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1. Introduction

Throughout this paper all rings have an identity, all modules considered are
unital right modules. Let M be a module and N, P be submodules of M. We
call P a supplement of N in M if M = P+ N and PN N is small in P. A
module M is called supplemented if every submodule of M has a supplement in
M. A module M is called lifting if, for all N < M, there exists a decomposition
M = A® B such that A < N and N N B is small in M. Supplemented and
lifting modules have been discussed by several authors (see [2, 5, 3, 6]) and
these modules are useful in characterizing semiperfect and right perfect rings
(see [5, 8]).

In this note, we study and investigate principally é-lifting modules and princi-
pally d-semiperfect modules. A module M is called principally 0-lifting if for each
cyclic submodule has the §-lifting property, i.e., for each m € M, M has a decom-
position M = A® B with A < mR and mRN B is §-small in B, where B is called
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a d-supplement of mR. A module M is called principally §-semiperfect if, for each
m € M, M/mR has a projective §-cover. We prove that if M; is semisimple, Mo
is principally d-lifting, M; and Ms are relatively projective, then M = M @ M,
is a principally é-lifting module. Among others we also prove that for a prin-
cipally d-semiperfect module M, M is principally §-supplemented, each factor
module of M is principally d-semiperfect, hence any homomorphic image and
any direct summand of M is principally d-semiperfect. As an application, for a
projective module M, it is shown that M is principally §-semiperfect if and only
if it is principally d-lifting, and therefore a ring R is principally d-semiperfect if
and only if it is principally J-lifting.

In Sec. 2, we give some properties of J-small submodules that we use in the
paper, and in Sec. 3, principally d-lifting modules are introduced and various
properties of principally §-lifting and d-supplemented modules are obtained. In
Sec. 4, principally §-semiperfect modules are defined and characterized in terms
of principally §-lifting modules.

In what follows, by Z, Q, Z,, and Z/Zn we denote, respectively, integers,
rational numbers, the ring of integers and the Z-module of integers modulo n.
For unexplained concepts and notations, we refer the reader to [1, 5].

2. 6-Small Submodules

Following Zhou [10], a submodule N of a module M is called a §-small submodule
if, whenever M = N 4+ X with M/X singular, we have M = X. We begin by
stating the next lemma which is contained in [10, Lemmas 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is 6-small in M and M = X + N, then M = X ®Y for a projective
semisimple submodule Y withY < N.

(2) If K is 0-small in M and f : M — N is a homomorphism, then f(K) is
d-small in N. In particular, if K is §-small in M < N, then K is d-small in N.

(3) LetK1 SMl SM, K2 SMQ SM andM:M169M2. ThenK1®K2
is §-small in My & Mo if and only if K1 is 0-small in My and Ky is d-small in
M.

(4) Let N, K be submodules of M with K is §-small in M and N < K. Then
N is also §-small in M.

Lemma 2.2. Let M be a module and m € M. Then the following are equivalent.
(1) mR is not §-small in M.

(2) There is a mazimal submodule N of M such that m ¢ N and M/N
singular.

Proof. (1) = (2) Let I' :={B < M | B# M, mR+ B = M, M/B singular}.
Since mR is not d-small in M, there exists a proper submodule B of M such that
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mR+ B = M and M/B is singular. So I' is non empty. Let A be a nonempty
totally ordered subset of I' and By := UpeaB. If m is in By then there is a
B € A with m € B. Then B = mR + B = M which is a contradiction. So we
have m ¢ By and By # M. Since mR + By = M and M/By is singular, By is
an upper bound in I'. By Zorn’s Lemma, I" has a maximal element, say N. If N
is a maximal submodule of M there is nothing to do. Assume that there exists
a submodule K containing N properly. Since N is maximal in I', K is not in
I'. Since M = mR+ N and N < K, so M = mR+ K. M/K is singular as a
homomorphic image of the singular module M/N. Hence K must belong to the
I'. This is the required contradiction.

(2) = (1) Let N be a maximal submodule with m € M\ N and M/N singular.
We have M = mR + N. Then mR is not d-small in M. [ ]

Let A and B be submodules of M with A < B. A is called a d§-cosmall
submodule of B in M if B/A is §-small in M/A. Let A be a submodule of M. A
is called a §-coclosed submodule in M if A has no proper §-cosmall submodules in
M. A submodule A is called §-coclosure of B in M if A is é-coclosed submodule
of M and it is 6-cosmall submodule of B. Equivalently, for any submodule C' < A
with A/C é-small in M/C implies C = A and B/A is é-small in M/A. Note that
d-coclosed submodules need not always exist.

Lemma 2.3. Let A and B be submodules of M with A < B. Then we have:

(1) A is §-cosmall submodule of B in M if and only if M = A+ L for any
submodule L of M with M = B+ L and M/L singular.

(2) If A is §-small and B is 6-coclosed in M, then A is d-small in B.

Proof. (1) Necessity: Let M = B + L and M/L be singular. We have M/A =
B/A+ (L+ A)/JA and M/(L + A) is singular as homomorphic image of the
singular module M /L. Since B/A is §-small, M/A = (L + A)/Aor M =L + A.
Sufficiency: Let M/A = B/A+ K/A and M/K be singular. Then M = B + K.
By hypothesis, M = A+ K and so M = K. Hence A is a d-cosmall submodule
of Bin M.

(2) Assume that A is a d-small submodule of M and B is d-coclosed in M.
Let B = A+ K with B/K singular. Since B is §-coclosed in M, to complete the
proof, by part (1) it suffices to show that K is a §-small submodule of B in M.
Let M = B+ L with M/L singular. By assumption, M = A+ K+ L=K+ L
since M/(K + L) is singular. By (1), K is a §-small submodule of Bin M. =

Lemma 2.4. Let A, B and C be submodules of M with M = A+C and A < B.
If BN C is a §-small submodule of M, then A is a §-cosmall submodule of B in
M.

Proof. Let M/A = BJ/A + L/A with M/L singular. We have M = B + L and
B=A+(BNn(C). Then M = A+ (BNC)4+ L= (BNC)+ L. Hence M = L
since BN K is §-small in M and M/L is singular. Hence B/A is d-small in M/A.
Thus A is a §-cosmall submodule of B in M. [ ]
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3. Principally §-Lifting Modules

In this section, we study and investigate some properties of principally d-lifting
modules. The following definition is motivated by [10, Lemma 3.4] and Lemma
3.4.

Definition 3.1. A module M is called finitely 0-lifting if for any finitely gener-
ated submodule A of M has the §-lifting property, that is, there is a decompo-
sition M = N @ S with N < A and AN S is §-small in S. In this case AN S is
0-small in S if and only if ANS is d-small in M. A module M is called principally
0-lifting if for each cyclic submodule has the principally 0-lifting property, i.e.,
for each m € M, M has a decomposition M = A@ B with A < mR and mRN B
is §-small in B.

Example 3.2. Every submodule of any semisimple module satisfies principally
0-lifting property.

Example 3.3. Let p be a prime integer and n any positive integer. Then the
Z-module M = Z/Zp" is a principally §-lifting module.

Lemma 3.4. The following are equivalent for a module M :
(1) M is finitely o-lifting.
(2) M is principally 0-lifting.

Proof. See [8] and [10]. [ |

Let M be a module and N a submodule of M. A submodule L is called a
d-supplement of N in M if M = N + L and N N L is d-small in L (therefore in

Proposition 3.5. Let M be a principally 0-lifting module. Then we have:
(1) Every direct summand of M is a principally §-lifting module.

(2) Every cyclic submodule C' of M has a §-supplement S which is a direct
summand, and C' contains a complementary summand of S in M.

Proof. (1) Let K be a direct summand of M and k € K. Then M has a de-
composition M = N @ S with N < kR and kRN S is d-small in M. It follows
that K = N@® (K NS), and kRN (K NS) < kRNS is §-small in M and so
kRN (K NS) is 6-small in K. Therefore K is a principally d-lifting module.

(2) Assume that M is a principally §-lifting module and C' is a cyclic sub-
module of M. Then we have M = N @ S, where N < C and C NS is §-small in
M.Hence M = N+S<C+S5< M, wehave M = C + S. Since S is a direct
summand and C' NS is §-small in M, C NS is §-small in S. Therefore S is a
d-supplement of C' in M. ]
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Theorem 3.6. The following are equivalent for a module M :
(1) M is a principally §-lifting module.

(2) Every cyclic submodule C of M can be written as C = N & S, where N
is a direct summand and S is d-small in M.

(3) For every cyclic submodule C of M, there is a direct summand A of M
with A < C and C/A §-small in M/A.

(4) Every cyclic submodule C of M has a §-supplement K in M such that
CNK is a direct summand in C.

(5) For every cyclic submodule C of M, there is an idempotent e € End(M)
with eM < C and (1 — e)C é-small in (1 —e)M.

(6) For each m € M, there exist ideals I and J of R such that mR = mI®mJ,
where mI is a direct summand of M and mJ is §-small in M.

Proof. (1)=(2) Let C be a cyclic submodule of M. By hypothesis there exist N
and S submodules of M such that N < C, CNSis §-smallin M and M = N@S.
Then we have C = N @ (C N S).

(2) = (3) Let C be a cyclic submodule of M. By hypothesis, C = N & S,
where N is a direct summand and S is d-small in M. Let 7 : M — M/N be the
natural projection. Since S is d-small in M, we have 7(S) is d-small in M/N.
Since 7(S) 2 S = C/N, C/N is §-small in M/N.

(3) = (4) Let C be a cyclic submodule of M. By hypothesis, there is a direct
summand A < M with A < C and C/A d-small in M/A. Let M = Ao A'.
Hence C =A@ (A'NC). Let 0 : M/A — A’ denote the obvious isomorphism.
Then o(C/A) = A’ N C is d-small in A’

(4) = (5) Let C be any cyclic submodule of M and K < M such that
C N K is a direct summand of C, M = C + K and C N K is §-small in K. So
C=(CNK)®X forsome X <C.Then M =X+ (CNK)+K=X®K. Let
e:M—X;e(x+k)=xand (1—¢): M — K ; e(r + k) =k be projection
maps. e(M) < X < Cand (1-¢)C =CnN(1—-eM =CnNK is §small in
(1—e)M.

(5) = (6) Let mR be any cyclic submodule of M. By hypothesis, there exists
an idempotent e € End(M) such that eM < mR, M = eM @& (1 — e)M and
(I —e)mR is §-small in (1 — e)M. Note that (mR) N ((1 —e)M) = (1 — e)mR
(for if m = emy + y, where emy € eM, y € (mR) N ((1 —e)M). Then (1 —
eym = em; + (1 —e)y = y and so (1 —eymR < (mR) N ((1 — e)M). Let
mr=(1—em' € (mR)N((1 —e)M). Then mr = (1 —e)mr € (1 —e)mR. So
(mR)N(1—e)M) < (1 —e)mR. Thus (mR)N ((1 —e)M) = (1 —e)mR ). So
mR=eM &(l—emR. Let I={re R:mreeM}andJ={t € R:mt¢
(1 —e)mR}. Then mR = mI & mJ, mI = eM and mJ = (1 — e)mR is d-small
in (1—e)M.

(6) = (1) Let m € M. By hypothesis, there exist ideals I and J of R such
that mR = mI ® mJ, where ml is a direct summand and mJ is J-small in M.
Let M = mI@ K for some submodule K. Since KNmR = mJ and mJ is §-small
in M, M is principally -lifting. [ ]
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Note that every lifting module is principally d-lifting. There are principally
0-lifting modules but not lifting.

Example 3.7. Let M be the Z-module Q and m € M. It is well known that
every cyclic submodule mR of M is small, therefore d-small in M. Hence M is a
principally §-lifting Z-module. If N is a nonsmall proper submodule of M, then
N is neither a direct summand nor contains a direct summand of M. It follows
that M is not a lifting Z-module.

It is clear that every d-lifting module is principally é-lifting. However the
converse is not true.

Example 3.8. Let R and T denote the rings in [10, Example 4.1], where

R:Z@Z2+Z21: {(flana"'afnafafv"')GHZQ}
i=1
i=1

and
_ )T Y| .
T_{[O x] : z € R, yeSoc(R)}.
Then Rads(T) = [8 SOC(R&] and T'/Rads(T) is not semisimple as isomorphic

to R. So T is not d-semiperfect by [10, Theorem 3.6]. Hence T is not a ¢-lifting
module over T'. It is easy to show that T'/Rads(T) lifts to idempotents of T', so
T is a semiregular ring. Since T is a d-semiregular ring, every finitely generated
right ideal H of T can be written as H = aT @& S, where a? = a € T and
S < Rads(T) by [10, Theorem 3.5]. Hence T is a principally d-lifting module.

Proposition 3.9. Let M be a principally d-lifting module. If M = My + Mo
such that M1 N Ms is cyclic, then My contains a §-supplement of My in M.

Proof. Assume that M = M; + Ms and M; N Mj is cyclic. Then we have M; N
My, = N @ S, where N is a direct summand of M and S is §-small in M.
Let M = N® N and My = N @& (M2 N N'). Tt follows that M; N My =
No(MiNM;NN')=N®S. Let m: Mo = N& (M2NN') — N’ be the natural
projection. It follows that w(M; N My N N') = My N Ms N N’ = 7(S). Since S is
d-small in M, it is d-small in N’ by Lemma 2.1. Hence M = M; + (M2 N N'),
MoN N < My and My N (MyNN') is §-small in My N N’. Mo N N’ is contained
in Ms and a d-supplement of M; in Ms. This completes the proof. [ ]

Let M be a module. A submodule N is called fully invariant if for each endo-
morphism f of M, f(N) < N. Let S = End(Mpg), the ring of R-endomorphisms
of M. Then M is a left S-, right R-bimodule and a principal submodule N of
the right R-module M is fully invariant if and only if IV is a sub-bimodule of
M. Clearly 0 and M are fully invariant submodules of M. The right R-module
M is called a duo module provided every submodule of M is fully invariant. For
the readers’ convenience we state and prove Lemma 3.10 which is proved in [7].
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Lemma 3.10. Let a module M = @M, be a direct sum of submodules M;
el
(1 €I) and let N be a fully invariant submodule of M. Then N = @ (N N M;).
iel

Proof. For each j € I, let p; : M — M denote the canonical projection and let
i; : M; — M denote inclusion. Then i;p; is an endomorphism of M and hence
i;p;(N) C N for each j € I. It follows that N C € i;p;(N) € @(NNM;) C N,
Jel jel
so that N = @ (N N M;). [ |
JEI

One may suspect that if M; and My are principally §-lifting modules, then
M, @& M, is also principally 6-lifting. But this is not the case.

Example 3.11. Consider the Z-modules M; = Z/Z2 and My = Z/Z8. 1t is
clear that M; and My are principally d-lifting. Let M = My @ M,. Then M is
not a principally &-lifting Z-module. Let N7 = (1,2)Z and Ny = (1,1)Z. Then
M = Nj + Na, Nj is not a direct summand of M and does not contain any
nonzero direct summand of M. For any proper submodule N of M, M/N is
a singular Z-module. Hence the principal submodule does not satisfy J-lifting
property. It follows that M is not a principally J-lifting Z-module. By the same
reasoning, for any prime integer p, the Z-module M = (Z/Zp) & (Z/Zp?) is not
principally d-lifting.

We have already observed by the preceding example that the direct sum of
principally é-lifting modules need not be principally J-lifting. Note the following
fact.

Proposition 3.12. Let M = My & M5 be a decomposition of M with My, and
My principally §-lifting modules. If M is a duo module, then M is principally
0-lifting.

Proof. Let M = M; & Ms be a duo module and mR be a submodule of M. By
Lemma 3.10, mR = ((mR)NM;)&((mR)NMy). Since (mR)NM; and (mR)N Mo
are principal submodules of M; and M, respectively, there exist A;, By < M,
such that 41 < (mR)NM; < M; = A1 ® By, BiN((mR)NM;) = BiN(mR) is
d-small in By, and As, By < My such that A; < (mR) NMy; < My = Ay & By,
BQ n ((mR) n MQ) = BQ n (mR) is -small in BQ. Then M = Al @AQ D Bl D BQ,
A1 ® Ay < N and (mR)N(B1 @ Bz) = ((mR) N By) @ ((mR) N By) is d-small in
Ml (&) MQ. | |

Lemma 3.13. The following are equivalent for a module M = M' ® M".

(1) M’ is M" -projective.

(2) For each submodule N of M with M = N + M", there exists a submodule
N’ < N such that M = N" & M".

Proof. See [8, 41.14] [ |
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Theorem 3.14. Let My be a semisimple module and My a principally 6-lifting
module. Assume that My and Ms are relatively projective. Then M = My & My
is principally §-lifting.

Proof. Let 0 # m € M and let K = M; N ((mR) + Mz). We divide the proof
into two cases:

Case (i): K # 0. Then M; = K @& K; for some submodule K; of M; and so
M=Ka&K, ®M;=(mR)+ (My ® K;). Hence K is My ® K;-projective. By
Lemma 3.13, there exists a submodule N of mR such that M = N @ (My® K3).
We may assume (mR) N (Ms @ K7) # 0. Note that for any submodule L of Moa,
we have (mR)N(L+ K1) = LN ((mR) + K1). In particular (mR)N (M2 + K;) =
My N (mR + Ki). Then mR = N @ (mR) N (K1 @ Msy). There exist n € N
and m’ € (mR) N (K1 & Ms) such that m = n 4+ m/. Then nR = N and
m’R = (mR) N (Kl D MQ) Since (mR) n (MQ + Kl) = M2 n ((mR) + Kl),
My N ((mR) + K;) is a principal submodule of My and M, is principally o-
lifting, there exists a submodule X of My N ((mR) + K1) = (mR) N (M2 & K1)
such that My = X®Y and YNMoN((mR)+ K1) =Y N((mR)+ K1) is 6-small in
MoN((mR)+K;) and in M. Hence M = (N®X)®(Y ®K1). Since N X < mR
and (mMR)NY @& K1) =Y N((mR)+ K1), mR)IN(Y® K1) =Y N((mR)+ K1)
is §-small in Y @ K;. So M is d-lifting.

Case (i1): K = 0. Then mR < Ms. Since My is d-lifting, there exists a submodule
X of mR such that My = X®Y and (mR)NY is é-small in Y for some submodule
Y of My. Hence M = X @ (M, @Y). Since (mR)N (M1 ®Y) = (mR)NY and
(mR)N(M1®Y) = (mR)NY is é-smallin Y. By Lemma 2.1 (3), (mR)N(M; BY)
is §-small in My @ Y. It follows that M is é-lifting. [ ]

A module M is said to be a principally semisimple if every cyclic submodule
is a direct summand of M. Tuganbayev calls a principally semisimple module
as a regular module in [4]. Every semisimple module is principally semisimple.
Every principally semisimple module is principally §-lifting. For a module M,
we write Rads(M) = > {L | L is a d-small submodule of M}.

Lemma 3.15. Let M be a principally §-lifting module. Then M/Rads(M) is a
principally semisimple module.

Proof. Let m € M. There exists M; < mR such that M = M; & My and
(mR) N My is 0-small in Ms. So (mR) N Ms is é-small in M. Then

M/Rads(M) = [(mR + Rads(M))/Rads(M)] & [(M, + Rads(M))/Rads(M)]

because (mR+ Rads(M)) N (Mz+Rads(M)) =Rads(M). Hence every principal
submodule of M/Rads(M) is a direct summand. ]

Proposition 3.16. Let M be a principally 0-lifting module. Then M = My@® M,
where My is a principally semisimple module and Ms is a module with Rads(M)
essential in Ms.
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Proof. Let M7 be a submodule of M such that Rads(M) @ M; is essential in M
and m € M. Since M is principally §-lifting, there exists a direct summand My
of M such that My < mR, M = My @® M} and mRN M} is d-small in M. Hence
mR N M is a submodule of Rads(M) and so mR N M} = 0. Then m € Mo
and mR = M. Since M>N Rads(M) = 0, M is isomorphic to a submodule
of M/Rads;(M). By Lemma 3.15, M/Rads(M) is principally semisimple, M, is
principally semisimple. On the other hand, Rads(M) =Rads(M3) is essential in
M> that it is clear from the construction of Mj. [ ]

A nonzero module M is called §-hollow if every proper submodule is d-small
in M, and M is principally d-hollow if every proper cyclic submodule is d-small
in M, and M is finitely 0-hollow if every proper finitely generated submodule
is d-small in M. Since finite direct sum of §-small submodules is §-small, M is
principally d-hollow if and only if it is finitely -hollow.

Lemma 3.17. The following are equivalent for an indecomposable module M .
(1) M is a principally §-lifting module.
(2) M is a principally §-hollow module.

Proof. (1)=-(2) Let m € M. Since M is a principally ¢-lifting module, there exist
N and S submodules of M such that N < mR, mRN S is d-small in M and
M = N&S. By hypothesis, N = 0 and S = M. So that mRNS = mR is J-small
in M.

(2)=(1) Let m € M. Then mR = (mR) & (0). By (2) mR is §-small and (0)
is a direct summand in M. Hence M is a principally J-lifting module. [ ]

Lemma 3.18. Let M be a module, then we have

(1) If M s principally 6-hollow, then every factor module is principally §-
hollow.

(2) If K is a §-small submodule of M and M/K is principally 6-hollow, then
M s principally 5-hollow.

(3) M is principally 0-hollow if and only if M is local or Rads(M) = M.

Proof. (1) Assume that M is principally d-hollow and N a submodule of M.
Let m+ N € M/N and (mR+ N)/N + K/N = M/N. Suppose that M/K is
singular. We have mR + K = M. Since M/K is singular and M is principally
o-hollow, M = K.

(2) Let m € M. Assume that mR + N = M for some submodule N with
M/N singular. Then (m + K)R = (mR + K)/K is a cyclic submodule of M/K
and (mR + K)/K + (N + K)/K = M/K and M/(N + K) is singular as a
homomorphic image of M/N. Hence (N + K)/K = M/K or N+ K = M. By
hypothesis N = M.

(3) Suppose that M is principally §-hollow and it is not local. Let N and K
be two distinct maximal submodules of M and k € K\ N. Then M = kR+ N
and M/N is a simple module, and so M/N is a singular or projective module.
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If M/N is singular, then M = N since kR is d-small. But this is not possible
since N is maximal. So M/N is projective. Hence N is a direct summand. So
M = N @ N’ for some nonzero submodule N’ of M, that is, N and kR are

proper submodules of M. Since every proper submodule of M is contained in
Rads(M), M = Rads(M). The converse is clear. ]

Proposition 3.19. Let M be a module. Then the following are equivalent.
(1) M is principally 6-hollow.
(2) If N is submodule with M/N cyclic, then N is a 6-small submodule of M.

Proof. (1) = (2) Assume that N is a submodule with M/N cyclic. Lemma
2.1 implies that M/N is principally §-hollow since being J-small is preserved
under homomorphisms. Since M/N has maximal submodules, and by Lemma
3.18, M/N is local. There exists a unique maximal submodule N7 containing N.
Hence N is small, therefore it is -small.

(2) = (1) We prove that every cyclic submodule is é-smallin M. So let m € M
and M = mR+ N with M/N singular. Then M/N is cyclic. By hypothesis, N is
a d-small submodule of M. By Lemma 2.1, there exists a projective semisimple
submodule Y of N such that M = (mR) ®Y. Let Y = @ N; where each N; is

iel
simple. Now we write (mR) @& (@ N;). Then M/((mR) & (@ N;)) is a cyclic
i#j i#j

module as it is isomorphic to simple module N;. By hypothesis, ((mR)® (& N;))
i#£]
is §-small in M. Again by Lemma 2.1, there exists a projective semisimple sub-
module Z of ((mR) & (@ N;)) such that M = Z & N;. Hence M is a projective
i#j
semisimple module. So M = N @ N’ for some submodule N’. Then N’ is projec-
tive. M /N is projective as it is isomorphic to N’. Hence M/N is a both singular
and projective module. Thus M = N. [ ]

4. Applications

In this section, we introduce and study some properties of principally J-
semiperfect modules. By [10], a projective module P is called a projective §-cover
of a module M if there exists an epimorphism f : P — M with Kerf é-small
in P, and a ring is called §-perfect (or d-semiperfect) if every R-module (or every
simple R-module) has a projective §-cover. For more detailed discussion on §-
small submodules, §-perfect and §-semiperfect rings, we refer to [10]. A module
M is called principally 0-semiperfect if every factor module of M by a cyclic
submodule has a projective d-cover. A ring R is called principally §-semiperfect
in case the right R-module R is principally d-semiperfect. Every d-semiperfect
module is principally §-semiperfect. In [10], a ring R is called §-semiregular if
every cyclically presented R-module has a projective d-cover.

Theorem 4.1. Let M be a projective module. Then the following are equivalent.
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(1) M is principally §-semiperfect.
(2) M is principally 0-lifting.

Proof. (1)= (2) Let m € M and P EA M/mR be a projective d-cover and
M 5 M/mR the natural epimorphism.

M

»

P—f>M/mR—>O

Then there exists a map M 5 P such that fg = 7. Then P = g(M) + Ker(f).
Since Ker(f) is d-small, by Lemma 2.1, there exists a projective semisimple
submodule Y of Ker(f) such that P = g(M) @Y. So g(M) is projective. Hence
M = K®Ker(g) for some submodule K of M. It is easy to see that g(KNmR) =
g(K)NKer(f) and Ker(g) < mR. Hence M = K +mR. Next we prove K N(mR)
is d-small in K. Since Ker(f) is d-small in P, g(K) N Ker(f) = g(K NmR) is
§-small in P by Lemma 2.1 (4). Hence K N (mR) is §-small in K since g~! is an
isomorphism from g(M) onto K.

(2)= (1) Assume that M is a principally d-lifting module. Let m € M. There
exist direct summands N and K of M such that M = N @& K, N < mR and
mR N K is §-small in K. Let K = M/mR denote the natural epimorphism
defined by 7(k) = k + mR where k € K, k+mR € M/mR. It is obvious that
Ker(m) = mRN K. It follows that K is a projective d-cover of M/mR. So M is
principally d-semiperfect. [ ]

Corollary 4.2. Let R be a ring. Then the following are equivalent.
(1) R is principally §-semiperfect.
(2) R is principally §-lifting.
(3) R is 6-semireqular.

Proof. (1) < (2) Clear by Theorem 4.1.

(2) < (3) By Theorem 3.6 (2), R is principally ¢-lifting if and only if for every
principal right ideal I of R can be written as I = N & S, where N is a direct
summand and S is d-small in R. This is equivalent to being R J-semiregular
since for any ring R, Rads(R) is d-small in R and each submodule of a d-small
submodule is d-small. [ |

The module M is called principally 6-supplemented if every cyclic submod-
ule of M has a d-supplement in M. Clearly, every d-supplemented module is
principally d-supplemented. Every principally -lifting module is principally §-
supplemented. In a subsequent paper we investigate principally d-supplemented
modules in detail. Now we prove:
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Theorem 4.3. Let M be a principally d-semiperfect module. Then
(1) M is principally 0-supplemented.

(2) Each factor module of M is principally §-semiperfect, hence any homo-
morphic image and any direct summand of M is principally 6-semiperfect.

Proof. (1) Let m € M. Then M/mR has a projective d-cover P LA M/mR.
There exists P M such that the following diagram is commutative, 3 = 7o,
where M 5 M/mR is the natural epimorphism.

P

»

M —"— M/mR — 0

Then M = a(P) +mR, and a(P) N mR is é-small in «(P), by Lemma 2.1 (1).
Hence M is principally d-supplemented.
(2) Let M L, N be an epimorphism and nR a cyclic submodule of N. Let

m € f~Y(nR) and P % M/(mR) be a projective d-cover. Define M/(mR) 2,
N/nR by h(m’ +mR) = f(m') +nR, where m' + mR € M/(mR). Then Ker(g)
is contained in Ker(hg). By projectivity of P, there is a map « from P to N
such that hg = ma.

p —2+~ M/mR

A\

N — N/TLR

0

It is routine to check that (nR)Na(P) = a(Ker(g)). By Lemma 2.1 (2), a(Ker(g))
is 0-small in N since Ker(g) is d-small. Let  €Ker(wa). Then hg(z) = (ra)(z) =
0 or a(z) € (nR)Na(P). So Ker(ma) is §-small. Hence P is a projective §-cover
for N/(nR). ]

Theorem 4.4. Let P be a projective module with Rads(P) d-small in P. Then
the following are equivalent.

(1) P is principally §-lifting.

(2) P/Rads(P) is principally semisimple and, for any cyclic submodule TR of
P/Rads(P) that is a direct summand of P/Rads(P), there exists a cyclic direct
summand A of P such that TR = A.

Proof. (1)= (2) Since P is a principally J-lifting module, P/Rads(P) is prin-
cipally semisimple by Lemma 3.15. Let TR be any cyclic submodule of P/
Rads(P). By Theorem 3.6, there exists a direct summand A of P and a J-



On a Class of Lifting Modules 201

small submodule B such that R = A @ B. Since B is contained in Rads(R),

xR+ Rads(R) = A+ Rads(R). Hence TR = A.

(2)= (1) Let R be any cyclic submodule of P. Then we have P/ Rads(P) =
[(zR+Rads(P))/Rads(P)] @ [U/ Rads(P)] for some U < P. By (2), there exists
a direct summand A of P such that P = A® B and U = B+ Rads(P). Then
P=A® B = A+ U+ Rads(P). Since Rads(P) is d-small in P, there exists a
projective and semisimple submodule Y of P such that P = A®B = (A+U)®Y.
Since P is projective, A + B is also projective and so by Lemma 3.13, we have
A+B =V @®B forsome V < A. Hence P =V @ B® Y. On the other hand
(zR)N(B®Y) = (zR)N B < (xR)NU < Rads(R). Since Rads(R) is d-small in
P, it is 6-small in B® Y by Lemma 2.1 (3). Thus P is principally é-lifting. m
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