1)$ and degree r = 5k(6k+5) with $\tau = 25k^2 + 16k - 5$ and $\theta = 5k(5k+4)$.

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+6)$, $\tau - \theta = -(4k+6)$, $\delta = 6k+6$, r = 6(2p+1) - (5k+6) and $\theta = 6(2p+1) - (k+1)(5k+6)$. Using (7) we find that k(k+1) = 0. So we obtain that G is the strongly regular graph $(2p+1)K_6$ of degree r = 12p with $\tau = 12p - 6$ and $\theta = 12p$.

Case 7. $(t \ge 7)$. In this case we find that p(t-6)t+15k(k+1) > 0, a contradiction (see (7)).

Proposition 2.13. Let G be a connected strongly regular graph of order 6(2p+1)and degree r, where 2p+1 is a prime number. If $m_3 = 2p+1$ and $m_2 = 10p+4$ then G belongs to the class $(\overline{10}^0)$ or $(\overline{12}^0)$ or (15^0) or $(\overline{16}^0)$ or $(\overline{17}^0)$ or (18^0) or $(\overline{23}^0)$ or (24^0) represented in Theorem 2.2.

Proof. Using (2) we obtain $2p(|\lambda_3|-5\lambda_2) = r+4\lambda_2+\lambda_3$. Let $|\lambda_3|-5\lambda_2 = t$ where $t \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(5k+t)$; (ii) $\tau - \theta = -(4k+t)$; (iii) $\delta = 6k + t$ and (iv) r = (2p+1)t + k and (v) $\theta = (2p+1)t - (5k^2 + (t-1)k)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(p+1)t^2 - 3(2p+1)t + 15k^2 + 3k(2t-1) = 0.$$
(8)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+1), \tau - \theta = -(4k+1), \delta = 6k+1, r = (2p+1)+k$ and $\theta = (2p+1)-5k^2$.

Using (8) we find that 5p + 2 = 3k(5k + 1). Replacing k with 5k - 1 we arrive at $p = 75k^2 - 27k + 2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(150k^2 - 54k + 5)$ and degree r = (6k - 1)(25k - 4) with $\tau = 25k^2 - 24k + 3$ and $\theta = k(25k - 4)$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+2), \tau - \theta = -(4k+2), \delta = 6k+2, r = 2(2p+1)+k$ and $\theta = 2(2p+1)-(5k^2+k)$. Using (8) we find that 2(4p+1) = 3k(5k+3). Replacing k with 8k+3 we arrive at $p = 120k^2+99k+20$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(240k^2+198k+41)$ and degree r = (12k+5)(40k+17) with $\tau = 4(40k^2+29k+5)$ and $\theta = 2(2k+1)(40k+17)$. Replacing k with 8k-2 we arrive at $p = 120k^2-51k+5$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2-102k+11)$ and degree r = 4(5k-1)(24k-5) with $\tau = 2(80k^2-42k+5)$ and $\theta = 4(5k-1)(8k-1)$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+3)$, $\tau - \theta = -(4k+3)$, $\delta = 6k+3$, r = 3(2p+1) + k and $\theta = 3(2p+1) - (5k^2+2k)$. Using (8) we find that 3p = 5k(k+1). Replacing k with 3k we arrive at $p = 15k^2 + 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 + 10k + 1)$ and degree r = 3(5k+1)(6k+1) with $\tau = 3k(15k+4)$ and $\theta = 3(3k+1)(5k+1)$. Replacing k with 3k - 1 we arrive at $p = 15k^2 - 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 - 10k + 1)$ and degree r = (6k-1)(15k-2) with $\tau = (3k-1)(15k-1)$ and $\theta = 3k(15k-2)$.

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k + 4), \ \tau - \theta = -(4k + 4), \ \delta = 6k + 4, \ r = 4(2p + 1) + k$ and $\theta = 4(2p+1) - (5k^2+3k)$. Using (8) we find that 4(2p-1) = 3k(5k+7). Replacing k with 8k + 1 we arrive at $p = 120k^2 + 51k + 5$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 102k + 11)$ and degree r = (24k + 5)(40k + 9) with $\tau = 4(4k + 1)(40k + 7)$ and $\theta = 4(4k + 1)(40k + 9)$. Replacing k with 8k - 4 we arrive at $p = 120k^2 - 99k + 20$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 198k + 41)$ and degree r = 16(5k-2)(12k-5) with $\tau = 4(8k-3)(20k-9)$ and $\theta = 16(5k-2)(8k-3)$.

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+5)$, $\tau - \theta = -(4k+5)$, $\delta = 6k+5$, r = 5(2p+1)+k and $\theta = 5(2p+1)-(5k^2+4k)$. Using (8) we find that 5(p-1) = 3k(5k+9). Replacing k with 5k we arrive at $p = 75k^2 + 27k + 2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6(150k^2+54k+5)$ and degree r = 25(5k+1)(6k+1) with $\tau = 25(5k+1)^2 - 5(4k+1)$ and $\theta = 25(5k+1)^2$. Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(5k+6)$, $\tau - \theta = -(4k+6)$, $\delta = 6k+6$, r = 5(2p+1) + 6 and $\theta = 5(2p+1) - (5k^2+5k)$. Using (8) we find that (k+1)(5k+6) = 0, a contradiction.

Case 7. $(t \ge 7)$. In this case we find that $(p+1)t^2 - 3(2p+1)t + 15k^2 + 3k(2t-1) > 0$, a contradiction (see (8)).

Proposition 2.14. Let G be a connected strongly regular graph of order 6(2p+1) and degree r, where 2p+1 is a prime number. If $m_3 = 2(2p+1)$ and $m_2 = 8p+3$ then G belongs to the class (13^0) or $(\overline{14}^0)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $8p(|\lambda_3| - 2\lambda_2) = 2r + 5(\tau - \theta) + \delta$. Since $\delta = \lambda_2 - \lambda_3$ and $\tau - \theta = \lambda_2 + \lambda_3$ we obtain $4p(|\lambda_3| - 2\lambda_2) = r + 3\lambda_2 + 2\lambda_3$. Let $2|\lambda_3| - \lambda_2 = t$ where $-2 \le t \le 8$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(2k+t)$; (ii) $\tau - \theta = -(k+t)$; (iii) $\delta = 3k + t$, (iv) r = 2(2p+1)t + kand (v) $\theta = 2(2p+1)t - (2k^2 + (t-1)k)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(4p+3)t^2 - 6(2p+1)t + 6k^2 + 3k(2t-1) = 0.$$
(9)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+1), \tau - \theta = -(k+1), \delta = 3k+1, r = 2(2p+1)+k$ and $\theta = 2(2p+1)-2k^2$. Using (9) we find that 8p+3 = 3k(2k+1). Replacing k with 8k-1 we arrive at $p = 48k^2 - 9k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(96k^2 - 18k + 1)$ and degree r = (12k-1)(16k-1) with $\tau = 4k(16k-3)$ and $\theta = 4k(16k-1)$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+2), \tau - \theta = -(k+2), \delta = 3k+2, r = 4(2p+1) + k$ and $\theta = 4(2p+1) - (2k^2+k)$. Using (9) we find that 8p = 3k(2k+3). Replacing k with 8k we arrive at $p = 48k^2 + 9k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(96k^2 + 18k + 1)$ and degree r = 4(8k+1)(12k+1) with $\tau = 4(8k+1)^2 - 2(4k+1)$ and $\theta = 4(8k+1)^2$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+3), \tau - \theta = -(k+3), \delta = 3k+3, r = 6(2p+1) + k$ and $\theta = 6(2p+1) - (2k^2+2k)$. Using (9) we find that (k+1)(2k+3) = 0, a contradiction. Case 4. $(t \ge 4)$. In this case we find that $(4p+3)t^2 - 6(2p+1)t + 6k^2 + 3k(2t-1) > 0$, a contradiction (see (9)).

Case 5. $(t \le 0)$. Using (9) we find that (a) k(2k-1) = 0; (b) $16p+6k^2-9k+9 = 0$ and (c) $40p+6k^2-15k+24 = 0$ for t = 0, t = -1 and t = -2, respectively, a contradiction.

Proposition 2.15. There is no connected strongly regular graph G of order 6(2p + 1) and degree r with $m_3 = 3(2p + 1)$ and $m_2 = 6p + 2$, where 2p + 1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $m_3 = 3(2p+1)$ and $m_2 = 6p+2$. Using (2) we obtain $12p(|\lambda_3| - \lambda_2) = 2r + 5(\tau - \theta) - \delta$. Let $|\lambda_3| - \lambda_2 = t$ where $t \in \mathbb{Z}$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = k - t$; (ii) $\tau - \theta = -t$; (iii) $\delta = 2k - t$; (iv)

r = 3(2p+1)t + k - t and (v) $\theta = 3(2p+1)t - (k-1)(k-t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(3p+1)(t-2)t + k(k-1) = 0.$$
(10)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k - 1$ and $\lambda_3 = -k, \tau - \theta = -1, \delta = 2k - 1, r = 3(2p+1) + k - 1$ and $\theta = 3(2p+1) - (k-1)^2$. Using (10) we find that 3p + 1 = k(k-1), a contradiction because $3 \nmid k^2 - k - 1$. Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k - 2$ and $\lambda_3 = -k, \tau - \theta = -2, \delta = 2k - 2, r = 6(2p+1) + k - 2$ and $\theta = 6(2p+1) - (k-1)(k-2)$. Using (10) we find that k(k-1) = 0, a contradiction.

Case 3. $(t \ge 3)$. In this case we find that (3p+1)(t-2)t + k(k-1) > 0, a contradiction (see (10)).

Case 4. $(t \le 0)$. In this case we find that (3p+1)(|t|+2)|t|+k(k-1)=0, a contradiction (see (10)).

Proposition 2.16. There is no connected strongly regular graph G of order 6(2p + 1) and degree r with $m_3 = 4(2p + 1)$ and $m_2 = 4p + 1$, where 2p + 1 is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $m_3 = 4(2p + 1)$ and $m_2 = 4p + 1$. Using (2) we obtain $8p(2|\lambda_3| - \lambda_2) = 2r + 5(\tau - \theta) - 3\delta$. Let $2|\lambda_3| - \lambda_2 = t$ where $t \in \mathbb{Z}$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$; (iv) r = 2(2p + 1)t + 2k - t and (v) $\theta = 2(2p + 1)t - (k - 1)(2k - t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(4p+1)(t-3)t + 6k(k-1) = 0.$$
(11)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k, \tau - \theta = k - 1, \delta = 3k - 1, r = 2(2p + 1) + 2k - 1$ and $\theta = 2(2p + 1) - (k - 1)(2k - 1)$. Using (11) we find that 4p + 1 = 3k(k - 1), a contradiction because $2 \nmid 4p + 1$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 2$ and $\lambda_3 = -k$, $\tau - \theta = k - 2$, $\delta = 3k - 2$, r = 4(2p + 1) + 2k - 2 and $\theta = 4(2p + 1) - (k - 1)(2k - 2)$. Using (11) we find that 4p + 1 = 3k(k - 1), a contradiction because $2 \nmid 4p + 1$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k$, $\tau - \theta = k - 3$, $\delta = 3k - 3$, r = 6(2p + 1) + 2k - 3 and $\theta = 6(2p+1) - (k-1)(2k-3)$. Using (11) we find that k(k-1) = 0, a contradiction. Case 4. $(t \ge 4)$. In this case we find that (4p + 1)(t - 3)t + 6k(k - 1) > 0, a contradiction (see (11)).

Case 5. $(t \le 0)$. In this case we find that (4p+1)(|t|+3)|t|+6k(k-1)=0, a contradiction (see (11)).

Proposition 2.17. Let G be a connected strongly regular graph of order 6(2p+1)and degree r, where 2p + 1 is a prime number. If $m_3 = 5(2p + 1)$ and $m_2 = 2p$ then G belongs to the class $(\overline{7}^0)$ or (8^0) or $(\overline{9}^0)$ or $(\overline{11}^0)$ or $(\overline{19}^0)$ or (20^0) or $(\overline{21}^0)$ or (22^0) represented in Theorem 2.2.

Proof. Using (2) we obtain $4p(5|\lambda_3| - \lambda_2) = 2r + 5(\tau - \theta) - 5\delta$. Let $5|\lambda_3| - \lambda_2 = t$ where $t \in \mathbb{Z}$. Let $\lambda_2 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 5k - t$; (ii) $\tau - \theta = 4k - t$; (iii) $\delta = 6k - t$, (iv) r = (2p + 1)t + (5k - t) and (v) $\theta = (2p + 1)t - (k - 1)(5k - t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$p(t-6)t + 15k(k-1) = 0.$$
(12)

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 1$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 1$, $\delta = 6k - 1$, r = (2p + 1) + (5k - 1) and $\theta = (2p + 1) - (k - 1)(5k - 1)$. Using (12) we find that p = 3k(k - 1). Replacing k with k + 1 we arrive at $p = 3k^2 + 3k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(6k^2 + 6k + 1)$ and degree r = (k + 1)(6k + 5) with $\tau = k^2 + 6k + 4$ and $\theta = (k + 1)^2$.

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 2$, $\delta = 6k - 2$, r = 2(2p + 1) + (5k - 2) and $\theta = 2(2p + 1) - (k - 1)(5k - 2)$. Using (12) we find that 8p = 15k(k - 1). Replacing k with 8k we arrive at $p = 120k^2 - 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 30k + 1)$ and degree r = 20k(24k - 1) with $\tau = 2(80k^2 + 14k - 1)$ and $\theta = 4k(40k - 1)$. Replacing k with 8k + 1 we arrive at $p = 120k^2 + 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 30k + 1)$ and degree r = 5(8k + 1)(12k + 1) with $\tau = 4(40k^2 + 17k + 1)$ and $\theta = 2(8k + 1)(10k + 1)$.

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 3$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 3$, $\delta = 6k - 3$, r = 3(2p + 1) + (5k - 3) and $\theta = 3(2p+1) - (k-1)(5k-3)$. Using (12) we find that 3p = 5k(k-1). Replacing k with 3k we arrive at $p = 15k^2 - 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 - 10k + 1)$ and degree r = 15k(6k - 1) with $\tau = 3(3k + 1)(5k - 1)$ and $\theta = 3k(15k - 2)$. Replacing k with 3k + 1 we arrive at $p = 15k^2 + 5k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(30k^2 + 10k + 1)$ and degree r = 5(3k + 1)(6k + 1) with $\tau = (3k + 2)(15k + 2)$ and $\theta = 3(3k + 1)(5k + 1)$.

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 4$, $\delta = 6k - 4$, r = 4(2p + 1) + (5k - 4) and $\theta = 4(2p+1) - (k-1)(5k-4)$. Using (12) we find that 8p = 15k(k-1). Replacing k with 8k we arrive at $p = 120k^2 - 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 - 30k + 1)$ and degree r = 80k(12k - 1) with $\tau = 4(160k^2 - 4k - 1)$ and $\theta = 16k(40k - 3)$. Replacing k with 8k + 1 we arrive at $p = 120k^2 + 15k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(240k^2 + 30k + 1)$ and degree r = 5(8k + 1)(24k + 1) with $\tau = 4(160k^2 + 36k + 1)$ and $\theta = 4(8k + 1)(20k + 1)$. Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 5$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 5$, $\delta = 6k - 5$, r = 5(2p + 1) + (5k - 5) and $\theta = 5(2p+1) - (k-1)(5k-5)$. Using (12) we find that p = 3k(k-1). Replacing k with k + 1 we arrive at $p = 3k^2 + 3k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6(6k^2 + 6k + 1)$ and degree r = 5(k+1)(6k+1) with $\tau = 25k^2 + 34k + 4$ and $\theta = 5(k+1)(5k+1)$.

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 5k - 5$ and $\lambda_3 = -k$, $\tau - \theta = 4k - 6$, $\delta = 6k - 6$, r = 6(2p + 1) + (5k - 6) and $\theta = 6(2p + 1) - (k - 1)(5k - 6)$. Using (12) we find that k(k - 1) = 0, a contradiction.

Case 7. $(t \ge 7)$. In this case we find that p(t-6)t+15k(k-1) > 0, a contradiction (see (12)).

Case 8. $(t \leq 0)$. In this case we find that p(|t| + 6)|t| + 15k(k - 1) = 0, a contradiction (see (12)).

Proof of Theorem 2.2. Using Theorem 1.1 we have $m_2 m_3 \delta^2 = 6(2p+1)r \overline{r}$. We shall now consider the following three cases.

Case 1. $((2p+1) | \delta^2)$. In this case $(2p+1) | \delta$ because G is an integral graph. Since $\delta = \lambda_2 + |\lambda_3| < 12p + 6$ (see [2]) it follows that $\delta = 2p + 1$ or $\delta = 2(2p+1)$ or $\delta = 3(2p+1)$ or $\delta = 4(2p+1)$ or $\delta = 5(2p+1)$. Using Propositions 2.3, 2.4, 2.5, 2.6 and 2.7 it turns out that G belongs to the class (1^0) or (2^0) or (3^0) .

Case 2. $((2p+1) | m_2)$. Since $m_2 + m_3 = 12p + 5$ it follows that $m_2 = 2p + 1$ and $m_3 = 10p + 4$ or $m_2 = 2(2p + 1)$ and $m_3 = 8p + 3$ or $m_2 = 3(2p + 1)$ and $m_3 = 6p + 2$ or $m_2 = 4(2p + 1)$ and $m_3 = 4p + 1$ or $m_2 = 5(2p + 1)$ and $m_3 = 2p$. Using Propositions 2.8, 2.9, 2.10, 2.11 and 2.12 it turns out that G belongs to the class (4^0) or (5^0) or (6^0) or (7^0) or $(\overline{8}^0)$ or (9^0) or (10^0) or (11^0) or (12^0) or $(\overline{13}^0)$ or (14^0) or $(\overline{15}^0)$ or (16^0) or (17^0) or $(\overline{18}^0)$ or (19^0) or $(\overline{20}^0)$ or (21^0) or $(\overline{22}^0)$ or (23^0) or $(\overline{24}^0)$.

Case 3. $((2p+1) | m_3)$. Since $m_3 + m_2 = 12p + 5$ it follows that $m_3 = 2p + 1$ and $m_2 = 10p + 4$ or $m_3 = 2(2p + 1)$ and $m_2 = 8p + 3$ or $m_3 = 3(2p + 1)$ and $m_2 = 6p + 2$ or $m_3 = 4(2p + 1)$ and $m_2 = 4p + 1$ or $m_3 = 5(2p + 1)$ and $m_2 = 2p$. Using Propositions 2.13, 2.14, 2.15, 2.16 and 2.17 it turns out that G belongs to the class $(\overline{7}^0)$ or (8^0) or $(\overline{9}^0)$ or $(\overline{10}^0)$ or $(\overline{11}^0)$ or $(\overline{12}^0)$ or (13^0) or $(\overline{14}^0)$ or (15^0) or $(\overline{16}^0)$ or $(\overline{17}^0)$ or (18^0) or $(\overline{19}^0)$ or (20^0) or $(\overline{21}^0)$ or (22^0) or $(\overline{23}^0)$ or (24^0) .

References

- 1. R. J. Elzinga, Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ) , Electronic J. Linear Algebra **10** (2003), 232–239.
- M. Lepović, Some characterizations of strongly regular graphs, J. Appl. Math. Comput. 29 (2009), 373–381.
- 3. M. Lepović, On strongly regular graphs of order 3(2p + 1) and 4(2p + 1) where 2p + 1 is a prime number, *Mediterranean J. Math. (submitted).*
- 4. M. Lepović, On strongly regular graphs of order 5(2p+1) where 2p+1 is a prime number, Adv. Appl. Math. Sci. (in press).