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1. Introduction

Throughout this paper all rings have an identity, all modules considered are
unital right modules. Let M be a module and N, P be submodules of M . We
call P a supplement of N in M if M = P + N and P ∩ N is small in P . A
module M is called supplemented if every submodule of M has a supplement in
M . A module M is called lifting if, for all N ≤ M , there exists a decomposition
M = A ⊕ B such that A ≤ N and N ∩ B is small in M . Supplemented and
lifting modules have been discussed by several authors (see [2, 5, 3, 6]) and
these modules are useful in characterizing semiperfect and right perfect rings
(see [5, 8]).

In this note, we study and investigate principally δ-lifting modules and princi-
pally δ-semiperfect modules. A module M is called principally δ-lifting if for each
cyclic submodule has the δ-lifting property, i.e., for each m ∈ M , M has a decom-
position M = A⊕B with A ≤ mR and mR∩B is δ-small in B, where B is called
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a δ-supplement of mR. A module M is called principally δ-semiperfect if, for each
m ∈ M , M/mR has a projective δ-cover. We prove that if M1 is semisimple, M2

is principally δ-lifting, M1 and M2 are relatively projective, then M = M1 ⊕M2

is a principally δ-lifting module. Among others we also prove that for a prin-
cipally δ-semiperfect module M , M is principally δ-supplemented, each factor
module of M is principally δ-semiperfect, hence any homomorphic image and
any direct summand of M is principally δ-semiperfect. As an application, for a
projective module M , it is shown that M is principally δ-semiperfect if and only
if it is principally δ-lifting, and therefore a ring R is principally δ-semiperfect if
and only if it is principally δ-lifting.

In Sec. 2, we give some properties of δ-small submodules that we use in the
paper, and in Sec. 3, principally δ-lifting modules are introduced and various
properties of principally δ-lifting and δ-supplemented modules are obtained. In
Sec. 4, principally δ-semiperfect modules are defined and characterized in terms
of principally δ-lifting modules.

In what follows, by Z, Q, Zn and Z/Zn we denote, respectively, integers,
rational numbers, the ring of integers and the Z-module of integers modulo n.
For unexplained concepts and notations, we refer the reader to [1, 5].

2. δ-Small Submodules

Following Zhou [10], a submodule N of a module M is called a δ-small submodule

if, whenever M = N + X with M/X singular, we have M = X. We begin by
stating the next lemma which is contained in [10, Lemmas 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is δ-small in M and M = X + N , then M = X ⊕ Y for a projective

semisimple submodule Y with Y ≤ N .

(2) If K is δ-small in M and f : M → N is a homomorphism, then f(K) is

δ-small in N . In particular, if K is δ-small in M ≤ N , then K is δ-small in N .

(3) Let K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M and M = M1 ⊕ M2. Then K1 ⊕ K2

is δ-small in M1 ⊕ M2 if and only if K1 is δ-small in M1 and K2 is δ-small in

M2.

(4) Let N , K be submodules of M with K is δ-small in M and N ≤ K. Then

N is also δ-small in M .

Lemma 2.2. Let M be a module and m ∈ M . Then the following are equivalent.

(1) mR is not δ-small in M .

(2) There is a maximal submodule N of M such that m 6∈ N and M/N
singular.

Proof. (1) ⇒ (2) Let Γ := {B ≤ M | B 6= M, mR + B = M , M/B singular}.
Since mR is not δ-small in M , there exists a proper submodule B of M such that
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mR + B = M and M/B is singular. So Γ is non empty. Let Λ be a nonempty
totally ordered subset of Γ and B0 := ∪B∈ΛB. If m is in B0 then there is a
B ∈ Λ with m ∈ B. Then B = mR + B = M which is a contradiction. So we
have m /∈ B0 and B0 6= M . Since mR + B0 = M and M/B0 is singular, B0 is
an upper bound in Γ . By Zorn’s Lemma, Γ has a maximal element, say N . If N
is a maximal submodule of M there is nothing to do. Assume that there exists
a submodule K containing N properly. Since N is maximal in Γ , K is not in
Γ . Since M = mR + N and N ≤ K, so M = mR + K. M/K is singular as a
homomorphic image of the singular module M/N . Hence K must belong to the
Γ . This is the required contradiction.

(2) ⇒ (1) Let N be a maximal submodule with m ∈ M\N and M/N singular.
We have M = mR + N . Then mR is not δ-small in M .

Let A and B be submodules of M with A ≤ B. A is called a δ-cosmall

submodule of B in M if B/A is δ-small in M/A. Let A be a submodule of M . A
is called a δ-coclosed submodule in M if A has no proper δ-cosmall submodules in
M . A submodule A is called δ-coclosure of B in M if A is δ-coclosed submodule
of M and it is δ-cosmall submodule of B. Equivalently, for any submodule C ≤ A
with A/C δ-small in M/C implies C = A and B/A is δ-small in M/A. Note that
δ-coclosed submodules need not always exist.

Lemma 2.3. Let A and B be submodules of M with A ≤ B. Then we have:

(1) A is δ-cosmall submodule of B in M if and only if M = A + L for any

submodule L of M with M = B + L and M/L singular.

(2) If A is δ-small and B is δ-coclosed in M , then A is δ-small in B.

Proof. (1) Necessity: Let M = B + L and M/L be singular. We have M/A =
B/A + (L + A)/A and M/(L + A) is singular as homomorphic image of the
singular module M/L. Since B/A is δ-small, M/A = (L + A)/A or M = L + A.
Sufficiency: Let M/A = B/A + K/A and M/K be singular. Then M = B + K.
By hypothesis, M = A + K and so M = K. Hence A is a δ-cosmall submodule
of B in M .

(2) Assume that A is a δ-small submodule of M and B is δ-coclosed in M .
Let B = A+K with B/K singular. Since B is δ-coclosed in M , to complete the
proof, by part (1) it suffices to show that K is a δ-small submodule of B in M .
Let M = B + L with M/L singular. By assumption, M = A + K + L = K + L
since M/(K + L) is singular. By (1), K is a δ-small submodule of B in M .

Lemma 2.4. Let A, B and C be submodules of M with M = A+C and A ≤ B.

If B ∩C is a δ-small submodule of M , then A is a δ-cosmall submodule of B in

M .

Proof. Let M/A = B/A + L/A with M/L singular. We have M = B + L and
B = A + (B ∩ C). Then M = A + (B ∩ C) + L = (B ∩ C) + L. Hence M = L
since B∩K is δ-small in M and M/L is singular. Hence B/A is δ-small in M/A.
Thus A is a δ-cosmall submodule of B in M .
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3. Principally δ-Lifting Modules

In this section, we study and investigate some properties of principally δ-lifting
modules. The following definition is motivated by [10, Lemma 3.4] and Lemma
3.4.

Definition 3.1. A module M is called finitely δ-lifting if for any finitely gener-
ated submodule A of M has the δ-lifting property, that is, there is a decompo-
sition M = N ⊕ S with N ≤ A and A ∩ S is δ-small in S. In this case A ∩ S is
δ-small in S if and only if A∩S is δ-small in M . A module M is called principally

δ-lifting if for each cyclic submodule has the principally δ-lifting property, i.e.,
for each m ∈ M , M has a decomposition M = A⊕B with A ≤ mR and mR∩B
is δ-small in B.

Example 3.2. Every submodule of any semisimple module satisfies principally
δ-lifting property.

Example 3.3. Let p be a prime integer and n any positive integer. Then the
Z-module M = Z/Zpn is a principally δ-lifting module.

Lemma 3.4. The following are equivalent for a module M :

(1) M is finitely δ-lifting.

(2) M is principally δ-lifting.

Proof. See [8] and [10].

Let M be a module and N a submodule of M . A submodule L is called a
δ-supplement of N in M if M = N + L and N ∩ L is δ-small in L (therefore in
M).

Proposition 3.5. Let M be a principally δ-lifting module. Then we have:

(1) Every direct summand of M is a principally δ-lifting module.

(2) Every cyclic submodule C of M has a δ-supplement S which is a direct

summand, and C contains a complementary summand of S in M .

Proof. (1) Let K be a direct summand of M and k ∈ K. Then M has a de-
composition M = N ⊕ S with N ≤ kR and kR ∩ S is δ-small in M . It follows
that K = N ⊕ (K ∩ S), and kR ∩ (K ∩ S) ≤ kR ∩ S is δ-small in M and so
kR ∩ (K ∩ S) is δ-small in K. Therefore K is a principally δ-lifting module.

(2) Assume that M is a principally δ-lifting module and C is a cyclic sub-
module of M . Then we have M = N ⊕ S, where N ≤ C and C ∩ S is δ-small in
M . Hence M = N + S ≤ C + S ≤ M , we have M = C + S. Since S is a direct
summand and C ∩ S is δ-small in M , C ∩ S is δ-small in S. Therefore S is a
δ-supplement of C in M .
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Theorem 3.6. The following are equivalent for a module M :

(1) M is a principally δ-lifting module.

(2) Every cyclic submodule C of M can be written as C = N ⊕ S, where N
is a direct summand and S is δ-small in M .

(3) For every cyclic submodule C of M , there is a direct summand A of M
with A ≤ C and C/A δ-small in M/A.

(4) Every cyclic submodule C of M has a δ-supplement K in M such that

C ∩ K is a direct summand in C.

(5) For every cyclic submodule C of M , there is an idempotent e ∈ End(M)
with eM ≤ C and (1 − e)C δ-small in (1 − e)M .

(6) For each m ∈ M , there exist ideals I and J of R such that mR = mI⊕mJ ,

where mI is a direct summand of M and mJ is δ-small in M .

Proof. (1)⇒(2) Let C be a cyclic submodule of M . By hypothesis there exist N
and S submodules of M such that N ≤ C, C∩S is δ-small in M and M = N⊕S.
Then we have C = N ⊕ (C ∩ S).

(2) ⇒ (3) Let C be a cyclic submodule of M . By hypothesis, C = N ⊕ S,
where N is a direct summand and S is δ-small in M . Let π : M → M/N be the
natural projection. Since S is δ-small in M , we have π(S) is δ-small in M/N .
Since π(S) ∼= S ∼= C/N , C/N is δ-small in M/N .

(3) ⇒ (4) Let C be a cyclic submodule of M . By hypothesis, there is a direct
summand A ≤ M with A ≤ C and C/A δ-small in M/A. Let M = A ⊕ A′.
Hence C = A ⊕ (A′ ∩ C). Let σ : M/A → A′ denote the obvious isomorphism.
Then σ(C/A) = A′ ∩ C is δ-small in A′.

(4) ⇒ (5) Let C be any cyclic submodule of M and K ≤ M such that
C ∩ K is a direct summand of C, M = C + K and C ∩ K is δ-small in K. So
C = (C ∩K)⊕X for some X ≤ C. Then M = X + (C ∩K) + K = X ⊕K. Let
e : M → X ; e(x + k) = x and (1 − e) : M → K ; e(x + k) = k be projection
maps. e(M) ≤ X ≤ C and (1 − e)C = C ∩ (1 − e)M = C ∩ K is δ-small in
(1 − e)M .

(5) ⇒ (6) Let mR be any cyclic submodule of M . By hypothesis, there exists
an idempotent e ∈ End(M) such that eM ≤ mR, M = eM ⊕ (1 − e)M and
(1 − e)mR is δ-small in (1 − e)M . Note that (mR) ∩ ((1 − e)M) = (1 − e)mR
(for if m = em1 + y, where em1 ∈ eM , y ∈ (mR) ∩ ((1 − e)M). Then (1 −
e)m = em1 + (1 − e)y = y and so (1 − e)mR ≤ (mR) ∩ ((1 − e)M). Let
mr = (1 − e)m′ ∈ (mR) ∩ ((1 − e)M). Then mr = (1 − e)mr ∈ (1 − e)mR. So
(mR) ∩ ((1 − e)M) ≤ (1 − e)mR. Thus (mR) ∩ ((1 − e)M) = (1 − e)mR ). So
mR = eM ⊕ (1 − e)mR. Let I = {r ∈ R : mr ∈ eM} and J = {t ∈ R : mt ∈
(1 − e)mR}. Then mR = mI ⊕ mJ , mI = eM and mJ = (1 − e)mR is δ-small
in (1 − e)M .

(6) ⇒ (1) Let m ∈ M . By hypothesis, there exist ideals I and J of R such
that mR = mI ⊕ mJ , where mI is a direct summand and mJ is δ-small in M .
Let M = mI⊕K for some submodule K. Since K∩mR ∼= mJ and mJ is δ-small
in M , M is principally δ-lifting.
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Note that every lifting module is principally δ-lifting. There are principally
δ-lifting modules but not lifting.

Example 3.7. Let M be the Z-module Q and m ∈ M . It is well known that
every cyclic submodule mR of M is small, therefore δ-small in M . Hence M is a
principally δ-lifting Z-module. If N is a nonsmall proper submodule of M , then
N is neither a direct summand nor contains a direct summand of M . It follows
that M is not a lifting Z-module.

It is clear that every δ-lifting module is principally δ-lifting. However the
converse is not true.

Example 3.8. Let R and T denote the rings in [10, Example 4.1], where

R =

∞
∑

i=1

⊕

Z2 + Z2.1 =

{

(f1, f2, . . . , fn, f, f, . . . ) ∈

∞
∏

i=1

Z2

}

and

T =

{[

x y
0 x

]

: x ∈ R, y ∈ Soc(R)

}

.

Then Radδ(T ) =

[

0 Soc(R)
0 0

]

and T/Radδ(T ) is not semisimple as isomorphic

to R. So T is not δ-semiperfect by [10, Theorem 3.6]. Hence T is not a δ-lifting
module over T . It is easy to show that T/Radδ(T ) lifts to idempotents of T , so
T is a semiregular ring. Since T is a δ-semiregular ring, every finitely generated
right ideal H of T can be written as H = aT ⊕ S, where a2 = a ∈ T and
S ≤ Radδ(T ) by [10, Theorem 3.5]. Hence T is a principally δ-lifting module.

Proposition 3.9. Let M be a principally δ-lifting module. If M = M1 + M2

such that M1 ∩ M2 is cyclic, then M2 contains a δ-supplement of M1 in M .

Proof. Assume that M = M1 + M2 and M1 ∩ M2 is cyclic. Then we have M1 ∩
M2 = N ⊕ S, where N is a direct summand of M and S is δ-small in M .
Let M = N ⊕ N ′ and M2 = N ⊕ (M2 ∩ N ′). It follows that M1 ∩ M2 =
N ⊕ (M1 ∩M2 ∩N ′) = N ⊕S. Let π : M2 = N ⊕ (M2 ∩N ′) → N ′ be the natural
projection. It follows that π(M1 ∩M2 ∩N ′) = M1 ∩M2 ∩N ′ = π(S). Since S is
δ-small in M , it is δ-small in N ′ by Lemma 2.1. Hence M = M1 + (M2 ∩ N ′),
M2 ∩N ′ ≤ M2 and M1 ∩ (M2 ∩N ′) is δ-small in M2 ∩N ′. M2 ∩N ′ is contained
in M2 and a δ-supplement of M1 in M2. This completes the proof.

Let M be a module. A submodule N is called fully invariant if for each endo-
morphism f of M , f(N) ≤ N . Let S = End(MR), the ring of R-endomorphisms
of M . Then M is a left S-, right R-bimodule and a principal submodule N of
the right R-module M is fully invariant if and only if N is a sub-bimodule of
M . Clearly 0 and M are fully invariant submodules of M . The right R-module
M is called a duo module provided every submodule of M is fully invariant. For
the readers’ convenience we state and prove Lemma 3.10 which is proved in [7].
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Lemma 3.10. Let a module M =
⊕

i∈I

Mi be a direct sum of submodules Mi

(i ∈ I) and let N be a fully invariant submodule of M . Then N =
⊕

i∈I

(N ∩Mi).

Proof. For each j ∈ I, let pj : M → Mj denote the canonical projection and let
ij : Mj → M denote inclusion. Then ijpj is an endomorphism of M and hence
ijpj(N) ⊆ N for each j ∈ I. It follows that N ⊆

⊕

j∈I

ijpj(N) ⊆
⊕

j∈I

(N∩Mj ) ⊆ N ,

so that N =
⊕

j∈I

(N ∩ Mj).

One may suspect that if M1 and M2 are principally δ-lifting modules, then
M1 ⊕ M2 is also principally δ-lifting. But this is not the case.

Example 3.11. Consider the Z-modules M1 = Z/Z2 and M2 = Z/Z8. It is
clear that M1 and M2 are principally δ-lifting. Let M = M1 ⊕ M2. Then M is
not a principally δ-lifting Z-module. Let N1 = (1, 2)Z and N2 = (1, 1)Z. Then
M = N1 + N2, N1 is not a direct summand of M and does not contain any
nonzero direct summand of M . For any proper submodule N of M , M/N is
a singular Z-module. Hence the principal submodule does not satisfy δ-lifting
property. It follows that M is not a principally δ-lifting Z-module. By the same
reasoning, for any prime integer p, the Z-module M = (Z/Zp)⊕ (Z/Zp3) is not
principally δ-lifting.

We have already observed by the preceding example that the direct sum of
principally δ-lifting modules need not be principally δ-lifting. Note the following
fact.

Proposition 3.12. Let M = M1 ⊕ M2 be a decomposition of M with M1 and

M2 principally δ-lifting modules. If M is a duo module, then M is principally

δ-lifting.

Proof. Let M = M1 ⊕ M2 be a duo module and mR be a submodule of M . By
Lemma 3.10, mR = ((mR)∩M1)⊕((mR)∩M2). Since (mR)∩M1 and (mR)∩M2

are principal submodules of M1 and M2 respectively, there exist A1, B1 ≤ M1

such that A1 ≤ (mR)∩M1 ≤ M1 = A1 ⊕B1, B1 ∩ ((mR)∩M1) = B1 ∩ (mR) is
δ-small in B1, and A2, B2 ≤ M2 such that A2 ≤ (mR) ∩ M2 ≤ M2 = A2 ⊕ B2,
B2 ∩ ((mR)∩M2) = B2 ∩ (mR) is δ-small in B2. Then M = A1 ⊕A2 ⊕B1 ⊕B2,
A1 ⊕A2 ≤ N and (mR)∩ (B1 ⊕B2) = ((mR) ∩B1)⊕ ((mR)∩B2) is δ-small in
M1 ⊕ M2.

Lemma 3.13. The following are equivalent for a module M = M ′ ⊕ M ′′.

(1) M ′ is M ′′-projective.

(2) For each submodule N of M with M = N +M ′′, there exists a submodule

N ′ ≤ N such that M = N ′ ⊕ M ′′.

Proof. See [8, 41.14]
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Theorem 3.14. Let M1 be a semisimple module and M2 a principally δ-lifting

module. Assume that M1 and M2 are relatively projective. Then M = M1 ⊕ M2

is principally δ-lifting.

Proof. Let 0 6= m ∈ M and let K = M1 ∩ ((mR) + M2). We divide the proof
into two cases:

Case (i): K 6= 0. Then M1 = K ⊕ K1 for some submodule K1 of M1 and so
M = K ⊕ K1 ⊕ M2 = (mR) + (M2 ⊕ K1). Hence K is M2 ⊕ K1-projective. By
Lemma 3.13, there exists a submodule N of mR such that M = N ⊕ (M2 ⊕K1).
We may assume (mR) ∩ (M2 ⊕ K1) 6= 0. Note that for any submodule L of M2,
we have (mR)∩ (L+K1) = L∩ ((mR)+K1). In particular (mR)∩ (M2 +K1) =
M2 ∩ (mR + K1). Then mR = N ⊕ (mR) ∩ (K1 ⊕ M2). There exist n ∈ N
and m′ ∈ (mR) ∩ (K1 ⊕ M2) such that m = n + m′. Then nR = N and
m′R = (mR) ∩ (K1 ⊕ M2). Since (mR) ∩ (M2 + K1) = M2 ∩ ((mR) + K1),
M2 ∩ ((mR) + K1) is a principal submodule of M2 and M2 is principally δ-
lifting, there exists a submodule X of M2 ∩ ((mR) + K1) = (mR) ∩ (M2 ⊕ K1)
such that M2 = X⊕Y and Y ∩M2∩((mR)+K1) = Y ∩((mR)+K1) is δ-small in
M2∩((mR)+K1) and in M2. Hence M = (N⊕X)⊕(Y ⊕K1). Since N⊕X ≤ mR
and (mR)∩ (Y ⊕K1) = Y ∩ ((mR)+K1), (mR)∩ (Y ⊕K1) = Y ∩ ((mR)+K1)
is δ-small in Y ⊕ K1. So M is δ-lifting.

Case (ii): K = 0. Then mR ≤ M2. Since M2 is δ-lifting, there exists a submodule
X of mR such that M2 = X⊕Y and (mR)∩Y is δ-small in Y for some submodule
Y of M2. Hence M = X ⊕ (M1 ⊕ Y ). Since (mR) ∩ (M1 ⊕ Y ) = (mR) ∩ Y and
(mR)∩(M1⊕Y ) = (mR)∩Y is δ-small in Y . By Lemma 2.1 (3), (mR)∩(M1⊕Y )
is δ-small in M1 ⊕ Y . It follows that M is δ-lifting.

A module M is said to be a principally semisimple if every cyclic submodule
is a direct summand of M . Tuganbayev calls a principally semisimple module
as a regular module in [4]. Every semisimple module is principally semisimple.
Every principally semisimple module is principally δ-lifting. For a module M ,
we write Radδ(M) =

∑

{L | L is a δ-small submodule of M}.

Lemma 3.15. Let M be a principally δ-lifting module. Then M/Radδ(M) is a

principally semisimple module.

Proof. Let m ∈ M . There exists M1 ≤ mR such that M = M1 ⊕ M2 and
(mR) ∩ M2 is δ-small in M2. So (mR) ∩ M2 is δ-small in M . Then

M/Radδ(M) = [(mR + Radδ(M))/Radδ(M)] ⊕ [(M2 + Radδ(M))/Radδ(M)]

because (mR+ Radδ(M)) ∩ (M2+Radδ(M)) =Radδ(M). Hence every principal
submodule of M/Radδ(M) is a direct summand.

Proposition 3.16. Let M be a principally δ-lifting module. Then M = M1⊕M2,

where M1 is a principally semisimple module and M2 is a module with Radδ(M)
essential in M2.



On a Class of Lifting Modules 197

Proof. Let M1 be a submodule of M such that Radδ(M)⊕M1 is essential in M
and m ∈ M1. Since M is principally δ-lifting, there exists a direct summand M2

of M such that M2 ≤ mR, M = M2 ⊕M ′
2

and mR∩M ′
2

is δ-small in M . Hence
mR ∩ M ′

2
is a submodule of Radδ(M) and so mR ∩ M ′

2
= 0. Then m ∈ M2

and mR = M2. Since M2∩ Radδ(M) = 0, M2 is isomorphic to a submodule
of M/Radδ(M). By Lemma 3.15, M/Radδ(M) is principally semisimple, M2 is
principally semisimple. On the other hand, Radδ(M) =Radδ(M

′
2
) is essential in

M2 that it is clear from the construction of M ′
2
.

A nonzero module M is called δ-hollow if every proper submodule is δ-small
in M , and M is principally δ-hollow if every proper cyclic submodule is δ-small
in M , and M is finitely δ-hollow if every proper finitely generated submodule
is δ-small in M . Since finite direct sum of δ-small submodules is δ-small, M is
principally δ-hollow if and only if it is finitely δ-hollow.

Lemma 3.17. The following are equivalent for an indecomposable module M .

(1) M is a principally δ-lifting module.

(2) M is a principally δ-hollow module.

Proof. (1)⇒(2) Let m ∈ M . Since M is a principally δ-lifting module, there exist
N and S submodules of M such that N ≤ mR, mR ∩ S is δ-small in M and
M = N ⊕S. By hypothesis, N = 0 and S = M . So that mR∩S = mR is δ-small
in M .

(2)⇒(1) Let m ∈ M . Then mR = (mR) ⊕ (0). By (2) mR is δ-small and (0)
is a direct summand in M . Hence M is a principally δ-lifting module.

Lemma 3.18. Let M be a module, then we have

(1) If M is principally δ-hollow, then every factor module is principally δ-
hollow.

(2) If K is a δ-small submodule of M and M/K is principally δ-hollow, then

M is principally δ-hollow.

(3) M is principally δ-hollow if and only if M is local or Radδ(M) = M .

Proof. (1) Assume that M is principally δ-hollow and N a submodule of M .
Let m + N ∈ M/N and (mR + N)/N + K/N = M/N . Suppose that M/K is
singular. We have mR + K = M . Since M/K is singular and M is principally
δ-hollow, M = K.

(2) Let m ∈ M . Assume that mR + N = M for some submodule N with
M/N singular. Then (m + K)R = (mR + K)/K is a cyclic submodule of M/K
and (mR + K)/K + (N + K)/K = M/K and M/(N + K) is singular as a
homomorphic image of M/N . Hence (N + K)/K = M/K or N + K = M . By
hypothesis N = M .

(3) Suppose that M is principally δ-hollow and it is not local. Let N and K
be two distinct maximal submodules of M and k ∈ K \ N . Then M = kR + N
and M/N is a simple module, and so M/N is a singular or projective module.
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If M/N is singular, then M = N since kR is δ-small. But this is not possible
since N is maximal. So M/N is projective. Hence N is a direct summand. So
M = N ⊕ N ′ for some nonzero submodule N ′ of M , that is, N and kR are
proper submodules of M . Since every proper submodule of M is contained in
Radδ(M), M = Radδ(M). The converse is clear.

Proposition 3.19. Let M be a module. Then the following are equivalent.

(1) M is principally δ-hollow.

(2) If N is submodule with M/N cyclic, then N is a δ-small submodule of M .

Proof. (1) ⇒ (2) Assume that N is a submodule with M/N cyclic. Lemma
2.1 implies that M/N is principally δ-hollow since being δ-small is preserved
under homomorphisms. Since M/N has maximal submodules, and by Lemma
3.18, M/N is local. There exists a unique maximal submodule N1 containing N .
Hence N is small, therefore it is δ-small.

(2) ⇒ (1) We prove that every cyclic submodule is δ-small in M . So let m ∈ M
and M = mR+N with M/N singular. Then M/N is cyclic. By hypothesis, N is
a δ-small submodule of M . By Lemma 2.1, there exists a projective semisimple
submodule Y of N such that M = (mR) ⊕ Y . Let Y =

⊕

i∈I

Ni where each Ni is

simple. Now we write (mR) ⊕ (
⊕

i 6=j

Nj). Then M/((mR) ⊕ (
⊕

i 6=j

Nj)) is a cyclic

module as it is isomorphic to simple module Ni. By hypothesis, ((mR)⊕(
⊕

i 6=j

Nj))

is δ-small in M . Again by Lemma 2.1, there exists a projective semisimple sub-
module Z of ((mR) ⊕ (

⊕

i 6=j

Nj)) such that M = Z ⊕Ni. Hence M is a projective

semisimple module. So M = N ⊕N ′ for some submodule N ′. Then N ′ is projec-
tive. M/N is projective as it is isomorphic to N ′. Hence M/N is a both singular
and projective module. Thus M = N .

4. Applications

In this section, we introduce and study some properties of principally δ-
semiperfect modules. By [10], a projective module P is called a projective δ-cover
of a module M if there exists an epimorphism f : P −→ M with Kerf δ-small
in P , and a ring is called δ-perfect (or δ-semiperfect) if every R-module (or every
simple R-module) has a projective δ-cover. For more detailed discussion on δ-
small submodules, δ-perfect and δ-semiperfect rings, we refer to [10]. A module
M is called principally δ-semiperfect if every factor module of M by a cyclic
submodule has a projective δ-cover. A ring R is called principally δ-semiperfect

in case the right R-module R is principally δ-semiperfect. Every δ-semiperfect
module is principally δ-semiperfect. In [10], a ring R is called δ-semiregular if
every cyclically presented R-module has a projective δ-cover.

Theorem 4.1. Let M be a projective module. Then the following are equivalent.
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(1) M is principally δ-semiperfect.

(2) M is principally δ-lifting.

Proof. (1)⇒ (2) Let m ∈ M and P
f
→ M/mR be a projective δ-cover and

M
π
→ M/mR the natural epimorphism.

M

P M/mR 0

p

p

p

p

p

p

p

p

p

p

p

	

g

?

π

-
f

-

Then there exists a map M
g
→ P such that fg = π. Then P = g(M) + Ker(f).

Since Ker(f) is δ-small, by Lemma 2.1, there exists a projective semisimple
submodule Y of Ker(f) such that P = g(M) ⊕ Y . So g(M) is projective. Hence
M = K⊕Ker(g) for some submodule K of M . It is easy to see that g(K∩mR) =
g(K)∩Ker(f) and Ker(g) ≤ mR. Hence M = K+mR. Next we prove K∩(mR)
is δ-small in K. Since Ker(f) is δ-small in P , g(K) ∩ Ker(f) = g(K ∩ mR) is
δ-small in P by Lemma 2.1 (4). Hence K ∩ (mR) is δ-small in K since g−1 is an
isomorphism from g(M) onto K.

(2)⇒ (1) Assume that M is a principally δ-lifting module. Let m ∈ M . There
exist direct summands N and K of M such that M = N ⊕ K, N ≤ mR and
mR ∩ K is δ-small in K. Let K

π
→ M/mR denote the natural epimorphism

defined by π(k) = k + mR where k ∈ K, k + mR ∈ M/mR. It is obvious that
Ker(π) = mR ∩K. It follows that K is a projective δ-cover of M/mR. So M is
principally δ-semiperfect.

Corollary 4.2. Let R be a ring. Then the following are equivalent.

(1) R is principally δ-semiperfect.

(2) R is principally δ-lifting.

(3) R is δ-semiregular.

Proof. (1) ⇔ (2) Clear by Theorem 4.1.

(2) ⇔ (3) By Theorem 3.6 (2), R is principally δ-lifting if and only if for every
principal right ideal I of R can be written as I = N ⊕ S, where N is a direct
summand and S is δ-small in R. This is equivalent to being R δ-semiregular
since for any ring R, Radδ(R) is δ-small in R and each submodule of a δ-small
submodule is δ-small.

The module M is called principally δ-supplemented if every cyclic submod-
ule of M has a δ-supplement in M . Clearly, every δ-supplemented module is
principally δ-supplemented. Every principally δ-lifting module is principally δ-
supplemented. In a subsequent paper we investigate principally δ-supplemented
modules in detail. Now we prove:
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Theorem 4.3. Let M be a principally δ-semiperfect module. Then

(1) M is principally δ-supplemented.

(2) Each factor module of M is principally δ-semiperfect, hence any homo-

morphic image and any direct summand of M is principally δ-semiperfect.

Proof. (1) Let m ∈ M . Then M/mR has a projective δ-cover P
β
→ M/mR.

There exists P
α
→ M such that the following diagram is commutative, β = πα,

where M
π
→ M/mR is the natural epimorphism.

P

M M/mR 0

p

p

p

p

p

p

p

p

p

p

p

	

α

?

β

-
π

-

Then M = α(P ) + mR, and α(P ) ∩ mR is δ-small in α(P ), by Lemma 2.1 (1).
Hence M is principally δ-supplemented.

(2) Let M
f
→ N be an epimorphism and nR a cyclic submodule of N . Let

m ∈ f−1(nR) and P
g
→ M/(mR) be a projective δ-cover. Define M/(mR)

h
→

N/nR by h(m′ + mR) = f(m′)+ nR, where m′ + mR ∈ M/(mR). Then Ker(g)
is contained in Ker(hg). By projectivity of P , there is a map α from P to N
such that hg = πα.

P M/mR

N N/nR 0

-
g

p

p

p

p

p

p

p

p

p

p

p

?

α

?

h

-
π

-

It is routine to check that (nR)∩α(P ) = α(Ker(g)). By Lemma 2.1 (2), α(Ker(g))
is δ-small in N since Ker(g) is δ-small. Let x ∈Ker(πα). Then hg(x) = (πα)(x) =
0 or α(x) ∈ (nR)∩α(P ). So Ker(πα) is δ-small. Hence P is a projective δ-cover
for N/(nR).

Theorem 4.4. Let P be a projective module with Radδ(P ) δ-small in P . Then

the following are equivalent.

(1) P is principally δ-lifting.

(2) P/Radδ(P ) is principally semisimple and, for any cyclic submodule xR of

P/Radδ(P ) that is a direct summand of P/Radδ(P ), there exists a cyclic direct

summand A of P such that xR = A.

Proof. (1)⇒ (2) Since P is a principally δ-lifting module, P/Radδ(P ) is prin-
cipally semisimple by Lemma 3.15. Let xR be any cyclic submodule of P/
Radδ(P ). By Theorem 3.6, there exists a direct summand A of P and a δ-
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small submodule B such that xR = A ⊕ B. Since B is contained in Radδ(R),
xR + Radδ(R) = A + Radδ(R). Hence xR = A.

(2)⇒ (1) Let xR be any cyclic submodule of P . Then we have P/ Radδ(P ) =
[(xR+Radδ(P ))/Radδ(P )]⊕ [U/ Radδ(P )] for some U ≤ P . By (2), there exists
a direct summand A of P such that P = A ⊕ B and U = B+ Radδ(P ). Then
P = A ⊕ B = A + U+ Radδ(P ). Since Radδ(P ) is δ-small in P , there exists a
projective and semisimple submodule Y of P such that P = A⊕B = (A+U)⊕Y .
Since P is projective, A + B is also projective and so by Lemma 3.13, we have
A + B = V ⊕ B for some V ≤ A. Hence P = V ⊕ B ⊕ Y . On the other hand
(xR)∩ (B⊕Y ) = (xR)∩B ≤ (xR)∩U ≤ Radδ(R). Since Radδ(R) is δ-small in
P , it is δ-small in B ⊕ Y by Lemma 2.1 (3). Thus P is principally δ-lifting.
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