On Strongly Regular Graphs of Order $6(2 p+1)$ where $2 p+1$ is a Prime Number

Mirko Lepović
Tihomira Vuksanovića 32, 34000, Kragujevac, Serbia

Received August 25, 2009
Revised October 28, 2009

Abstract

We say that a regular graph G of order n and degree $r \geq 1$ (which is not a complete graph) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. We here describe the parameters n, r, τ and θ for strongly regular graphs of order $6(2 p+1)$, where $2 p+1$ is a prime number.

2000 Mathematics Subject Classification: 05C50.
Key words: Strongly regular graph, conference graph, integral graph.

1. Introduction

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ of its $(0,1)$ adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \geq 1$ (which is not the complete graph K_{n}) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. We say that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1]. Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} denote the distinct eigenvalues of G. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}, respectively.

Theorem 1.1. [2] Let G be a connected strongly regular graph of order n and degree r. Then $m_{2} m_{3} \delta^{2}=n r \bar{r}$, where $\delta=\lambda_{2}-\lambda_{3}$ and $\bar{r}=(n-1)-r$.

Remark 1.2. Let $\bar{r}=(n-1)-r, \bar{\lambda}_{2}=-\lambda_{3}-1$ and $\bar{\lambda}_{3}=-\lambda_{2}-1$ denote the distinct eigenvalues of the strongly regular graph \bar{G}, where \bar{G} denotes the complement of G. Then $\bar{\tau}=n-2 r-2+\theta$ and $\bar{\theta}=n-2 r+\tau$, where $\bar{\tau}=\tau(\bar{G})$ and $\bar{\theta}=\theta(\bar{G})$.

Remark 1.3. (i) A strongly regular graph G of order $4 n+1$ and degree $r=2 n$ with $\tau=n-1$ and $\theta=n$ is called the conference graph; (ii) a strongly regular graph is the conference graph if and only if $m_{2}=m_{3}$ and (iii) if $m_{2} \neq m_{3}$ then G is an integral ${ }^{1}$ graph.

Remark 1.4. (i) If G is a disconnected strongly regular graph of degree r then $G=m K_{r+1}$, where $m H$ denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta=0$.

Due to Theorem 1.1 we have recently obtained the following results [2]: (i) there is no strongly regular graph of order $4 p+3$ if $4 p+3$ is a prime number; (ii) the only strongly regular graphs of order $4 p+1$ are conference graphs if $4 p+1$ is a prime number. Beside $[2,3,4]$, we have described the parameters n, r, τ and θ for strongly regular graphs of order $2(2 p+1), 3(2 p+1), 4(2 p+1)$ and $5(2 p+1)$, where $2 p+1$ is a prime number. We now proceed to establish the parameters of strongly regular graphs of order $6(2 p+1)$ where $2 p+1$ is a prime number, as follows. First,

Proposition 1.5. [1] Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
r^{2}-(\tau-\theta+1) r-(n-1) \theta=0 \tag{1}
\end{equation*}
$$

Proposition 1.6. [1] Let G be a connected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
2 r+(\tau-\theta)\left(m_{2}+m_{3}\right)+\delta\left(m_{2}-m_{3}\right)=0 \tag{2}
\end{equation*}
$$

where $\delta=\lambda_{2}-\lambda_{3}$.
Second, in what follows (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$ while $x \mid y$ means that x divides y.

2. Main Results

Remark 2.1. a) The connected strongly regular graphs of order 18 are (i) the complete bipartite graph $K_{9,9}$ of degree $r=9$ with $\tau=0$ and $\theta=9$. Its

[^0]eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-9$ with $m_{2}=16$ and $m_{3}=1$; (ii) the strongly regular graph $\overline{3 K_{6}}$ of degree $r=12$ with $\tau=6$ and $\theta=12$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-6$ with $m_{2}=15$ and $m_{3}=2$; (iii) the strongly regular graph $\overline{6 K_{3}}$ of degree $r=15$ with $\tau=12$ and $\theta=15$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-3$ with $m_{2}=12$ and $m_{3}=5$ and (iv) the cocktail-party graph $\overline{9 K_{2}}$ of degree $r=16$ with $\tau=14$ and $\theta=16$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=9$ and $m_{3}=8$.
b) Since the strongly regular graphs of order $n=18$ are completely described, in the sequel it will be assumed that $p \geq 2$.
c) In Theorem 2.2 the complements of strongly regular graphs appear in pairs in $\left(k^{0}\right)$ and $\left(\bar{k}^{0}\right)$ classes, where k denotes the corresponding number of a class.

Theorem 2.2. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the complete bipartite graph $K_{6 p+3,6 p+3}$ of order $n=6(2 p+1)$ and degree $r=6 p+3$ with $\tau=0$ and $\theta=6 p+3$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-(6 p+3)$ with $m_{2}=12 p+4$ and $m_{3}=1 ;$
$\left(2^{0}\right) G$ is the strongly regular graph $\overline{3 K_{4 p+2}}$ of order $n=6(2 p+1)$ and degree $r=8 p+4$ with $\tau=4 p+2$ and $\theta=8 p+4$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2(2 p+1)$ with $m_{2}=12 p+3$ and $m_{3}=2$;
$\left(3^{0}\right) G$ is the strongly regular graph $\overline{6 K_{2 p+1}}$ of order $n=6(2 p+1)$ and degree $r=10 p+5$ with $\tau=8 p+4$ and $\theta=10 p+5$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-(2 p+1)$ with $m_{2}=12 p$ and $m_{3}=5$;
$\left(4^{0}\right) G$ is the strongly regular graph $\overline{(2 p+1) K_{6}}$ of order $n=6(2 p+1)$ and degree $r=12 p$ with $\tau=12 p-6$ and $\theta=12 p$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-6$ with $m_{2}=5(2 p+1)$ and $m_{3}=2 p ;$
$\left(5^{0}\right) G$ is the strongly regular graph $\overline{(4 p+2) K_{3}}$ of order $n=6(2 p+1)$ and degree $r=12 p+3$ with $\tau=12 p$ and $\theta=12 p+3$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-3$ with $m_{2}=4(2 p+1)$ and $m_{3}=4 p+1 ;$
$\left(6^{0}\right) G$ is the cocktail-party graph $\overline{(6 p+3) K_{2}}$ of order $n=6(2 p+1)$ and degree $r=12 p+4$ with $\tau=12 p+2$ and $\theta=12 p+4$, where $p \in \mathbb{N}$ and $2 p+1$ is a prime number. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=3(2 p+1)$ and $m_{3}=6 p+2$;
$\left(7^{0}\right) G$ is the strongly regular graph of order $n=6\left(6 k^{2}+6 k+1\right)$ and degree $r=k(6 k+1)$ with $\tau=k^{2}-4 k-1$ and $\theta=k^{2}$, where $k \geq 5$ and $6 k^{2}+6 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=5\left(6 k^{2}+6 k+1\right)$ and $m_{3}=6 k(k+1)$;
$\left(\overline{7}^{0}\right) G$ is the strongly regular graph of order $n=6\left(6 k^{2}+6 k+1\right)$ and degree $r=5(k+1)(6 k+1)$ with $\tau=25 k^{2}+34 k+4$ and $\theta=5(k+1)(5 k+1)$, where $k \geq 5$ and $6 k^{2}+6 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(k+1)$ with $m_{2}=6 k(k+1)$ and $m_{3}=5\left(6 k^{2}+6 k+1\right)$;
$\left(8^{0}\right) G$ is the strongly regular graph of order $n=6\left(6 k^{2}+6 k+1\right)$ and degree $r=(k+1)(6 k+5)$ with $\tau=k^{2}+6 k+4$ and $\theta=(k+1)^{2}$, where $k \in \mathbb{N}$ and $6 k^{2}+6 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=5 k+4$ and $\lambda_{3}=-(k+1)$ with $m_{2}=6 k(k+1)$ and $m_{3}=5\left(6 k^{2}+6 k+1\right) ;$
$\left(\overline{8}^{0}\right) G$ is the strongly regular graph of order $n=6\left(6 k^{2}+6 k+1\right)$ and degree $r=5 k(6 k+5)$ with $\tau=25 k^{2}+16 k-5$ and $\theta=5 k(5 k+4)$, where $k \in \mathbb{N}$ and $6 k^{2}+6 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+5)$ with $m_{2}=5\left(6 k^{2}+6 k+1\right)$ and $m_{3}=6 k(k+1)$;
$\left(9^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}-10 k+1\right)$ and degree $r=5(3 k-1)(6 k-1)$ with $\tau=(3 k-2)(15 k-2)$ and $\theta=3(3 k-1)(5 k-1)$, where $k \in \mathbb{N}$ and $30 k^{2}-10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-(15 k-2)$ with $m_{2}=5\left(30 k^{2}-10 k+1\right)$ and $m_{3}=10 k(3 k-1)$;
$\left(\overline{9}^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}-10 k+1\right)$ and degree $r=15 k(6 k-1)$ with $\tau=3(3 k+1)(5 k-1)$ and $\theta=3 k(15 k-2)$, where $k \in \mathbb{N}$ and $30 k^{2}-10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=15 k-3$ and $\lambda_{3}=-3 k$ with $m_{2}=10 k(3 k-1)$ and $m_{3}=5\left(30 k^{2}-10 k+1\right)$;
$\left(10^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}-10 k+1\right)$ and degree $r=3(5 k-1)(6 k-1)$ with $\tau=3 k(15 k-4)$ and $\theta=3(3 k-1)(5 k-1)$, where $k \in \mathbb{N}$ and $30 k^{2}-10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=15 k-3$ and $\lambda_{3}=-3 k$ with $m_{2}=30 k^{2}-10 k+1$ and $m_{3}=2(5 k-1)(15 k-2)$;
$\left(\overline{10}^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}-10 k+1\right)$ and degree $r=(6 k-1)(15 k-2)$ with $\tau=(3 k-1)(15 k-1)$ and $\theta=3 k(15 k-2)$, where $k \in \mathbb{N}$ and $30 k^{2}-10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-(15 k-2)$ with $m_{2}=2(5 k-1)(15 k-2)$ and $m_{3}=30 k^{2}-10 k+1$;
$\left(11^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}+10 k+1\right)$ and degree $r=15 k(6 k+1)$ with $\tau=3(3 k-1)(5 k+1)$ and $\theta=3 k(15 k+2)$, where $k \in \mathbb{N}$ and $30 k^{2}+10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(15 k+3)$ with $m_{2}=5\left(30 k^{2}+10 k+1\right)$ and $m_{3}=10 k(3 k+1)$;
$\left(\overline{11}^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}+10 k+1\right)$ and degree $r=5(3 k+1)(6 k+1)$ with $\tau=(3 k+2)(15 k+2)$ and $\theta=3(3 k+1)(5 k+1)$, where $k \in \mathbb{N}$ and $30 k^{2}+10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=15 k+2$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=10 k(3 k+1)$ and $m_{3}=5\left(30 k^{2}+10 k+1\right)$;
$\left(12^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}+10 k+1\right)$ and degree $r=(6 k+1)(15 k+2)$ with $\tau=(3 k+1)(15 k+1)$ and $\theta=3 k(15 k+2)$, where $k \in \mathbb{N}$ and $30 k^{2}+10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=15 k+2$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=30 k^{2}+10 k+1$ and $m_{3}=2(5 k+1)(15 k+2)$;
$\left(\overline{12}^{0}\right) G$ is the strongly regular graph of order $n=6\left(30 k^{2}+10 k+1\right)$ and degree $r=3(5 k+1)(6 k+1)$ with $\tau=3 k(15 k+4)$ and $\theta=3(3 k+1)(5 k+1)$, where
$k \in \mathbb{N}$ and $30 k^{2}+10 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(15 k+3)$ with $m_{2}=2(5 k+1)(15 k+2)$ and $m_{3}=30 k^{2}+10 k+1$;
$\left(13^{0}\right) G$ is the strongly regular graph of order $n=6\left(96 k^{2}-18 k+1\right)$ and degree $r=(12 k-1)(16 k-1)$ with $\tau=4 k(16 k-3)$ and $\theta=4 k(16 k-1)$, where $k \in \mathbb{N}$ and $96 k^{2}-18 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k-1$ and $\lambda_{3}=-(16 k-1)$ with $m_{2}=3(8 k-1)(16 k-1)$ and $m_{3}=2\left(96 k^{2}-18 k+1\right)$;
$\left(\overline{13}^{0}\right) G$ is the strongly regular graph of order $n=6\left(96 k^{2}-18 k+1\right)$ and degree $r=4(8 k-1)(12 k-1)$ with $\tau=4(8 k-1)^{2}+2(4 k-1)$ and $\theta=4(8 k-1)^{2}$, where $k \in \mathbb{N}$ and $96 k^{2}-18 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=16 k-2$ and $\lambda_{3}=-8 k$ with $m_{2}=2\left(96 k^{2}-18 k+1\right)$ and $m_{3}=3(8 k-1)(16 k-1)$;
$\left(14^{0}\right) G$ is the strongly regular graph of order $n=6\left(96 k^{2}+18 k+1\right)$ and degree $r=(12 k+1)(16 k+1)$ with $\tau=4 k(16 k+3)$ and $\theta=4 k(16 k+1)$, where $k \in \mathbb{N}$ and $96 k^{2}+18 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=16 k+1$ and $\lambda_{3}=-(8 k+1)$ with $m_{2}=2\left(96 k^{2}+18 k+1\right)$ and $m_{3}=3(8 k+1)(16 k+1)$;
$\left(\overline{14}^{0}\right) G$ is the strongly regular graph of order $n=6\left(96 k^{2}+18 k+1\right)$ and degree $r=4(8 k+1)(12 k+1)$ with $\tau=4(8 k+1)^{2}-2(4 k+1)$ and $\theta=4(8 k+1)^{2}$, where $k \in \mathbb{N}$ and $96 k^{2}+18 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k$ and $\lambda_{3}=-(16 k+2)$ with $m_{2}=3(8 k+1)(16 k+1)$ and $m_{3}=2\left(96 k^{2}+18 k+1\right)$;
$\left(15^{0}\right) G$ is the strongly regular graph of order $n=6\left(150 k^{2}-54 k+5\right)$ and degree $r=(6 k-1)(25 k-4)$ with $\tau=25 k^{2}-24 k+3$ and $\theta=k(25 k-4)$, where $k \in \mathbb{N}$ and $150 k^{2}-54 k+5$ is a prime number. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-(25 k-4)$ with $m_{2}=6(5 k-1)(25 k-4)$ and $m_{3}=150 k^{2}-54 k+5$;
$\left(\overline{15}^{0}\right) G$ is the strongly regular graph of order $n=6\left(150 k^{2}-54 k+5\right)$ and degree $r=25(5 k-1)(6 k-1)$ with $\tau=25(5 k-1)^{2}+5(4 k-1)$ and $\theta=25(5 k-1)^{2}$, where $k \in \mathbb{N}$ and $150 k^{2}-54 k+5$ is a prime number. Its eigenvalues are $\lambda_{2}=$ $25 k-5$ and $\lambda_{3}=-5 k$ with $m_{2}=150 k^{2}-54 k+5$ and $m_{3}=6(5 k-1)(25 k-4) ;$
$\left(16^{0}\right) G$ is the strongly regular graph of order $n=6\left(150 k^{2}+54 k+5\right)$ and degree $r=(6 k+1)(25 k+4)$ with $\tau=25 k^{2}+24 k+3$ and $\theta=k(25 k+4)$, where $k \geq 0$ and $150 k^{2}+54 k+5$ is a prime number. Its eigenvalues are $\lambda_{2}=25 k+4$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=150 k^{2}+54 k+5$ and $m_{3}=6(5 k+1)(25 k+4)$;
$\left(\overline{16}^{0}\right) G$ is the strongly regular graph of order $n=6\left(150 k^{2}+54 k+5\right)$ and degree $r=25(5 k+1)(6 k+1)$ with $\tau=25(5 k+1)^{2}-5(4 k+1)$ and $\theta=25(5 k+1)^{2}$, where $k \geq 0$ and $150 k^{2}+54 k+5$ is a prime number. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(25 k+5)$ with $m_{2}=6(5 k+1)(25 k+4)$ and $m_{3}=150 k^{2}+54 k+5$;
$\left(17^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-198 k+41\right)$ and degree $r=(12 k-5)(40 k-17)$ with $\tau=4\left(40 k^{2}-29 k+5\right)$ and $\theta=2(2 k-1)(40 k-17)$, where $k \in \mathbb{N}$ and $240 k^{2}-198 k+41$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k-17$ and $\lambda_{3}=-(8 k-3)$ with $m_{2}=240 k^{2}-198 k+41$ and $m_{3}=6(5 k-2)(40 k-17)$;
$\left(\overline{17}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-198 k+41\right)$ and degree $r=16(5 k-2)(12 k-5)$ with $\tau=4(8 k-3)(20 k-9)$ and $\theta=16(5 k-2)(8 k-3)$, where $k \in \mathbb{N}$ and $240 k^{2}-198 k+41$ is a prime number. Its eigenvalues are
$\lambda_{2}=8 k-4$ and $\lambda_{3}=-(40 k-16)$ with $m_{2}=6(5 k-2)(40 k-17)$ and $m_{3}=240 k^{2}-198 k+41$;
$\left(18^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-102 k+11\right)$ and degree $r=4(5 k-1)(24 k-5)$ with $\tau=2\left(80 k^{2}-42 k+5\right)$ and $\theta=4(5 k-1)(8 k-1)$, where $k \in \mathbb{N}$ and $240 k^{2}-102 k+11$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k-2$ and $\lambda_{3}=-(40 k-8)$ with $m_{2}=6(5 k-1)(40 k-9)$ and $m_{3}=$ $240 k^{2}-102 k+11$;
$\left(\overline{18}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-102 k+11\right)$ and degree $r=(24 k-5)(40 k-9)$ with $\tau=4(4 k-1)(40 k-7)$ and $\theta=4(4 k-1)(40 k-9)$, where $k \in \mathbb{N}$ and $240 k^{2}-102 k+11$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k-9$ and $\lambda_{3}=-(8 k-1)$ with $m_{2}=240 k^{2}-102 k+11$ and $m_{3}=$ $6(5 k-1)(40 k-9)$;
$\left(19^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-30 k+1\right)$ and degree $r=5(8 k-1)(12 k-1)$ with $\tau=4\left(40 k^{2}-17 k+1\right)$ and $\theta=2(8 k-1)(10 k-1)$, where $k \in \mathbb{N}$ and $240 k^{2}-30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k-1$ and $\lambda_{3}=-(40 k-3)$ with $m_{2}=5\left(240 k^{2}-30 k+1\right)$ and $m_{3}=30 k(8 k-1)$;
$\left(\overline{19}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-30 k+1\right)$ and degree $r=80 k(12 k-1)$ with $\tau=4\left(160 k^{2}-4 k-1\right)$ and $\theta=16 k(40 k-3)$, where $k \in \mathbb{N}$ and $240 k^{2}-30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k-4$ and $\lambda_{3}=-8 k$ with $m_{2}=30 k(8 k-1)$ and $m_{3}=5\left(240 k^{2}-30 k+1\right)$;
$\left(20^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-30 k+1\right)$ and degree $r=20 k(24 k-1)$ with $\tau=2\left(80 k^{2}+14 k-1\right)$ and $\theta=4 k(40 k-1)$, where $k \in \mathbb{N}$ and $240 k^{2}-30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k-2$ and $\lambda_{3}=-8 k$ with $m_{2}=30 k(8 k-1)$ and $m_{3}=5\left(240 k^{2}-30 k+1\right)$;
$\left(\overline{20}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}-30 k+1\right)$ and degree $r=5(8 k-1)(24 k-1)$ with $\tau=4\left(160 k^{2}-36 k+1\right)$ and $\theta=4(8 k-1)(20 k-1)$, where $k \in \mathbb{N}$ and $240 k^{2}-30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k-1$ and $\lambda_{3}=-(40 k-1)$ with $m_{2}=5\left(240 k^{2}-30 k+1\right)$ and $m_{3}=30 k(8 k-1)$;
$\left(21^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+30 k+1\right)$ and degree $r=20 k(24 k+1)$ with $\tau=2\left(80 k^{2}-14 k-1\right)$ and $\theta=4 k(40 k+1)$, where $k \in \mathbb{N}$ and $240 k^{2}+30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k$ and $\lambda_{3}=-(40 k+2)$ with $m_{2}=5\left(240 k^{2}+30 k+1\right)$ and $m_{3}=30 k(8 k+1)$;
$\left(\overline{21}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+30 k+1\right)$ and degree $r=5(8 k+1)(24 k+1)$ with $\tau=4\left(160 k^{2}+36 k+1\right)$ and $\theta=4(8 k+1)(20 k+1)$, where $k \in \mathbb{N}$ and $240 k^{2}+30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=$ $40 k+1$ and $\lambda_{3}=-(8 k+1)$ with $m_{2}=30 k(8 k+1)$ and $m_{3}=5\left(240 k^{2}+30 k+1\right)$;
$\left(22^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+30 k+1\right)$ and degree $r=5(8 k+1)(12 k+1)$ with $\tau=4\left(40 k^{2}+17 k+1\right)$ and $\theta=2(8 k+1)(10 k+1)$, where $k \in \mathbb{N}$ and $240 k^{2}+30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=$ $40 k+3$ and $\lambda_{3}=-(8 k+1)$ with $m_{2}=30 k(8 k+1)$ and $m_{3}=5\left(240 k^{2}+30 k+1\right)$;
$\left(\overline{22}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+30 k+1\right)$ and degree $r=80 k(12 k+1)$ with $\tau=4\left(160 k^{2}+4 k-1\right)$ and $\theta=16 k(40 k+3)$, where $k \in \mathbb{N}$ and $240 k^{2}+30 k+1$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k$ and $\lambda_{3}=-(40 k+4)$ with $m_{2}=5\left(240 k^{2}+30 k+1\right)$ and $m_{3}=30 k(8 k+1)$;
$\left(23^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+102 k+11\right)$ and degree $r=4(5 k+1)(24 k+5)$ with $\tau=2\left(80 k^{2}+42 k+5\right)$ and $\theta=4(5 k+1)(8 k+1)$, where $k \geq 0$ and $240 k^{2}+102 k+11$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k+8$ and $\lambda_{3}=-(8 k+2)$ with $m_{2}=240 k^{2}+102 k+11$ and $m_{3}=$ $6(5 k+1)(40 k+9) ;$
$\left(\overline{23}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+102 k+11\right)$ and degree $r=(24 k+5)(40 k+9)$ with $\tau=4(4 k+1)(40 k+7)$ and $\theta=4(4 k+1)(40 k+9)$, where $k \geq 0$ and $240 k^{2}+102 k+11$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k+1$ and $\lambda_{3}=-(40 k+9)$ with $m_{2}=6(5 k+1)(40 k+9)$ and $m_{3}=$ $240 k^{2}+102 k+11 ;$
$\left(24^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+198 k+41\right)$ and degree $r=(12 k+5)(40 k+17)$ with $\tau=4\left(40 k^{2}+29 k+5\right)$ and $\theta=2(2 k+1)(40 k+17)$, where $k \geq 0$ and $240 k^{2}+198 k+41$ is a prime number. Its eigenvalues are $\lambda_{2}=8 k+3$ and $\lambda_{3}=-(40 k+17)$ with $m_{2}=6(5 k+2)(40 k+17)$ and $m_{3}=240 k^{2}+198 k+41$;
$\left(\overline{24}^{0}\right) G$ is the strongly regular graph of order $n=6\left(240 k^{2}+198 k+41\right)$ and degree $r=16(5 k+2)(12 k+5)$ with $\tau=4(8 k+3)(20 k+9)$ and $\theta=16(5 k+2)(8 k+3)$, where $k \geq 0$ and $240 k^{2}+198 k+41$ is a prime number. Its eigenvalues are $\lambda_{2}=40 k+16$ and $\lambda_{3}=-(8 k+4)$ with $m_{2}=240 k^{2}+198 k+41$ and $m_{3}=6(5 k+2)(40 k+17)$.

In order to prove Theorem 2.2, we need some propositions below:
Proposition 2.3. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $\delta=2 p+1$ then G belongs to the class $\left(3^{0}\right)$ represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $(2 p+1) m_{2} m_{3}=6 r \bar{r}$, which means that $(2 p+1) \mid r$ or $(2 p+1) \mid \bar{r}$. Without loss of generality we may consider only the case when $(2 p+1) \mid r$.
Case 1. $(r=2 p+1)$. Then $m_{2} m_{3}=12(5 p+2)$ and $m_{2}+m_{3}=12 p+5$, which provides that m_{2} and m_{3} are the roots of the quadratic equation $m^{2}-$ $(12 p+5) m+12(5 p+2)=0$. So we find that $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$ where $\Delta^{2}=$ $(12 p-5)^{2}-96$, a contradiction because Δ^{2} is not a perfect square.
Case 2. $(r=2(2 p+1))$. Then $m_{2} m_{3}=12(8 p+3)$ and $m_{2}+m_{3}=12 p+5$. So we obtain $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$ where $\Delta^{2}=(12 p-11)^{2}-240$. We can easily see that Δ^{2} is a perfect square only for $p=6$. In this case we find that $m_{2}=68$ and $m_{3}=9$. Using (2) we obtain $77(\tau-\theta)+819=0$, a contradiction because $77 \nmid 819$.

Case 3. $(r=3(2 p+1))$. Then $m_{2} m_{3}=36(3 p+1)$ and $m_{2}+m_{3}=12 p+5$. So we obtain $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$ where $\Delta^{2}=(12 p-13)^{2}-288$, a contradiction because Δ^{2} is not a perfect square.
Case 4. $(r=4(2 p+1))$. Then $m_{2} m_{3}=24(4 p+1)$ and $m_{2}+m_{3}=12 p+5$. So we obtain $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$ where $\Delta^{2}=(12 p-11)^{2}-192$. We can easily see that Δ^{2} is a perfect square only for $p=5$. In this case we find that $m_{2}=56$ and $m_{3}=9$. Using (2) we obtain $65(\tau-\theta)+605=0$, a contradiction because $65 \nmid 605$.
Case 5. $(r=5(2 p+1))$. Then $m_{2} m_{3}=60 p$ and $m_{2}+m_{3}=12 p+5$, which yields that $m_{2}=12 p$ and $m_{3}=5$ or $m_{2}=5$ and $m_{3}=12 p$. Consider first the case when $m_{2}=12 p$ and $m_{3}=5$. Using (2) we obtain $\tau-\theta=-(2 p+1)$. Since $\lambda_{2,3}=\frac{\tau-\theta \pm \delta}{2}$ we get easily $\lambda_{2}=0$ and $\lambda_{3}=-(2 p+1)$, which proves that G is the strongly regular graph $\overline{6 K_{2 p+1}}$ of degree $r=10 p+5$ with $\tau=8 p+4$ and $\theta=10 p+5$. Consider the case when $m_{2}=5$ and $m_{3}=12 p$. Using (2) we obtain $\tau-\theta=\frac{(2 p+1)(12 p-15)}{12 p+5}$, a contradiction because $(12 p+5) \nmid 12 p-15$.

Proposition 2.4. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $\delta=2(2 p+1)$ then G belongs to the class $\left(2^{0}\right)$ represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $2(2 p+1) m_{2} m_{3}=3 r \bar{r}$, which means that $(2 p+1) \mid r$ or $(2 p+1) \mid \bar{r}$. We shall here consider only the case when $(2 p+1) \mid r$. Case 1. $(r=2 p+1)$. Then $m_{2} m_{3}=3(5 p+2)$ and $m_{2}+m_{3}=12 p+5$ which yields that $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$, where $\Delta^{2}=(12 p+2)^{2}+12 p-3$ and $\Delta^{2}=$ $(12 p+3)^{2}-(12 p+8)$. So we obtain $(12 p+2)<\Delta<(12 p+3)$, a contradiction. Case 2. $(r=2(2 p+1))$. Then $m_{2} m_{3}=3(8 p+3)$ and $m_{2}+m_{3}=12 p+5$. So we obtain $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$ where $\Delta^{2}=(12 p+1)^{2}-12$, a contradiction because Δ^{2} is not a perfect square.
Case 3. $(r=3(2 p+1))$. Then $m_{2} m_{3}=9(3 p+1)$ and $m_{2}+m_{3}=12 p+5$ which yields that $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$, where $\Delta^{2}=144 p^{2}+12 p-11$ and $\Delta^{2}=$ $(12 p+1)^{2}-12(p+1)$. So we obtain $12 p<\Delta<12 p+1$, a contradiction.
Case 4. $(r=4(2 p+1))$. Then $m_{2} m_{3}=24 p+6$ and $m_{2}+m_{3}=12 p+5$, which means that $m_{2}=12 p+3$ and $m_{3}=2$ or $m_{2}=2$ and $m_{3}=12 p+3$. Consider first the case when $m_{2}=12 p+3$ and $m_{3}=2$. Using (2) we obtain $\tau-\theta=-2(2 p+1)$, which provides that $\lambda_{2}=0$ and $\lambda_{3}=-2(2 p+1)$. So we obtain that G is the strongly regular graph $\overline{3 K_{4 p+2}}$ of degree $r=8 p+4$ with $\tau=4 p+2$ and $\theta=8 p+4$. Consider the case when $m_{2}=2$ and $m_{3}=12 p+3$. Using Using (2) we obtain $\tau-\theta=\frac{2(2 p+1)(12 p-3)}{12 p+5}$, a contradiction because $(12 p+5) \nmid 12 p-3$.
Case 5. $(r=5(2 p+1))$. Then $m_{2} m_{3}=15 p$ and $m_{2}+m_{3}=12 p+5$ which yields that $m_{2}, m_{3}=\frac{12 p+5 \pm \Delta}{2}$, where $\Delta^{2}=(12 p+2)^{2}+3(4 p+7)$ and $\Delta^{2}=$ $(12 p+3)^{2}-4(3 p-4)$. So we obtain $(12 p+2)<\Delta<(12 p+3)$ for $p \geq 2$, a contradiction.

Proposition 2.5. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $\delta=3(2 p+1)$ then G belongs to the class $\left(1^{0}\right)$ represented in Theorem 2.2.

Proof. Using Theorem 1.1 we have $3(2 p+1) m_{2} m_{3}=2 r \bar{r}$, which means that $(2 p+1) \mid r$ or $(2 p+1) \mid \bar{r}$.
Case 1. $(r=2 p+1)$. In this case we find that $3 m_{2} m_{3}=20 p+8$ and $3\left(m_{2}+m_{3}\right)=$ $36 p+15$, a contradiction.
Case 2. $(r=2(2 p+1))$. In this case we find that $3 m_{2} m_{3}=32 p+12$ and $3\left(m_{2}+m_{3}\right)=36 p+15$, a contradiction.
Case 3. $(r=3(2 p+1))$. Then $m_{2} m_{3}=12 p+4$ and $m_{2}+m_{3}=12 p+5$, which means that $m_{2}=12 p+4$ and $m_{3}=1$ or $m_{2}=1$ and $m_{3}=12 p+4$. Consider first the case when $m_{2}=12 p+4$ and $m_{3}=1$. Using (2) we obtain $\tau-\theta=-3(2 p+1)$, which provides that $\lambda_{2}=0$ and $\lambda_{3}=-3(2 p+1)$. So we obtain that G is the complete bipartite graph $K_{6 p+3,6 p+3}$ of degree $r=6 p+3$ with $\tau=0$ and $\theta=6 p+3$. Consider the case when $m_{2}=1$ and $m_{3}=12 p+4$. Using Using (2) we obtain $\tau-\theta=\frac{3(2 p+1)(12 p+1)}{12 p+5}$, a contradiction because $(12 p+5) \nmid 12 p+1$.
Case 4. $(r=4(2 p+1))$. In this case we find that $3 m_{2} m_{3}=32 p+8$ and $3\left(m_{2}+\right.$ $\left.m_{3}\right)=36 p+15$, a contradiction.
Case 5. $(r=5(2 p+1))$. In this case we find that $3 m_{2} m_{3}=20 p$ and $3\left(m_{2}+m_{3}\right)=$ $36 p+15$, a contradiction.

Proposition 2.6. There is no connected strongly regular graph G of order $6(2 p+$ 1) and degree r with $\delta=4(2 p+1)$, where $2 p+1$ is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $\delta=4(2 p+1)$. Using Theorem 1.1 we have $8(2 p+1) m_{2} m_{3}=3 r \bar{r}$, which means that $(2 p+1) \mid r$ or $(2 p+1) \mid \bar{r}$. Consider the case when $r=2 p+1$ and $\bar{r}=10 p+4$. Then $4 m_{2} m_{3}=15 p+6$ and $4\left(m_{2}+m_{3}\right)=48 p+20$, a contradiction. Consider the case when $r=2(2 p+1)$ and $\bar{r}=8 p+3$. Then $4 m_{2} m_{3}=24 p+9$ and $4\left(m_{2}+m_{3}\right)=48 p+20$, a contradiction. Consider the case when $r=3(2 p+1)$ and $\bar{r}=6 p+2$. Then $4 m_{2} m_{3}=27 p+9$ and $4\left(m_{2}+m_{3}\right)=48 p+20$, a contradiction. Consider the case when $r=4(2 p+1)$ and $\bar{r}=4 p+1$. Then $2 m_{2} m_{3}=12 p+3$ and $m_{2}+m_{3}=12 p+5$, a contradiction. Consider the case when $r=5(2 p+1)$ and $\bar{r}=2 p$. Then $4 m_{2} m_{3}=15 p$ and $4\left(m_{2}+m_{3}\right)=48 p+20$, a contradiction.

Proposition 2.7. There is no connected strongly regular graph G of order $6(2 p+$ 1) and degree r with $\delta=5(2 p+1)$, where $2 p+1$ is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $\delta=5(2 p+1)$. Using Theorem 1.1 we have $25(2 p+1) m_{2} m_{3}=6 r \bar{r}$, which means that $(2 p+1) \mid r$ or $(2 p+1) \mid \bar{r}$. Consider the case when $r=2 p+1$ and $\bar{r}=10 p+4$. Then $25 m_{2} m_{3}=12(5 p+2)$, a contradiction because $5 \nmid(5 p+2)$. Consider the case when $r=2(2 p+1)$ and $\bar{r}=8 p+3$. Then $25 m_{2} m_{3}=12(8 p+3)$ and $25\left(m_{2}+m_{3}\right)=25(12 p+5)$, a contradiction. Consider the case when $r=3(2 p+1)$
and $\bar{r}=6 p+2$. Then $25 m_{2} m_{3}=36(3 p+1)$ and $25\left(m_{2}+m_{3}\right)=25(12 p+5)$, a contradiction. Consider the case when $r=4(2 p+1)$ and $\bar{r}=4 p+1$. Then $25 m_{2} m_{3}=24(4 p+1)$ and $25\left(m_{2}+m_{3}\right)=25(12 p+5)$, a contradiction. Consider the case when $r=5(2 p+1)$ and $\bar{r}=2 p$. Then $5 m_{2} m_{3}=12 p$ and $m_{2}+m_{3}=$ $12 p+5$, a contradiction.

Proposition 2.8. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{2}=2 p+1$ and $m_{3}=10 p+4$ then G belongs to the class $\left(10^{0}\right)$ or $\left(12^{0}\right)$ or $\left(\overline{15}^{0}\right)$ or $\left(16^{0}\right)$ or $\left(17^{0}\right)$ or $\left(\overline{18}^{0}\right)$ or $\left(23^{0}\right)$ or $\left(\overline{24}^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $2 r-3 \delta+5(\tau-\theta)=4 p\left(\left|\lambda_{3}\right|-\lambda_{2}\right)$. Since $\delta=\lambda_{2}-\lambda_{3}$ and $\tau-\theta=\lambda_{2}+\lambda_{3}$ we arrive at $2 p\left(5\left|\lambda_{3}\right|-\lambda_{2}\right)=r+\lambda_{2}+4 \lambda_{3}$. Since $\lambda_{2} \leq\left\lfloor\frac{12 p+6}{2}\right\rfloor-1$ and $\left|\lambda_{3}\right| \leq\left\lfloor\frac{12 p+6}{2}\right\rfloor$ (see [2]) it follows that $-20 p \leq r+\lambda_{2}+4 \lambda_{3} \leq 20 p$. Let $5\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t=0, \pm 1, \ldots, \pm 10$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=5 k-t$; (ii) $\tau-\theta=4 k-t$; (iii) $\delta=6 k-t$ and (iv) $r=(2 p+1) t-k$. Since $\delta^{2}=(\tau-\theta)^{2}+4(r-\theta)$ (see [1]) we obtain (v) $\theta=(2 p+1) t-\left(5 k^{2}-(t-1) k\right)$. Using (ii), (iv) and (v) it is not difficult to see that (1) is transformed into

$$
\begin{equation*}
(p+1) t^{2}-3(2 p+1) t+15 k^{2}-3 k(2 t-1)=0 \tag{3}
\end{equation*}
$$

Case 1. $\left(t=1\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-1$ and $\lambda_{3}=-k, \tau-\theta=4 k-1, \delta=6 k-1, r=(2 p+1)-k$ and $\theta=(2 p+1)-5 k^{2}$. Using (3) we find that $5 p+2=3 k(5 k-1)$. Replacing k with $5 k+1$ we arrive at $p=75 k^{2}+27 k+2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(150 k^{2}+54 k+5\right)$ and degree $r=(6 k+1)(25 k+4)$ with $\tau=25 k^{2}+24 k+3$ and $\theta=k(25 k+4)$.
Case 2. $\left(t=2\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-2$ and $\lambda_{3}=-k, \tau-\theta=4 k-2, \delta=6 k-2, r=2(2 p+1)-k$ and $\theta=2(2 p+1)-\left(5 k^{2}-k\right)$. Using (3) we find that $2(4 p+1)=3 k(5 k-3)$. Replacing k with $8 k+2$ we arrive at $p=120 k^{2}+51 k+5$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+102 k+11\right)$ and degree $r=$ $4(5 k+1)(24 k+5)$ with $\tau=2\left(80 k^{2}+42 k+5\right)$ and $\theta=4(5 k+1)(8 k+1)$. Replacing k with $8 k-3$ we arrive at $p=120 k^{2}-99 k+20$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-198 k+41\right)$ and degree $r=(12 k-5)(40 k-17)$ with $\tau=4\left(40 k^{2}-29 k+5\right)$ and $\theta=2(2 k-1)(40 k-17)$. Case 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-3$ and $\lambda_{3}=-k, \tau-\theta=4 k-3, \delta=6 k-3, r=3(2 p+1)-k$ and $\theta=3(2 p+1)-\left(5 k^{2}-2 k\right)$. Using (3) we find that $3 p=5 k(k-1)$. Replacing k with $3 k$ we arrive at $p=$ $15 k^{2}-5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}-10 k+1\right)$ and degree $r=3(5 k-1)(6 k-1)$ with $\tau=3 k(15 k-4)$ and $\theta=3(3 k-1)(5 k-1)$. Replacing k with $3 k+1$ we arrive at $p=15 k^{2}+5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}+10 k+1\right)$ and degree $r=(6 k+1)(15 k+2)$ with $\tau=(3 k+1)(15 k+1)$ and $\theta=3 k(15 k+2)$.

Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-4$ and $\lambda_{3}=-k, \tau-\theta=4 k-4, \delta=6 k-4, r=4(2 p+1)-k$ and $\theta=4(2 p+1)-\left(5 k^{2}-3 k\right)$. Using (3) we find that $4(2 p-1)=3 k(5 k-7)$. Replacing k with $8 k+4$ we arrive at $p=120 k^{2}+99 k+20$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+198 k+41\right)$ and degree $r=16(5 k+$ $2)(12 k+5)$ with $\tau=4(8 k+3)(20 k+9)$ and $\theta=16(5 k+2)(8 k+3)$. Replacing k with $8 k-1$ we arrive at $p=120 k^{2}-51 k+5$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-102 k+11\right)$ and degree $r=(24 k-5)(40 k-9)$ with $\tau=4(4 k-1)(40 k-7)$ and $\theta=4(4 k-1)(40 k-9)$. Case 5. ($t=5$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-5$ and $\lambda_{3}=-k, \tau-\theta=4 k-5, \delta=6 k-5, r=5(2 p+1)-k$ and $\theta=5(2 p+1)-\left(5 k^{2}-4 k\right)$. Using (3) we find that $5(p-2)=3 k(5 k-9)$. Replacing k with $5 k$ we arrive at $p=75 k^{2}-27 k+2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(150 k^{2}-54 k+5\right)$ and degree $r=25(5 k-1)(6 k-1)$ with $\tau=25(5 k-1)^{2}+5(4 k-1)$ and $\theta=25(5 k-1)^{2}$.
Case 6. $\left(t=6\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-6$ and $\lambda_{3}=-k, \tau-\theta=4 k-6, \delta=6 k-6, r=6(2 p+1)-k$ and $\theta=6(2 p+1)-\left(5 k^{2}-5 k\right)$. Using (3) we find that $(k-1)(5 k-6)=0$, a contradiction.
Case 7. $(t \geq 7)$. Using (3) we find that (a) $7 p+15 k^{2}-39 k+28=0$; (b) $16 p+15 k^{2}-45 k+40=0$; (c) $9 p+5 k^{2}-17 k+18=0$ and (d) $40 p+15 k^{2}-57 k+70=$ 0 for $t=7, t=8, t=9$ and $t=10$, respectively, a contradiction.
Case 8. $(t \leq 0)$. In this case we find that $(p+1) t^{2}+3(2 p+1)|t|+15 k^{2}+3 k(2|t|+$ $1)=0$, a contradiction (see (3)).

Proposition 2.9. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{2}=2(2 p+1)$ and $m_{3}=8 p+3$ then G belongs to the class $\left(\overline{13}^{0}\right)$ or $\left(14^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $8 p\left(2\left|\lambda_{3}\right|-\lambda_{2}\right)=2 r+5(\tau-\theta)-\delta$. Since $\delta=\lambda_{2}-\lambda_{3}$ and $\tau-\theta=\lambda_{2}+\lambda_{3}$ we obtain $4 p\left(\left|2 \lambda_{3}\right|-\lambda_{2}\right)=r+2 \lambda_{2}+3 \lambda_{3}$. Let $2\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t=0, \pm 1, \pm 2, \ldots, \pm 6$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=2 k-t$; (ii) $\tau-\theta=k-t$; (iii) $\delta=3 k-t$, (iv) $r=2(2 p+1) t-k$ and (v) $\theta=2(2 p+1) t-\left(2 k^{2}-(t-1) k\right)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(4 p+3) t^{2}-6(2 p+1) t+6 k^{2}-3 k(2 t-1)=0 \tag{4}
\end{equation*}
$$

Case 1. ($t=1$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-1$ and $\lambda_{3}=-k, \tau-\theta=k-1, \delta=3 k-1, r=2(2 p+1)-k$ and $\theta=2(2 p+1)-2 k^{2}$. Using (4) we find that $8 p+3=3 k(2 k-1)$. Replacing k with $8 k+1$ we arrive at $p=48 k^{2}+9 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(96 k^{2}+18 k+1\right)$ and degree $r=(12 k+1)(16 k+1)$ with $\tau=4 k(16 k+3)$ and $\theta=4 k(16 k+1)$.
Case 2. $\left(t=2\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-2$ and $\lambda_{3}=-k, \tau-\theta=k-2, \delta=3 k-2, r=4(2 p+1)-k$ and $\theta=4(2 p+1)-\left(2 k^{2}-k\right)$.

Using (4) we find that $8 p=3 k(2 k-3)$. Replacing k with $8 k$ we arrive at $p=48 k^{2}-9 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(96 k^{2}-18 k+1\right)$ and degree $r=4(8 k-1)(12 k-1)$ with $\tau=4(8 k-1)^{2}+2(4 k-1)$ and $\theta=4(8 k-1)^{2}$.
Case 3. ($t=3$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-3$ and $\lambda_{3}=-k, \tau-\theta=k-3, \delta=3 k-3, r=6(2 p+1)-k$ and $\theta=6(2 p+1)-\left(2 k^{2}-2 k\right)$. Using (4) we find that $(k-1)(2 k-3)=0$, a contradiction.
Case 4. $(t \geq 4)$. Using (4) we find that (a) $16 p+6 k^{2}-21 k+24=0$; (b) $40 p+6 k^{2}-27 k+45=0$ and (c) $24 p+2 k^{2}-11 k+24=0$ for $t=4, t=5$ and $t=6$, respectively, a contradiction.
Case 5. $(t \leq 0)$. In this case we find that $(4 p+3) t^{2}+6(2 p+1)|t|+6 k^{2}+3 k(2|t|+$ $1)=0$, a contradiction (see (4)).

Proposition 2.10. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{2}=3(2 p+1)$ and $m_{3}=6 p+2$ then G belongs to the class $\left(6^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $12 p\left(\left|\lambda_{3}\right|-\lambda_{2}\right)=2 r+5(\tau-\theta)+\delta$. Since $2 r+5(\tau-$ $\theta)+\delta=2 r+6 \lambda_{2}+4 \lambda_{3}$ it follows that $-24 p \leq 2 r+5(\tau-\theta)+\delta \leq 60 p$. Let $\left|\lambda_{3}\right|-\lambda_{2}=t$ where $-2 \leq t \leq 5$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=k-t$; (ii) $\tau-\theta=-t$; (iii) $\delta=2 k-t$; (iv) $r=3(2 p+1) t-k$ and (v) $\theta=3(2 p+1) t-\left(k^{2}-(t-1) k\right)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(3 p+2) t^{2}-3(2 p+1) t+k^{2}-k(2 t-1)=0 \tag{5}
\end{equation*}
$$

Case 1. $\left(t=1\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k-1$ and $\lambda_{3}=-k, \tau-\theta=-1, \delta=2 k-1, r=3(2 p+1)-k$ and $\theta=3(2 p+1)-k^{2}$. Using (5) we find that $3 p+1=k(k-1)$, a contradiction because $3 \nmid k^{2}-k-1$. Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k-2$ and $\lambda_{3}=-k, \tau-\theta=-2, \delta=2 k-2, r=6(2 p+1)-k$ and $\theta=6(2 p+1)-\left(k^{2}-k\right)$. Using (5) we find that $(k-1)(k-2)=0$. So we obtain that G is the cocktail-party graph $\overline{(6 p+3) K_{2}}$ of degree $r=12 p+4$ with $\tau=12 p+2$ and $\theta=12 p+4$.
Case 3. $(t \geq 3)$. Using (5) we find that (a) $9 p+k^{2}-5 k+9=0$; (b) $24 p+k^{2}-$ $7 k+20=0$ and (c) $45 p+k^{2}-9 k+35=0$ for $t=3, t=4$ and $t=5$, respectively, a contradiction.
Case 4. $(t \leq 0)$. In this case we find that $(3 p+2) t^{2}+3(2 p+1)|t|+k^{2}+k(2|t|+1)=$ 0 , a contradiction (see (5)).

Proposition 2.11. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{2}=4(2 p+1)$ and $m_{3}=4 p+1$ then G belongs to the class $\left(5^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $8 p\left(\left|\lambda_{3}\right|-2 \lambda_{2}\right)=2 r+5(\tau-\theta)+3 \delta$. Let $\left|\lambda_{3}\right|-2 \lambda_{2}=t$ where $t \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a non-negative integer. Then (i) $\lambda_{3}=$
$-(2 k+t)$; (ii) $\tau-\theta=-(k+t)$; (iii) $\delta=3 k+t$, (iv) $r=2(2 p+1) t-(2 k+t)$ and (v) $\theta=2(2 p+1) t-(k+1)(2 k+t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(4 p+1)(t-3) t+6 k(k+1)=0 \tag{6}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(2 k+1), \tau-\theta=-(k+1), \delta=3 k+1, r=2(2 p+1)-(2 k+1)$ and $\theta=2(2 p+1)-(k+1)(2 k+1)$. Using (6) we find that $4 p+1=3 k(k+1)$, a contradiction because $2 \nmid 4 p+1$.
Case 2. $(t=2)$. Using (6) we find that $4 p+1=3 k(k+1)$, a contradiction because $2 \nmid 4 p+1$.
Case 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(2 k+3), \tau-\theta=-(k+3), \delta=3 k+3, r=6(2 p+1)-(2 k+3)$ and $\theta=6(2 p+1)-(k+1)(2 k+3)$. Using (6) we find that $k(k+1)=0$. So we obtain that G is the strongly regular graph $\overline{(4 p+2) K_{3}}$ of degree $r=12 p+3$ with $\tau=12 p$ and $\theta=12 p+3$.
Case 4. $(t \geq 4)$. In this case we find that $(4 p+1)(t-3) t+6 k(k+1)>0$, a contradiction (see (6)).

Proposition 2.12. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{2}=5(2 p+1)$ and $m_{3}=2 p$ then G belongs to the class $\left(4^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(11^{0}\right)$ or $\left(19^{0}\right)$ or $\left(\overline{20}^{0}\right)$ or $\left(21^{0}\right)$ or $\left(\overline{22}^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $4 p\left(\left|\lambda_{3}\right|-5 \lambda_{2}\right)=2 r+5(\tau-\theta)+5 \delta$. Let $\left|\lambda_{3}\right|-5 \lambda_{2}=t$ where $t \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a non-negative integer. Then (i) $\lambda_{3}=$ $-(5 k+t)$; (ii) $\tau-\theta=-(4 k+t)$; (iii) $\delta=6 k+t$, (iv) $r=(2 p+1) t-(5 k+t)$ and (v) $\theta=(2 p+1) t-(k+1)(5 k+t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
p(t-6) t+15 k(k+1)=0 \tag{7}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+1), \tau-\theta=-(4 k+1), \delta=6 k+1, r=(2 p+1)-(5 k+1)$ and $\theta=(2 p+1)-(k+1)(5 k+1)$. Using (7) we find that $p=3 k(k+1)$. So we obtain that G is a strongly regular graph of order $6\left(6 k^{2}+6 k+1\right)$ and degree $r=k(6 k+1)$ with $\tau=k^{2}-4 k-1$ and $\theta=k^{2}$.
Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+2), \tau-\theta=-(4 k+2), \delta=6 k+2, r=2(2 p+1)-(5 k+2)$ and $\theta=2(2 p+1)-(k+1)(5 k+2)$. Using (7) we find that $8 p=15 k(k+1)$. Replacing k with $8 k$ we arrive at $p=120 k^{2}+15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+30 k+1\right)$ and degree $r=20 k(24 k+1)$ with $\tau=2\left(80 k^{2}-14 k-1\right)$ and $\theta=4 k(40 k+1)$. Replacing k with $8 k-1$ we arrive at $p=120 k^{2}-15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-30 k+1\right)$ and degree $r=5(8 k-1)(12 k-1)$ with $\tau=4\left(40 k^{2}-17 k+1\right)$ and $\theta=2(8 k-1)(10 k-1)$.

Case 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+3), \tau-\theta=-(4 k+3), \delta=6 k+3, r=3(2 p+1)-(5 k+3)$ and $\theta=3(2 p+1)-(k+1)(5 k+3)$. Using (7) we find that $3 p=5 k(k+1)$. Replacing k with $3 k$ we arrive at $p=15 k^{2}+5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}+10 k+1\right)$ and degree $r=15 k(6 k+1)$ with $\tau=3(3 k-1)(5 k+1)$ and $\theta=3 k(15 k+2)$. Replacing k with $3 k-1$ we arrive at $p=15 k^{2}-5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}-10 k+1\right)$ and degree $r=5(3 k-1)(6 k-1)$ with $\tau=(3 k-2)(15 k-2)$ and $\theta=3(3 k-1)(5 k-1)$.
Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+4), \tau-\theta=-(4 k+4), \delta=6 k+4, r=4(2 p+1)-(5 k+4)$ and $\theta=4(2 p+1)-(k+1)(5 k+4)$. Using (7) we find that $8 p=15 k(k+1)$. Replacing k with $8 k$ we arrive at $p=120 k^{2}+15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+30 k+1\right)$ and degree $r=80 k(12 k+1)$ with $\tau=4\left(160 k^{2}+4 k-1\right)$ and $\theta=16 k(40 k+3)$. Replacing k with $8 k-1$ we arrive at $p=120 k^{2}-15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-30 k+1\right)$ and degree $r=5(8 k-1)(24 k-1)$ with $\tau=4\left(160 k^{2}-36 k+1\right)$ and $\theta=4(8 k-1)(20 k-1)$.
Case 5. $(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+5), \tau-\theta=-(4 k+5), \delta=6 k+5, r=5(2 p+1)-(5 k+5)$ and $\theta=5(2 p+1)-(k+1)(5 k+5)$. Using (7) we find that $p=3 k(k+1)$. So we obtain that G is a strongly regular graph of order $6\left(6 k^{2}+6 k+1\right)$ and degree $r=5 k(6 k+5)$ with $\tau=25 k^{2}+16 k-5$ and $\theta=5 k(5 k+4)$.
Case 6. ($t=6$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+6), \tau-\theta=-(4 k+6), \delta=6 k+6, r=6(2 p+1)-(5 k+6)$ and $\theta=6(2 p+1)-(k+1)(5 k+6)$. Using (7) we find that $k(k+1)=0$. So we obtain that G is the strongly regular graph $\overline{(2 p+1) K_{6}}$ of degree $r=12 p$ with $\tau=12 p-6$ and $\theta=12 p$.
Case 7. $(t \geq 7)$. In this case we find that $p(t-6) t+15 k(k+1)>0$, a contradiction (see (7)).

Proposition 2.13. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{3}=2 p+1$ and $m_{2}=10 p+4$ then G belongs to the class $\left(\overline{10}^{0}\right)$ or $\left(\overline{12}^{0}\right)$ or $\left(15^{0}\right)$ or $\left(\overline{16}^{0}\right)$ or $\left(\overline{17}^{0}\right)$ or $\left(18^{0}\right)$ or $\left(\overline{23}^{0}\right)$ or $\left(24^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $2 p\left(\left|\lambda_{3}\right|-5 \lambda_{2}\right)=r+4 \lambda_{2}+\lambda_{3}$. Let $\left|\lambda_{3}\right|-5 \lambda_{2}=t$ where $t \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a non-negative integer. Then (i) $\lambda_{3}=-(5 k+t)$; (ii) $\tau-\theta=-(4 k+t)$; (iii) $\delta=6 k+t$ and (iv) $r=(2 p+1) t+k$ and (v) $\theta=(2 p+1) t-\left(5 k^{2}+(t-1) k\right)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-3(2 p+1) t+15 k^{2}+3 k(2 t-1)=0 . \tag{8}
\end{equation*}
$$

Case 1. ($t=1$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-(5 k+1), \tau-\theta=-(4 k+1), \delta=6 k+1, r=(2 p+1)+k$ and $\theta=(2 p+1)-5 k^{2}$.

Using (8) we find that $5 p+2=3 k(5 k+1)$. Replacing k with $5 k-1$ we arrive at $p=75 k^{2}-27 k+2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(150 k^{2}-54 k+5\right)$ and degree $r=(6 k-1)(25 k-4)$ with $\tau=25 k^{2}-24 k+3$ and $\theta=k(25 k-4)$.
Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+2), \tau-\theta=-(4 k+2), \delta=6 k+2, r=2(2 p+1)+k$ and $\theta=2(2 p+1)-\left(5 k^{2}+k\right)$. Using (8) we find that $2(4 p+1)=3 k(5 k+3)$. Replacing k with $8 k+3$ we arrive at $p=120 k^{2}+99 k+20$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+198 k+41\right)$ and degree $r=(12 k+5)(40 k+17)$ with $\tau=4\left(40 k^{2}+29 k+5\right)$ and $\theta=$ $2(2 k+1)(40 k+17)$. Replacing k with $8 k-2$ we arrive at $p=120 k^{2}-51 k+5$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-102 k+11\right)$ and degree $r=4(5 k-1)(24 k-5)$ with $\tau=2\left(80 k^{2}-42 k+5\right)$ and $\theta=4(5 k-1)(8 k-1)$.
Case 3. ($t=3$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+3), \tau-\theta=-(4 k+3), \delta=6 k+3, r=3(2 p+1)+k$ and $\theta=3(2 p+1)-\left(5 k^{2}+2 k\right)$. Using (8) we find that $3 p=5 k(k+1)$. Replacing k with $3 k$ we arrive at $p=15 k^{2}+15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}+10 k+1\right)$ and degree $r=3(5 k+1)(6 k+1)$ with $\tau=3 k(15 k+4)$ and $\theta=3(3 k+1)(5 k+1)$. Replacing k with $3 k-1$ we arrive at $p=15 k^{2}-5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}-10 k+1\right)$ and degree $r=(6 k-1)(15 k-2)$ with $\tau=(3 k-1)(15 k-1)$ and $\theta=3 k(15 k-2)$.
Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+4), \tau-\theta=-(4 k+4), \delta=6 k+4, r=4(2 p+1)+k$ and $\theta=4(2 p+1)-\left(5 k^{2}+3 k\right)$. Using (8) we find that $4(2 p-1)=3 k(5 k+7)$. Replacing k with $8 k+1$ we arrive at $p=120 k^{2}+51 k+5$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+102 k+11\right)$ and degree $r=(24 k+5)(40 k+9)$ with $\tau=4(4 k+1)(40 k+7)$ and $\theta=4(4 k+$ $1)(40 k+9)$. Replacing k with $8 k-4$ we arrive at $p=120 k^{2}-99 k+20$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-198 k+41\right)$ and degree $r=16(5 k-2)(12 k-5)$ with $\tau=4(8 k-3)(20 k-9)$ and $\theta=16(5 k-2)(8 k-3)$.
Case 5. $(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+5), \tau-\theta=-(4 k+5), \delta=6 k+5, r=5(2 p+1)+k$ and $\theta=5(2 p+1)-\left(5 k^{2}+4 k\right)$. Using (8) we find that $5(p-1)=3 k(5 k+9)$. Replacing k with $5 k$ we arrive at $p=75 k^{2}+27 k+2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $6\left(150 k^{2}+54 k+5\right)$ and degree $r=25(5 k+1)(6 k+1)$ with $\tau=25(5 k+1)^{2}-5(4 k+1)$ and $\theta=25(5 k+1)^{2}$. Case 6. $\left(t=6\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(5 k+6), \tau-\theta=-(4 k+6), \delta=6 k+6, r=5(2 p+1)+6$ and $\theta=5(2 p+1)-\left(5 k^{2}+5 k\right)$. Using (8) we find that $(k+1)(5 k+6)=0$, a contradiction.

Case 7. $(t \geq 7)$. In this case we find that $(p+1) t^{2}-3(2 p+1) t+15 k^{2}+3 k(2 t-1)>$ 0 , a contradiction (see (8)).

Proposition 2.14. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{3}=2(2 p+1)$ and $m_{2}=8 p+3$ then G belongs to the class $\left(13^{0}\right)$ or $\left(\overline{14}^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $8 p\left(\left|\lambda_{3}\right|-2 \lambda_{2}\right)=2 r+5(\tau-\theta)+\delta$. Since $\delta=\lambda_{2}-\lambda_{3}$ and $\tau-\theta=\lambda_{2}+\lambda_{3}$ we obtain $4 p\left(\left|\lambda_{3}\right|-2 \lambda_{2}\right)=r+3 \lambda_{2}+2 \lambda_{3}$. Let $2\left|\lambda_{3}\right|-\lambda_{2}=t$ where $-2 \leq t \leq 8$. Let $\lambda_{2}=k$ where k is a non-negative integer. Then (i) $\lambda_{3}=-(2 k+t)$; (ii) $\tau-\theta=-(k+t)$; (iii) $\delta=3 k+t$, (iv) $r=2(2 p+1) t+k$ and (v) $\theta=2(2 p+1) t-\left(2 k^{2}+(t-1) k\right)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(4 p+3) t^{2}-6(2 p+1) t+6 k^{2}+3 k(2 t-1)=0 \tag{9}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-(2 k+1), \tau-\theta=-(k+1), \delta=3 k+1, r=2(2 p+1)+k$ and $\theta=2(2 p+1)-2 k^{2}$. Using (9) we find that $8 p+3=3 k(2 k+1)$. Replacing k with $8 k-1$ we arrive at $p=48 k^{2}-9 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(96 k^{2}-18 k+1\right)$ and degree $r=(12 k-1)(16 k-1)$ with $\tau=4 k(16 k-3)$ and $\theta=4 k(16 k-1)$.
Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(2 k+2), \tau-\theta=-(k+2), \delta=3 k+2, r=4(2 p+1)+k$ and $\theta=$ $4(2 p+1)-\left(2 k^{2}+k\right)$. Using (9) we find that $8 p=3 k(2 k+3)$. Replacing k with $8 k$ we arrive at $p=48 k^{2}+9 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(96 k^{2}+18 k+1\right)$ and degree $r=4(8 k+1)(12 k+1)$ with $\tau=4(8 k+1)^{2}-2(4 k+1)$ and $\theta=4(8 k+1)^{2}$.
Case 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(2 k+3), \tau-\theta=-(k+3), \delta=3 k+3, r=6(2 p+1)+k$ and $\theta=$ $6(2 p+1)-\left(2 k^{2}+2 k\right)$. Using (9) we find that $(k+1)(2 k+3)=0$, a contradiction. Case 4. $(t \geq 4)$. In this case we find that $(4 p+3) t^{2}-6(2 p+1) t+6 k^{2}+3 k(2 t-1)>$ 0 , a contradiction (see (9)).
Case 5. $(t \leq 0)$. Using (9) we find that (a) $k(2 k-1)=0$; (b) $16 p+6 k^{2}-9 k+9=0$ and (c) $40 p+6 k^{2}-15 k+24=0$ for $t=0, t=-1$ and $t=-2$, respectively, a contradiction.

Proposition 2.15. There is no connected strongly regular graph G of order $6(2 p+1)$ and degree r with $m_{3}=3(2 p+1)$ and $m_{2}=6 p+2$, where $2 p+1$ is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $m_{3}=3(2 p+1)$ and $m_{2}=6 p+2$. Using (2) we obtain $12 p\left(\left|\lambda_{3}\right|-\lambda_{2}\right)=$ $2 r+5(\tau-\theta)-\delta$. Let $\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t \in \mathbb{Z}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=k-t$; (ii) $\tau-\theta=-t$; (iii) $\delta=2 k-t$; (iv)
$r=3(2 p+1) t+k-t$ and (v) $\theta=3(2 p+1) t-(k-1)(k-t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(3 p+1)(t-2) t+k(k-1)=0 \tag{10}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k-1$ and $\lambda_{3}=-k, \tau-\theta=-1, \delta=2 k-1, r=3(2 p+1)+k-1$ and $\theta=3(2 p+1)-(k-1)^{2}$. Using (10) we find that $3 p+1=k(k-1)$, a contradiction because $3 \nmid k^{2}-k-1$. Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k-2$ and $\lambda_{3}=$ $-k, \tau-\theta=-2, \delta=2 k-2, r=6(2 p+1)+k-2$ and $\theta=6(2 p+1)-(k-1)(k-2)$. Using (10) we find that $k(k-1)=0$, a contradiction.
Case 3. $(t \geq 3)$. In this case we find that $(3 p+1)(t-2) t+k(k-1)>0$, a contradiction (see (10)).
Case 4. $(t \leq 0)$. In this case we find that $(3 p+1)(|t|+2)|t|+k(k-1)=0$, a contradiction (see (10)).

Proposition 2.16. There is no connected strongly regular graph G of order $6(2 p+1)$ and degree r with $m_{3}=4(2 p+1)$ and $m_{2}=4 p+1$, where $2 p+1$ is a prime number.

Proof. Contrary to the statement, assume that G is a strongly regular graph with $m_{3}=4(2 p+1)$ and $m_{2}=4 p+1$. Using (2) we obtain $8 p\left(2\left|\lambda_{3}\right|-\lambda_{2}\right)=$ $2 r+5(\tau-\theta)-3 \delta$. Let $2\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t \in \mathbb{Z}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=2 k-t$; (ii) $\tau-\theta=k-t$; (iii) $\delta=3 k-t$; (iv) $r=2(2 p+1) t+2 k-t$ and (v) $\theta=2(2 p+1) t-(k-1)(2 k-t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
(4 p+1)(t-3) t+6 k(k-1)=0 \tag{11}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-1$ and $\lambda_{3}=-k, \tau-\theta=k-1, \delta=3 k-1, r=2(2 p+1)+2 k-1$ and $\theta=$ $2(2 p+1)-(k-1)(2 k-1)$. Using (11) we find that $4 p+1=3 k(k-1)$, a contradiction because $2 \nmid 4 p+1$.
Case 2. ($t=2$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-2$ and $\lambda_{3}=-k, \tau-\theta=k-2, \delta=3 k-2, r=4(2 p+1)+2 k-2$ and $\theta=$ $4(2 p+1)-(k-1)(2 k-2)$. Using (11) we find that $4 p+1=3 k(k-1)$, a contradiction because $2 \nmid 4 p+1$.
Case 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=2 k-3$ and $\lambda_{3}=-k, \tau-\theta=k-3, \delta=3 k-3, r=6(2 p+1)+2 k-3$ and $\theta=$ $6(2 p+1)-(k-1)(2 k-3)$. Using (11) we find that $k(k-1)=0$, a contradiction. Case 4. $(t \geq 4)$. In this case we find that $(4 p+1)(t-3) t+6 k(k-1)>0$, a contradiction (see (11)).
Case 5. $(t \leq 0)$. In this case we find that $(4 p+1)(|t|+3)|t|+6 k(k-1)=0$, a contradiction (see (11)).

Proposition 2.17. Let G be a connected strongly regular graph of order $6(2 p+1)$ and degree r, where $2 p+1$ is a prime number. If $m_{3}=5(2 p+1)$ and $m_{2}=2 p$ then G belongs to the class $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(\overline{11}^{0}\right)$ or $\left(\overline{19}^{0}\right)$ or $\left(20^{0}\right)$ or $\left(\overline{21}^{0}\right)$ or $\left(22^{0}\right)$ represented in Theorem 2.2.

Proof. Using (2) we obtain $4 p\left(5\left|\lambda_{3}\right|-\lambda_{2}\right)=2 r+5(\tau-\theta)-5 \delta$. Let $5\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t \in \mathbb{Z}$. Let $\lambda_{2}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=5 k-t$; (ii) $\tau-\theta=4 k-t$; (iii) $\delta=6 k-t$, (iv) $r=(2 p+1) t+(5 k-t)$ and (v) $\theta=(2 p+1) t-(k-1)(5 k-t)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$
\begin{equation*}
p(t-6) t+15 k(k-1)=0 \tag{12}
\end{equation*}
$$

Case 1. $\left(t=1\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-1$ and $\lambda_{3}=-k, \tau-\theta=4 k-1, \delta=6 k-1, r=(2 p+1)+(5 k-1)$ and $\theta=(2 p+1)-(k-1)(5 k-1)$. Using (12) we find that $p=3 k(k-1)$. Replacing k with $k+1$ we arrive at $p=3 k^{2}+3 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(6 k^{2}+6 k+1\right)$ and degree $r=(k+1)(6 k+5)$ with $\tau=k^{2}+6 k+4$ and $\theta=(k+1)^{2}$.
Case 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-2$ and $\lambda_{3}=-k, \tau-\theta=4 k-2, \delta=6 k-2, r=2(2 p+1)+(5 k-2)$ and $\theta=2(2 p+1)-(k-1)(5 k-2)$. Using (12) we find that $8 p=15 k(k-1)$. Replacing k with $8 k$ we arrive at $p=120 k^{2}-15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-30 k+1\right)$ and degree $r=20 k(24 k-1)$ with $\tau=2\left(80 k^{2}+14 k-1\right)$ and $\theta=4 k(40 k-1)$. Replacing k with $8 k+1$ we arrive at $p=120 k^{2}+15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+30 k+1\right)$ and degree $r=5(8 k+1)(12 k+1)$ with $\tau=4\left(40 k^{2}+17 k+1\right)$ and $\theta=2(8 k+1)(10 k+1)$.
Case 3. ($t=3$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-3$ and $\lambda_{3}=-k, \tau-\theta=4 k-3, \delta=6 k-3, r=3(2 p+1)+(5 k-3)$ and $\theta=3(2 p+1)-(k-1)(5 k-3)$. Using (12) we find that $3 p=5 k(k-1)$. Replacing k with $3 k$ we arrive at $p=15 k^{2}-5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}-10 k+1\right)$ and degree $r=15 k(6 k-1)$ with $\tau=3(3 k+1)(5 k-1)$ and $\theta=3 k(15 k-2)$. Replacing k with $3 k+1$ we arrive at $p=15 k^{2}+5 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(30 k^{2}+10 k+1\right)$ and degree $r=5(3 k+1)(6 k+1)$ with $\tau=(3 k+2)(15 k+2)$ and $\theta=3(3 k+1)(5 k+1)$.
Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-4$ and $\lambda_{3}=-k, \tau-\theta=4 k-4, \delta=6 k-4, r=4(2 p+1)+(5 k-4)$ and $\theta=4(2 p+1)-(k-1)(5 k-4)$. Using (12) we find that $8 p=15 k(k-1)$. Replacing k with $8 k$ we arrive at $p=120 k^{2}-15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}-30 k+1\right)$ and degree $r=80 k(12 k-1)$ with $\tau=4\left(160 k^{2}-4 k-1\right)$ and $\theta=16 k(40 k-3)$. Replacing k with $8 k+1$ we arrive at $p=120 k^{2}+15 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(240 k^{2}+30 k+1\right)$ and degree $r=5(8 k+1)(24 k+1)$ with $\tau=4\left(160 k^{2}+36 k+1\right)$ and $\theta=4(8 k+1)(20 k+1)$.

Case 5. $\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-5$ and $\lambda_{3}=-k, \tau-\theta=4 k-5, \delta=6 k-5, r=5(2 p+1)+(5 k-5)$ and $\theta=5(2 p+1)-(k-1)(5 k-5)$. Using (12) we find that $p=3 k(k-1)$. Replacing k with $k+1$ we arrive at $p=3 k^{2}+3 k$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $6\left(6 k^{2}+6 k+1\right)$ and degree $r=5(k+1)(6 k+1)$ with $\tau=25 k^{2}+34 k+4$ and $\theta=5(k+1)(5 k+1)$.
Case 6. $\left(t=6\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=5 k-5$ and $\lambda_{3}=-k, \tau-\theta=4 k-6, \delta=6 k-6, r=6(2 p+1)+(5 k-6)$ and $\theta=6(2 p+1)-(k-1)(5 k-6)$. Using (12) we find that $k(k-1)=0$, a contradiction.

Case 7. $(t \geq 7)$. In this case we find that $p(t-6) t+15 k(k-1)>0$, a contradiction (see (12)).
Case 8. $(t \leq 0)$. In this case we find that $p(|t|+6)|t|+15 k(k-1)=0$, a contradiction (see (12)).

Proof of Theorem 2.2. Using Theorem 1.1 we have $m_{2} m_{3} \delta^{2}=6(2 p+1) r \bar{r}$. We shall now consider the following three cases.
Case 1. $\left((2 p+1) \mid \delta^{2}\right)$. In this case $(2 p+1) \mid \delta$ because G is an integral graph. Since $\delta=\lambda_{2}+\left|\lambda_{3}\right|<12 p+6$ (see [2]) it follows that $\delta=2 p+1$ or $\delta=2(2 p+1)$ or $\delta=3(2 p+1)$ or $\delta=4(2 p+1)$ or $\delta=5(2 p+1)$. Using Propositions 2.3, 2.4, $2.5,2.6$ and 2.7 it turns out that G belongs to the class $\left(1^{0}\right)$ or $\left(2^{0}\right)$ or $\left(3^{0}\right)$.
Case 2. $\left((2 p+1) \mid m_{2}\right)$. Since $m_{2}+m_{3}=12 p+5$ it follows that $m_{2}=2 p+1$ and $m_{3}=10 p+4$ or $m_{2}=2(2 p+1)$ and $m_{3}=8 p+3$ or $m_{2}=3(2 p+1)$ and $m_{3}=6 p+2$ or $m_{2}=4(2 p+1)$ and $m_{3}=4 p+1$ or $m_{2}=5(2 p+1)$ and $m_{3}=2 p$. Using Propositions 2.8, 2.9, 2.10, 2.11 and 2.12 it turns out that G belongs to the class $\left(4^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(10^{0}\right)$ or $\left(11^{0}\right)$ or $\left(12^{0}\right)$ or $\left(\overline{13}^{0}\right)$ or $\left(14^{0}\right)$ or $\left(\overline{15}^{0}\right)$ or $\left(16^{0}\right)$ or $\left(17^{0}\right)$ or $\left(\overline{18}^{0}\right)$ or $\left(19^{0}\right)$ or $\left(\overline{20}^{0}\right)$ or $\left(21^{0}\right)$ or $\left(\overline{22}^{0}\right)$ or $\left(23^{0}\right)$ or $\left(\overline{24}^{0}\right)$.
Case 3. $\left((2 p+1) \mid m_{3}\right)$. Since $m_{3}+m_{2}=12 p+5$ it follows that $m_{3}=2 p+1$ and $m_{2}=10 p+4$ or $m_{3}=2(2 p+1)$ and $m_{2}=8 p+3$ or $m_{3}=3(2 p+1)$ and $m_{2}=6 p+2$ or $m_{3}=4(2 p+1)$ and $m_{2}=4 p+1$ or $m_{3}=5(2 p+1)$ and $m_{2}=2 p$. Using Propositions 2.13, 2.14, 2.15, 2.16 and 2.17 it turns out that G belongs to the class $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(\overline{10}^{0}\right)$ or $\left(\overline{11}^{0}\right)$ or $\left(\overline{12}^{0}\right)$ or $\left(13^{0}\right)$ or $\left(\overline{14}^{0}\right)$ or $\left(15^{0}\right)$ or $\left(\overline{16}^{0}\right)$ or $\left(\overline{17}^{0}\right)$ or $\left(18^{0}\right)$ or $\left(\overline{19}^{0}\right)$ or $\left(20^{0}\right)$ or $\left(\overline{21}^{0}\right)$ or $\left(22^{0}\right)$ or $\left(\overline{23}^{0}\right)$ or $\left(24^{0}\right)$.

References

1. R. J. Elzinga, Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ), Electronic J. Linear Algebra 10 (2003), 232-239.
2. M. Lepović, Some characterizations of strongly regular graphs, J. Appl. Math. Comput. 29 (2009), 373-381.
3. M. Lepović, On strongly regular graphs of order $3(2 p+1)$ and $4(2 p+1)$ where $2 p+1$ is a prime number, Mediterranean J. Math. (submitted).
4. M. Lepović, On strongly regular graphs of order $5(2 p+1)$ where $2 p+1$ is a prime number, Adv. Appl. Math. Sci. (in press).

[^0]: ${ }^{1}$ We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists of integral values.

