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Abstract. We consider the two parametric family of perturbed Lienard equations

ẍ + f(x)ẋ + g(x, ẋ, t, ε) = 0. (∗)

Here ε is a parameter and f(x), g(x, ẋ, t, ε) are polynomials with respect to x, y and

Cr, r > 1 with respect to t. Equation (∗) is an effect of nonlinear forcing on the Lienard

equation. Our aim is to show the persistence of periodic solutions of Lienard equation

(if there is any) under perturbations. Therefore first we find some condition under

which the Lienard equation has at least one periodic orbit, and then we investigate

the persistence of the periodic orbit under perturbation (equation (∗)). The techniques

that we use are techniques of Chicone and Melnikov
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1. Introduction

The dynamic behavior of Lienard equation has been widely investigated [6, 14,
4, 20], due to their application in many fields such as physics, mechanics and
engineering technique. Lienard system is one of the interested systems that are
substantial. Lienard equation is widely studied by many mathematicians, for
example we give some recent studies. Guo, Ge, and Lu in [13] study periodic
solutions for generalized Lienard systems by means of Mawhins continuation
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theorem, Zhou et al. in [22] by using topological degree theory and some anal-
ysis skills study the existence and uniqueness of periodic orbit of a class of
generalized Lienard systems, Zou, Chen, and Zhang in [23] study the local bi-
furcations of critical periods for cubic Lienard equations with cubic damping
also Aghajani and Moradifam in [3] study the existence of homoclinic orbits of
generalized Lienard equations. They extend the results presented by Hara and
Yoneyama (see [15]) and present sufficient and necessary conditions for existence
of homoclinic orbit. In such application, it is important to know the existence of
periodic solution of Lienard equation and more important is the study of persis-
tence of periodic solution under perturbations. Smale in [21] consider an easier
and special class of polynomial Lienard systems

{

ẋ = y − F (x),
ẏ = −x,

(1)

where F (x) = a1x+a2x
2 + . . .+amxm. For this system the existence of uniform

bound for periodic solution remains unproved. But when the degree m of this
system is odd, Ilyushenko and Panov in [16] obtain a uniform bound for the
number of limit cycles in a subclass of systems such that F is monic and its co-
efficients satisfy some estimations. For the Lienard system (1) Lins, de Melo and
Pugh [17] conjectured that it has at most k limit cycles if F (x) is a polynomial
of degree m = 2k +1 or m = 2k +2. This conjecture is supported mainly by the
following three facts. First, the Lienard system of the form

{

ẋ = y − εF (x),
ẏ = −x,

with ε sufficiently small has at most k limit cycles bifurcating from the periodic
orbit of the linear oscillator

{

ẋ = y,

ẏ = −x

and there are examples with exactly k, see [18]. Second, it is known that system
(1) has a center at the origin if and only if ai = 0 for all i odd, and that these
ai with i odd are the Liapunov constant of system (1). Consequently at most k

small limit cycles can bifurcate by Hopf from these centers, when we perturbed
them inside the class of all Lienard systems of degree m = 2k +1 or m = 2k +2,
see Zuppa [24] and also Blows and Lloyd [5]. Third, Lopez and Lopez-Ruiz [18]
have studied the Lienard system (1) in what they call the strongly nonlinear
regime. In this regime they show that the conjecture is true when m is odd.
More recently it was proved by Chen et al. in [7] that the conjecture holds
restricted to Lienard system (1) with the function F (x) odd. Therefore Sec. 2 is
preliminary which gives those subjects necessary for next sections and in Sec. 3
we study the nonautonomous perturbation on Lienard equation.
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2. Preliminaries

Consider the Lienard equation ẍ+f(x)ẋ+g(x) = 0, we can rewrite this equation
in the form

{

ẋ = y − F (x),
ẏ = −g(x),

(2)

where F (x) =
∫ x

0
f(u)du. In this paper we consider F (x) as a polynomial of

degree 2m + 1 and g(x) = x. So we have

{

ẋ = y − (a1x + a2x
2 + ... + a2m+1x

2m+1),
ẏ = −g(x).

(3)

We choose α > 0 such that ai = αµi for i = 1, . . . , 2m + 1 and by using
theorem below (see [19]) we find conditions which imply the existence of periodic
solutions.

Theorem 2.1. For α 6= 0 sufficiently small system (2) with g(x) = x and

F (x) = α(µ1x + µ2x
2 + ... + µ2m+1x

2m+1) has at most m limit cycles; also

for α 6= 0 sufficiently small, this system has exactly m limit cycles which are

asymptotic to circles of radius rj, j = 1, 2, ..., m, centered at the origin as α → 0
if and only if the m degree equation

a1

2
+

3a3

8
ρ + . . . + (m+1

2m+2)
a2m+1

22m+2
ρm = 0

has m positive roots ρ = r2
j .

Now we investigate the persistence of periodic solutions of system (3) under
perturbation. For the perturbations which are independent with respect to t, in
[1] we present some results. For effect of nonautonomous perturbation on the
Lienard equation we use the techniques in the Chicone papers [8, 9, 10, 11].
But since we are going to consider the two parametric perturbations we use
the extended method of the Chicone paper (see [3]). Therefore in the following
section the Chicon method and its extension are going to be given. First consider
the system

ẋ = f(x) + εg(x, t, ε), ε ∈ R, x ∈ R2 (4)

in a neighborhood of U of a periodic orbit γ of period T for (4), where f, g are
smooth and g is periodic with respect to t. The period of the function g is τ = m

n
,

where m, n are prime. Perko in [19] uses the subharmonic Melnikov function

M =

2nπ
∫

0

f(γ(t)) ∧ g(γ(t), t, 0)dt

and gives the following
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Theorem 2.2. If the subharmonic Melnikov function along a subharmonic pe-

riodic orbit γr(t), of period 2nπ
m

has a simple zero in [0, 2nπ] then for all suffi-

ciently small ε system (4) has a subharmonic periodic orbit of period 2nπ in a

ε-neighborhood of γr(t) (see [19]).

But which we use, is an extension of the above theorem that we explain below:
Assuming there are no zeros of f in U then we have a basis B(ξ) = {f(ξ), f⊥(ξ)}.
Let V ⊆ U be the zeros of P0 that is the set of T -periodic solutions in U . Then
we use the result about the Diliberto Theorem [12], see also [9]. This theorem
illustrates the important result about the geometric meaning of the two functions
α and β, see the following

Theorem 2.3. For ξ ∈ V the map P 1 evaluated at ξ has the form

P 1 = (N(ξ), M(ξ))

with respect to the basis B(ξ), where

N(ξ) =

mT
∫

0

‖f‖−2

{

f.g −
α(t)

β(t)
f⊥.g

}

ϕt(ξ)dt,

M(ξ) =

mT
∫

0

(

1

β(t)
f⊥.g

)

‖f‖−2ϕt(ξ)dt,

α(t) =

t
∫

0

{‖f‖−2(2κ‖f‖ − curlf)β}(s, ξ)ds,

β(t) = exp

t
∫

0

divf(s, ξ)ds.

Let us suppose that we have the vector field V = (V1, V2), and then we define

κ = ‖V ‖−3(V1V̇2 − V2V̇1),

where the functions α and β corresponding respectively to the first order vari-
ation in time and in displacement transverse to the orbit γ(t) of ξ for orbit of
the unperturbed system (3). In case of α 6= 0 or β 6= 0, γ(t) is called normally
nondegenerate, for more information and proof of Theorem 2.3, see [10]. Here
γ(t) is an isolated periodic orbit.

3. Two Parameters Method

Now we give an extended method of the Chicone. First we consider two pa-
rameters perturbations, therefore in this case we put P 1 = (P 1

1 , P 1
2 ) then



Continuation of Periodic Solutions for a Class of Lienard Equations... 207

P 1 : V → R2. Hence P 1 is the map which takes V to 2 × 2 matrix, where
ith column of the matrix P 1 is P 1

i . Let us write ε = ps, where p > 0 and s

belongs to the unit sphere S1 ∈ R2. In this case we have

δ(ξ, ε) = P (ξ, ε) − ξ = εP 1(ξ) + O(ε2) = pP 1(ξ)s + O(p2), (5)

where P 1 is the derivative of Pε(ξ) with respect to ε = (ε1, ε2) at ε = (0, 0).
From this formula, it is clear that if s0 does not belong to the KerP 1(ξ0), then
there is no solution for δ(ξ, ε) = 0, for more information see [2]. Now we are able
to state the following result

Lemma 3.1. A necessary condition for a solution branch to emanate from ξ0 ∈
V as ε moves from the origin in R2 in the direction of s0 ∈ S1 is that s0 ∈
KerP 1(ξ0).

This condition is necessary but it is not sufficient. However, the condition is
sufficient if s0 ∈ KerP 1(ξ0) in a way that which is nondegenerate with respect
to the family of KerP 1(ξ) as ξ varies near ξ0. So we look at the KerP 1 which
should be at least one-dimensional, see [11].

4. Nonautonomous Perturbation

In this section we study the effect of nonautonomous perturbation on Lienard
equation with the form

{

ẋ = y − α(µ1x + µ2x
2 + ... + µ2m+1x

2m+1) + ε1

∑

i+j≤l

ai,jx
iyj ,

ẏ = −x + ε2g(x, y, t),

where g is a periodic function with respect to t with period 2nπ
m

. This kind of
perturbations can consider as effect of forced and damping on Lienard equation.
As before we let ai = αµi. Suppose we have ε2 = ε1f(ε1), hence we are on a
curve in parameter space (ε1, ε2). The above system can be written as

(

ẋ

ẏ

)

= F (x, y) + αP (x) + ε1G(x, y, t, ε1), (6)

where

F (x, y) =

(

y

−x

)

, G(x, y, t, ε1) =

(
∑

i+j≤l

ai,jx
iyj

f(ε1)g(x, y, t)

)

, P (x) =

(

2k+1
∑

i=1

µix
i

)

.

Since g is periodic with respect to t, we choose

g(x, y, t) =
[

a cos
( n

m
t
)

+ b sin
( n

m
t
)]

xy.
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For equation (6), div(F ) = 0 and γr(t) = (r cos(t), r sin(t)) is a periodic solution
for unperturbed equation (ε1, α) = (0, 0).

Here we want to consider the perturbed system (6), from geometric point of
view. For this purpose, we use the extended method of Chicone, see [8, 9, 10, 3].
Therefore now we solve the above problem by bifurcation matrix explained in
Preliminaries.

We must compute (P 1
α, P 1

ε1
) with

P 1
ε1

= (Nε1
, Mε1

), P 1
α = (Nα, Mα),

where

Nε1
=

2nπ
∫

0

1

r2

(

∑

i+j≤l

aijr
1+i+j(cos(t))i(sin(t))j+1

− f(0)(a cos(
n

m
t) + b sin(

n

m
t))r3 sin(t) cos2(t)

−
4t

r2
(
∑

i+j≤l

aijr
1+i+j cosi+1(t) sinj(t)

+ f(0)(a cos(
n

m
t) + b sin(

n

m
t))r3 cos(t) sin2(t))

)

dt,

Mε1
=

2nπ
∫

0

1

r2

(

∑

i+j≤l

aijr
1+i+j cosi+1(t) sinj(t)

+ f(0)(a cos(
n

m
t) + b sin(

n

m
t)r3 cos(t) sin2(t))

)

dt,

Nα =

2nπ
∫

0

1

r2
(r sin(t)

(

2k+1
∑

i=1

µir
i cosi(t)) −

4t

r
cos(t)(

2k+1
∑

i=1

µir
i cosi(t)

)

dt,

Mα =

2nπ
∫

0

1

r
cos(t)(

2k+1
∑

i=1

µir
i cosi(t))dt.

We put

P (r) =

(

Nε1
Nα

Mε1
Mα

)

.

We look for KerP which at least should be one-dimensional. By computing the
above integrals for n = m = k = l = 1, we have

P (r) =

(

−π
4r

f(0)(−br2 + 4aπ − 3b) π
4
(4a1 + 3a3r

2)
−1

4
f(0)raπ −π2

r2 (4a1 + 3a3r
2)

)

.

Theorem 4.1. The matrix P (r) has at least one-dimensional kernel if:

Case A: (4a1 + 3a3r
2) = 0,
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or

Case B: −π
r3 (−br2 + 4aπ − 3b) − 1

4
ra = 0.

Proof. Suppose (x, y) is a vector such that P (r).(x, y) = 0 so we must have

(

−π

r3
(−br2 + 4aπ − 3b) −

1

4
ra

)

.x = 0, (4a1 + 3a3r
2).y = 0. (7)

Hence if we want to have at least one-dimensional kernel, we should have (x, y) 6=
0 such that conditions (7) is satisfied, so we must have case A or case B.

So by choosing suitable coefficient, the 1:1 resonance curve persists and for
change of parameter we have a family of close curves (Hopf bifurcation).

Remark 4.2. In all of the above computations we do for a special case, i.e. for
special value of n = m = k = l = 1. In fact we can find some result by changing
their values.
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