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Abstract. In this paper we give weighted estimates of Hörmander type for solutions of

the ∂-equation of ∂-closed (0, r)-forms in q-pseudoconvex domains of C
n. At the same

time, we also establish the norm formula |.|Θ of (0, r)-forms according to a positive

definite Hermitian (1, 1)-form Θ.
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1. Introduction

Studying solutions of the ∂-equation on pseudoconvex domains with weighted
L2-estimates of Hörmander type is one of important problems of complex analy-
sis of several variables. The original Hörmander Theorem (see [11, Lemma 4.4.1])
said that if Ω is a pseudoconvex domain in Cn and ϕ is a weighted function in
C2(Ω) such that

c

n∑

j=1

|wj|2 6

n∑

j,k=1

∂2ϕ(z)/∂zj∂zkwjwk, z ∈ Ω, w ∈ C
n,

where c is a positive continuous function in Ω. Assume that g ∈ L2
(p,q+1)(Ω) with

∂g = 0. Then there exists u ∈ L2
(p,q)(Ω) with ∂u = g and we have the following

estimate
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∫
|u|2e−ϕdV 6 2

∫
|g|2e−ϕ/cdV,

where dV denotes the Lebesgue measure in Cn.

Later, a number of authors, namely, Donnelly and Fefferman (see [9]),
Berndtsson (see [3, 5]) or Blocki (see [7]) extended the above result of Hörmander
for (0, 1)-forms on pseudoconvex domains with estimates through Kähler metric
i∂∂ϕ. We recall the following theorem which is essentially contained in [9].

Theorem 1.1. [9] Let φ and ψ be plurisubharmonic functions of class C2 on a

bounded pseudoconvex domain Ω and let φ satisfy the condition

i∂φ ∧ ∂φ 6 mi∂∂φ,

where m is a constant. Assume that g is a ∂-closed (0, 1)-form on Ω. Then there

exists u ∈ L2(Ω, ψ) such that ∂u = g and the estimate

∫
|u|2e−ψdV 6 Cm

∫
|g|2

i∂∂φ
e−ψdV

holds, where C is an absolute constant.

Later on, the result of Donnelly and Fefferman has been proved by another
method by Berndtsson with the constant C = 4

δ(1−δ)2 , 0 < δ < 1 (see [3,

Theorem 3.1]). Notice that all the above results have been proved under the
hypothesis that Ω is a bounded pseudoconvex domain in Cn and for ∂-closed
(0,1)-forms. In 1991, in the paper “∂-problem on weakly q-convex domains” on
Math. Ann., L.-H. Ho proved the existence of solutions of the ∂-problem for
∂-closed (p, r)-forms on weakly q-convex domains (see [10]) without weighted
L2-estimates of Hörmander type. By modifying techniques of Hörmander [11],
Berndtsson [2] and Blocki [6, 7] in this paper we will study solutions of the ∂-
equation on q-pseudoconvex domains for ∂-closed (0, r)-forms with weighted L2-
estimates of Hörmander type. Notice that the class of q-pseudoconvex domains
is larger than the class of weakly q-convex domains introduced by L.-H. Ho in
[10]. Now we outline the main contents and the organization of the paper.

Throughout this paper let Ω be a q-pseudoconvex domain in Cn and let
q 6 r 6 n. We will study the equation

∂u = g, (1)

where g is a ∂-closed (0, r)-form in Ω.

Assume that there are a weight function ϕ ∈ C2(Ω) and a nonnegative func-
tion H ∈ L1(Ω, loc) satisfying

∑

|J|=r

′
∑

|L|=r

′

αJαLdet(ϕJ,L) 6 H
∑

|K|=r−1

′

n∑

j,k=1

ϕjkαjKαkK (2)
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for all (0, r)-forms α =
∑

|J|=r

′

αJdzJ , where (ϕJ,L) = (ϕj,l)j∈J,l∈L. Note that if

r = 1 and we take H = 1 then condition (2) is obvious. The first result of the
paper is the following.

Theorem 1.2. Let Ω be a q-pseudoconvex domain in Cn and let ϕ be a strictly

C2 plurisubharmonic function in Ω satisfying condition (2) and −e−ϕ a q-
subharmonic function. Assume that δ ∈ (0, 1) and ψ is a q-subharmonic function

in Ω. Then for any ∂-closed (0, r)-form g in Ω, there is a solution, u, to equation

(1) such that

∫

Ω

|u|2e−ψ+δϕdV 6
1

δ(1 −
√
δ)2

∫

Ω

H |g|2
i∂∂ϕ

e−ψ+δϕdV.

Here |.|i∂∂ϕ denotes the norm in the Kähler metric with Kähler form i∂∂ϕ.

Next we obtain the following result which is a slight extension of a result in
[4] (see [4, Theorem 4]) for the case Ω is a q-pseudoconvex domain and ϕ is a
plurisubharmonic function on Ω. Namely we prove the following.

Theorem 1.3. Let Ω be a q-pseudoconvex domain in Cn and let ϕ be a plurisub-

harmonic function on Ω. Assume that Θ = i
n∑

j,k=1

Θj,kdzj ∧ dzk is a positive

definite hermitian (1, 1)-form with Θj,k continuous on Ω and ω is a positive

C2-function satisfying

i∂∂ω 6 ω(i∂∂ϕ− Θ) (3)

in the sense of currents. Then there exists a solution, u, of (1) such that

∫

Ω

|u|2e−ϕωdV 6
1

r2

∑

|K|=r−1

′

n∑

j,k=1

∫

Ω

Θj,kgjKgkKe
−ϕωdV.

The paper is organized as follows. In Sec. 2 we recall the notions of q-
subharmonic functions and q-pseudoconvex domains used in the paper and
list some of their basic properties. For details of results concerning with q-
subharmonic functions and q-pseudoconvex domains we refer the reader to the
papers of Ahn and Dieu [1] and [8]. Sec. 3 is devoted to establish the norm for-
mula of (0, r)-forms in the Kähler metric induced by a positive definite hermitian
(1, 1)-form Θ. Moreover, we prove some auxiliary results which will be used for
proofs of the main results of this paper in Sec. 4. together with some corollaries
from these theorems.

2. q-pseudoconvex domains in Cn

In this section we recall the notions of q-subharmonic functions introduced and
investigated by L.-H. Ho [10] and q-pseudoconvex domains in Cn introduced by
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Ahn and Dieu [1] recently, where 1 6 q 6 n. First we assume that the reader
is familiar with plurisubharmonic functions. For details concerning with these
functions we refer the reader to the monograph of Klimek [12]. Now we come back
the definition of q-subharmonic functions. Note that in the following definition of
q-subharmonic functions we do not assume that they are in C2(Ω) as in [10]. It
seems that this is a slight extension of the definition of q-subharmonic functions
introduced by L.- H. Ho.

Definition 2.1. Let Ω be an open set in Cn. The function ϕ defined in Ω with
values in [−∞; +∞) is called q-subharmonic if it is upper semicontinuous and

∫

Ω

ϕ
∑

|K|=q−1

′

n∑

j,k=1

∂2

∂zj∂zk
(αjKαkK)dV > 0 (4)

for every α =
∑

|J|=q

′

αJdzJ ∈ D(0,q)(Ω). Here ′ means that the summation is over

increasing indices and αjK = εJjKαJ , where

εJjK =

{
the sign of the permutation taking {j} ∪K to J, if {j} ∪K = J,

0, if {j} ∪K 6= J.

The function ϕ is called strictly q-subharmonic if it is q-subharmonic and
satisfies (4) with strictly inequality for all α 6= 0. If q = 1 then 1-subharmonic
exactly is plurisubharmonic.

We will denote the set of all such functions by q- SH(Ω). Note that in the
case ϕ ∈ C2(Ω) condition (4) is equivalent to

∑

|K|=q−1

′

n∑

j,k=1

∂2ϕ

∂zj∂zk
αjKαkK > 0

for every (0, q)-form α =
∑

|J|=q

′

αJdzJ . That is the definition of q-subharmonic

functions introduced by L.-H. Ho [10].

We list the basic properties of q-subharmonic functions which the reader can
find from Proposition 1.2 in [1].

Proposition 2.2. Let Ω be an open set of Cn and 1 6 q 6 n. Then the following

hold:

(a) If ψ is q-subharmonic in Ω, then ψ is subharmonic in Ω.

(b) If ψ is q-subharmonic, then ψ is also r-subharmonic for all q 6 r 6 n.

(c) If ψ is q-subharmonic in Ω, then ψ ∗ %ε is smooth q-subharmonic in Ωε,
where Ωε = {z ∈ Ω : d(z, ∂Ω) > ε}. Moreover, ψ ∗ %ε ↘ ψ when ε −→ 0, where

%ε = %(z/ε)/|ε|2n, % is a nonnegative smooth function in Cn vanishing outside

the unit ball and satisfying
∫
Cn

%dV = 1.
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(d) If χ is a convex increasing function and ψ is q-subharmonic in Ω, then

χ ◦ ψ is q-subharmonic in Ω.

Now the following comes from [1].

Definition 2.3. An open set Ω ⊂ Cn is called q-pseudoconvex if it admits a
continuous q-subharmonic exhaustion function on Ω. Here a function ϕ is a q-
subharmonic exhaustion function on Ω if it is q-subharmonic and for all c ∈ R

the set Ωc = {ϕ < c} b Ω.

We have some following remarks on q-pseudoconvex domains.

Remark 2.4. (a) If Ω is q-pseudoconvex in Cn then Ω is also r-pseudoconvex
for all q 6 r 6 n.

(b) Assume that Ω is a q-pseudoconvex domain in Cn. By using arguments
as in [11, Theorem 2.6.11] we can find an exhaustion function s ∈ C∞(Ω) which
is strictly q-subharmonic on Ω.

3. Norm Formula |.|Θ for (0, r)-forms and Some Auxiliary Results

Let Θ = i
n∑

j,k=1

Θj,kdzj ∧ dzk be a positive definite hermitian (1, 1)-form. In this

section we will establish the norm formula |.|Θ for (0, r)-forms. First note that

if β(z) =
n∑
j=1

βj(z)dzj is a (1, 0)-form then

|β|2Θ(z) =

n∑

j,k=1

Θj,k(z)βj (z)βk(z),

where (Θj,k) is the inverse matrix of the matrix (Θj,k). Moreover, assume that

f =
∑

|J|=r

′

fJω
J , ωJ = ωj1 ∧· · ·∧ωjr , ωj =

n∑
h=1

chjdzh are (1, 0)-forms satisfying

〈ωj , ωk〉Θ =

n∑

h,l=1

Θh,lchjclk = δjk,

where δj,k is the Kronecker symbol. Then

|f |2Θ = 〈f, f〉Θ =
∑

|J|=r

′ |fJ |2.

(See [11, p. 119]).
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Let λ1(z), λ2(z), . . . , λn(z) be n eigenvalues of the matrix
(
Θj,k

)
. Then

1

λ1(z)
,

1

λ2(z)
, . . . ,

1

λn(z)
are also n eigenvalues of the inverse matrix

(
Θj,k

)
.

Let C be the matrix of unitary change of coordinates such that C
t
(
Θj,k

)
C is

the diagonal matrix. We set

ωj(z) =
√
λj(z)

n∑

h=1

chj(z)dzh.

It is clear that {ωj} is an orthogonal basis for the Kähler metric induced by
Θ. We have

dzj =

n∑

h=1

cjh√
λh
ωh.

So for all |J | = r it follows that

dzJ = dzj1 ∧ . . .∧ dzjr

=

n∑

h1,...,hr=1

(
r∏

k=1

cjkhk√
λhk

)
ωh1 ∧ . . . ∧ ωhr

=

n∑

h1,...,hr=1

1√
λH

(
r∏

k=1

cjkhk

)
ωh1 ∧ . . .∧ ωhr ,

where λH =
r∏

k=1

λhk
. Thus, we have

f =
∑

|J|=r

′

fJdzJ

=
∑

|J|=r

′

fJ

n∑

h1,...,hr=1

(
r∏

k=1

cjkhk√
λhk

)
ωh1 ∧ . . . ∧ ωhr

=

n∑

h1,...,hr=1

∑

|J|=r

′

fJ

(
r∏

k=1

cjkhk√
λhk

)
ωh1 ∧ . . . ∧ ωhr

=
∑

|H|=r

′




∑

h1,...,hr∈H

εh1,...,hr

H

∑

|J|=r

′

fJ

(
r∏

k=1

cjkhk√
λhk

)
ωH ,

where εh1,...,hr

H is the sign of the permutation taking {h1, . . . , hr} to H . Hence

|f |2Θ =
∑

|H|=r

′ 1

λH

∣∣∣∣∣∣

∑

h1,...,hr∈H

εh1,...,hr

H

∑

|J|=r

′

fJ

(
r∏

k=1

cjkhk

)∣∣∣∣∣∣

2
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=
∑

|H|=r

′ 1

λH

∑

|J|=r

′
∑

|L|=r

′

fJfL




∑

h1,...,hr∈H

εh1,...,hr

H

r∏

k=1

cjkhk



×

×




∑

h
′

1,...,h
′

r∈H

ε
h
′

1,...,h
′

r

H

r∏

k=1

clkh′

k





=
∑

|H|=r

′ 1

λH

∑

|J|=r

′
∑

|L|=r

′

fJfL




∑

h1,...,hr∈H

∑

h
′

1,...,h
′

r∈H

ε
h
′

1,...,h
′

r

h1,...,hr

r∏

k=1

cjkhk
clkh′

k




=
∑

|J|=r

′
∑

|L|=r

′

fJfL




n∑

h1,...,hr=1

n∑

h
′

1,...,h
′

r=1

×

× ε
h
′

1,...,h
′

r

h1,...,hr

1√
λh1,...,hr

1√
λh′

1,...,h
′

r

r∏

k=1

cjkhk
clkh′

k





=
∑

|J|=r

′
∑

|L|=r

′

fJfL



∑

σ∈Sr

sgn σ

n∑

h1,...,hr=1

1

λh1,...,hr

r∏

k=1

cjkhk

r∏

k
′

=1

cl
k
h

σ(k
′
)




=
∑

|J|=r

′
∑

|L|=r

′

fJfL



∑

σ∈Sr

sgn σ

n∑

h1,...,hr=1

1

λh1,...,hr

r∏

k=1

cjkhk
cl

σ−1(k)hk




=
∑

|J|=r

′
∑

|L|=r

′

fJfLdet
(
ΘJ,L

)
.

Therefore, we obtain the following.

Proposition 3.1. Let Θ = i
n∑

j,k=1

Θj,kdzj ∧ dzk be a positive definite hermitian

(1, 1)-form. Then for any (0, r)-forms f =
∑

|J|=r

′

fJdzJ the following norm for-

mula holds

|f |2Θ =
∑

|J|=r

′
∑

|L|=r

′

fJfLdet
(
ΘJ,L

)
,

where (
ΘJ,L

)
=
(
Θj,l

)

j∈J,l∈L
.

Next, we establish a general Cauchy-Schwarz inequality in the following form.

Proposition 3.2. Let Θ = i
n∑

j,k=1

Θj,kdzj ∧ dzk be a positive definite hermitian

(1, 1)-form and α, β be two (0, r)-forms. Then

|α.β|2 6
∑

|J|=r

′
∑

|L|=r

′

αJαLdet
(
ΘJ,L

)
.|β|2Θ,
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where
(
ΘJ,L

)
=
(
Θj,l

)

j∈J,l∈L
, α =

∑

|J|=r

αJdzJ , β =
∑

|L|=r

βLdzL.

Proof. Let C be the matrix of unitary change of coordinates such thatC
t
(
Θj,k

)
C

is the diagonal matrix. Calculating as in proof of Proposition 3.1, we have

|β|2Θ =
∑

|H|=r

′ 1

λH

∣∣∣∣∣∣

∑

h1,...,hr∈H

εh1,...,hr

H

∑

|J|=r

′

βJ

(
r∏

k=1

cjkhk

)∣∣∣∣∣∣

2

and

∑

|J|=r

′
∑

|L|=r

′

αJαLdet
(
ΘJ,L

)

=
∑

|H|=r

′

λH

∣∣∣∣∣∣

∑

h1,...,hr∈H

εh1,...,hr

H

∑

|J|=r

′

αJ

(
r∏

k=1

cjkhk

)∣∣∣∣∣∣

2

.

Hence

∑

|J|=r

′
∑

|L|=r

′

αJαLdet
(
ΘJ,L

)
.|β|2Θ

>

∣∣∣∣∣∣

∑

|H|=r

′
∑

|J|=r

′
∑

|L|=r

′

αJβL




∑

h1,...,hr∈H

∑

h
′

1,...,h
′

r∈H

ε
h
′

1,...,h
′

r

h1,...,hr

r∏

k=1

cjkhk
clkh′

k





∣∣∣∣∣∣

2

=
∣∣∣
∑

|J|=r

′

αJβJ

∣∣∣
2

=
∣∣α.β

∣∣2

and the desired conclusion follows.

Now we study solutions of the ∂-problem on q-pseudoconvex domains with
weighted L2-estimates of Hörmander type. Techniques which we use here come
from [6, 7, 11].

Let Ω be a q-pseudoconvex domain in Cn and let ϕ be a C2 q-subharmonic
function in Ω such that there is a nonnegative function h ∈ L1(Ω, loc) satisfying

∣∣∣
∑

|J|=r

′

gJαJ

∣∣∣
2

6 h
∑

|K|=r−1

′

n∑

j,k=1

ϕjkαjKαkK (5)

for all (0, r)-forms α =
∑

|J|=r

′

αJdzJ .

The following result is a form of Theorem A5.1 in [6] for q-pseudoconvex
domains and (0, r)-forms.
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Proposition 3.3. Let Ω be a q-pseudoconvex domain in Cn and ϕ a C2 q-
subharmonic function in Ω satisfying condition (5). Assume that g is a ∂-closed
(0, r)-form on Ω. Then there is a (0, r− 1)-form u to (1) satisfying the estimate

∫

Ω

|u|2e−ϕdV 6

∫

Ω

he−ϕdV. (6)

Proof. If the right-hand side of (6) is infinite then the theorem is clear. Hence
we assume that it is finite and even equal to 1.

Since Ω is a q-pseudoconvex domain in Cn so there exists a smooth strictly
q-subharmornic function s in Ω such that Ka = {z ∈ Ω : s(z) < a} b Ω. It is
clear that s is strictly r-subharmornic with q 6 r 6 n. We fix a > 0 and choose
ηv ∈ D(Ω), v = 1, 2, . . . such that 0 6 ηv 6 1 and Ka+1 ⊂ {ηv = 1} ↑ Ω as
v ↑ ∞. Let ψ ∈ C∞(Ω) vanish inKa and satisfy |∂ηv|2 6 eψ for every v = 1, 2, . . .
Let χ ∈ C∞(Ω) be a convex increasing function such that χ = 0 on (−∞, a),
χ ◦ s > 2ψ and

χ′ ◦ s
∑

|K|=r−1

′

n∑

j,k=1

∂2s

∂zj∂zk
αjKαkK > (1 + a)|∂ψ|2|α|2

for all (0, r)-forms α =
∑

|J|=r

αJdzJ . From here by repeating the proof of Theorem

A5.1 in [6] we finish the proof of Proposition 3.3.

We also will discuss a generalization of Theorem 3.2 in [7] for q-pseudoconvex
domains and (0, r)-forms.

Proposition 3.4. Let Ω and ϕ be as in Proposition 3.3. Let δ ∈ (0, 1) and

assume that −e−ϕ/δ is a q-subharmonic function in Ω. Assume that g is a ∂-
closed (0, r)-form on Ω and ψ ∈ PSH(Ω). Then there is a (0, r − 1)-form u to

(1) satisfying ∫

Ω

|u|2eϕ−ψdV 6
1

(1 −
√
δ)2

∫

Ω

heϕ−ψdV.

Proof. First we assume that ϕ and ψ are C2-smooth up to the boundary. Note
that since −e−ϕ/δ is a q-subharmonic function so −e−ϕ/δ is also r-subharmonic,
q 6 r 6 n. Hence, we have

∑

|K|=r−1

′
∣∣
n∑

j=1

ϕjαjK
∣∣2 6 δ

∑

|K|=r−1

′

n∑

j,k=1

ϕj,kαjKαkK .

Now by using techniques in the proof of Theorem 3.2 in [7] we obtain the
proof of Proposition 3.4 for the case ϕ and ψ are C2-smooth up to the boundary.

For the general case, we carry out the standard exhaustion procedure as in
[11] (see [11, Theorem 4.4.2]). Since Ω is a q-pseudoconvex domain then there
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exists a strictly q-subharmonic and smooth exhaustion function s. The sublevel
sets Ka = {s < a} of Ω are smoothly, bounded, q-pseudoconvex for almost every
a. We fix such a. Then ψε = ψ ∗ %ε ∈ C∞(Ka), for all ε small enough. By the
beginning of this proof we can find uε such that ∂uε = g in Ka and

∫

Ka

|uε|2eϕ−ψεdV 6
1

(1 −
√
δ)2

∫

Ka

heϕ−ψεdV 6
1

(1 −
√
δ)2

∫

Ω

heϕ−ψdV.

Since ψε decreases with ε this shows that the L2 norm of uε over Ka is
bounded for every fixed a. We can choose a sequence εj → 0 such that uεj

converges weakly in Ka for every a to a limit u in L2
(0,r−1)(Ω, loc) and the

desired conclusion follows.

4. Weighted L2-Estimates for the ∂-equation on q-pseudoconvex
domains

In this section we give the proof of Theorems 1.2 and 1.3 and some corollaries
from them.

Proof of Theorem 1.2. Set ϕ̃ = δϕ. Applying Proposition 3.2, we get

|g.α|2 = |α.g|2 6
∑

|J|=r

′
∑

|L|=r

′

αJαLdet
(
ϕJ,L

)
.|g|2

i∂∂ϕ

6 H |g|2
i∂∂ϕ

∑

|K|=r−1

′

n∑

j,k=1

ϕjkαjKαkK

6
1

δ
H |g|2

i∂∂ϕ

∑

|K|=r−1

′

n∑

j,k=1

ϕ̃jkαjKαkK.

It is easy to see that H |g|2
i∂∂ϕ

is in L1(Ω, loc) then Proposition 3.4 implies the

existence of a solution, u, to (1) satisfying

∫

Ω

|u|2eeϕ−ψdV 6
1

(1 −
√
δ)2

∫

Ω

1

δ
H |g|2

i∂∂ϕ
eeϕ−ψdV

=
1

δ(1 −
√
δ)2

∫

Ω

H |g|2
i∂∂ϕ

eeϕ−ψdV.

Therefore the proof is complete.

Corollary 4.1. Let Ω be a q-pseudoconvex domain in Cn and let ϕ be a strictly

C2-plurisubharmonic function in Ω satisfying condition (2). Then for any ∂-
closed (0, r)-form g in Ω, there is a solution u to equation (1) such that
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∫

Ω

|u|2e−ϕdV 6

∫

Ω

H |g|2
i∂∂ϕ

e−ϕdV.

Proof. For any (0, r)-form α, using Proposition 3.2, we get

|g.α|2 6
∑

|J|=r

′
∑

|L|=r

′

αJαLdet
(
ϕJ,L

)
.|g|2

i∂∂ϕ
.

Combining this with (2), we arrive at

|g.α|2 6 H |g|2
i∂∂ϕ

∑

|K|=r−1

′

n∑

j,k=1

ϕjkαjKαkK.

The desired conclusion follows from Proposition 3.3 and the corollary is com-
pletely proved.

The next result is due to Ahn and Dieu (see [1, Theorem 1.5]).

Corollary 4.2. Let Ω be a q-pseudoconvex domain in Cn and let ψ be a q-
subharmonic function in Ω. Let ϕ ∈ C2(Ω) be a strictly plurisubharmonic func-

tion and −e−ϕ be q- subharmonic. Assume that δ ∈ (0, 1). Then for every ∂-
closed (0, r)-form g there is a solution u of equation (1) such that

∫

Ω

|u|2e−ψ+δϕdV 6
1

δ(1 −
√
δ)2

.
1

r2

∑

|K|=r−1

′

n∑

j,k=1

∫

Ω

ϕj,kgjKgkKe
−ψ+δϕdV.

Proof. We set ϕ̃ = δϕ. Since

∣∣∣
∑

|J|=r

′

gJ .αJ

∣∣∣
2

=
1

r2

∣∣∣
∑

|K|=r−1

′

n∑

j=1

gjK.αjK

∣∣∣
2

6
1

r2
.
1

δ




∑

|K|=r−1

′

n∑

j,k=1

ϕjkgjKgkK








∑

|K|=r−1

′

n∑

j,k=1

ϕ̃jkαjKαkK



 .

Applying Proposition 3.4 the desired conclusion follows.

The following is a slight extension of Theorem 4 in [4].

Proof of Theorem 1.3. First we assume that ϕ is smooth. Put ψ = − lnω. Then
ω = e−ψ and

i∂∂ω = e−ψ(i∂ψ ∧ ∂ψ − i∂∂ψ).

Hence (3) is equivalent to
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i∂ψ ∧ ∂ψ + Θ 6 i∂∂(ϕ+ ψ).

It follows that ϕ+ ψ is a strictly plurisubharmonic function in Ω and

Θ 6 i∂∂(ϕ + ψ).

Thus, we get

∣∣∣∣∣∣

∑

|J|=r

′

gJαJ

∣∣∣∣∣∣

2

=
1

r2

∣∣∣
∑

|K|=r−1

′

n∑

j=1

gjK.αjK

∣∣∣
2

6
1

r2




∑

|K|=r−1

′

n∑

j,k=1

ΘjkgjKgkK








∑

|K|=r−1

′

n∑

j,k=1

ΘjkαjKαkK





6
1

r2




∑

|K|=r−1

′

n∑

j,k=1

ΘjkgjKgkK








∑

|K|=r−1

′

n∑

j,k=1

(ϕ+ ψ)jkαjKαkK



 .

Applying Proposition 3.3 we obtain the proof of the theorem in the case ϕ is
smooth.

Now we prove the general case. Since Ω is a q-pseudoconvex domain, there
exists a strictly q-subharmonic and smooth exhaustion function s. The sublevel
sets Ka = {s < a} of Ω are smoothly, bounded, q-pseudoconvex for almost every
a. We fix such a. Put Θε = Θ ∗ %ε. We prove Θε is a positive definite hermitian
(1, 1)-form on Ka when ε is small enough. Indeed, using the arguments as in [11]
there exists χ ∈ C∞(Ω), χ > 0 such that

Θ > χi∂∂|w|2

on Ω. Then Θ > χ0i∂∂|w|2 on Ka, where χ0 is a constant. We have

(Θ − Θε) 6 Cχ1i∂∂|w|2,

where χ1,C are some constants. Hence Θε > Θ − Cχ1i∂∂|w|2. If we choose χ1

small enough then it follows that

Θε > (χ0 − Cχ1)i∂∂|w|2 > 0

on Ka. The desired conclusion follows. As above, we have

Θ 6 i∂∂(ϕ + ψ)

in the sense of currents. Thus Θε 6 i∂∂(ϕ+ ψ)ε on Ka when ε is small enough.
By the result of the beginning of the proof it follows that there exists a solution
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ua,ε of equation (1) satisfying

∫

Ka

|ua,ε|2e−(ϕ+ψ)εdV 6
1

r2

∑

|K|=r

′

n∑

j,k=1

∫

Ka

Θj,kε gj,Kgk,Ke
−(ϕ+ψ)εdV

6
1

r2

∑

|K|=r

′

n∑

j,k=1

∫

Ka

Θj,kε gj,Kgk,Ke
−(ϕ+ψ)dV.

By applying arguments as in the proof of Theorem 4.4.2 in [11] we finish the
proof of Theorem 1.3.

The following result is an extension of Lemma 4.4.1 in [11] for q-pseudoconvex
domains and (0, r)-forms.

Corollary 4.3. Assume that ϕ is a q-subharmonic function in Ω, where Ω is a

q-pseudoconvex domain in Cn, such that

∫

Ω

h|α|2dV 6

∫

Ω

ϕ
∑

|K|=r−1

′

n∑

j,k=1

∂2

∂zj∂zk
(αjKαkK)dV (7)

for every (0, r)-form α =
∑

|J|=r

′

αJdzJ ∈ D(0,r)(Ω), where h is a positive contin-

uous function. Then for every ∂-closed (0, r)-form g, there exists a solution, u,
to equation (1) such that

∫

Ω

|u|2e−ϕdV 6

∫

Ω

|g|2
h
e−ϕdV. (8)

Proof. We may assume that the right-hand side of (8) is finite and equal to 1.
We first consider the case when ϕ is a smooth function. Repeating the proof of
Theorem A5.1 in [6] the proof of the corollary follows.

For the general case we assume that ϕ is arbitrary q-subharmonic. Because Ω
is q-pseudoconvex then there exists a strictly q-subharmonic and smooth exhaus-
tion function s. The sublevel sets Ka = {s < a} b Ω are smoothly, bounded,
q-pseudoconvex for almost every a. Since h is continuous on Ka for every fixed
a then h is uniformly continuous on Ka. Hence we have

lim
ε→0

∫

Ka

|g|2
h ∗ %ε

e−ϕdV =

∫

Ka

|g|2
h
e−ϕdV 6 1. (9)

Thus, for each i = 1, 2, . . . take εi > 0 small sufficiently such that Ki+B(0, εi) b

Ω, ϕεi
:= ϕ ∗ %εi

∈ C∞(Ω1/i) and

∫

Ki

|g|2
h ∗ %εi

e−ϕdV < 1 +
1

i
.
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We can choose εi such that the sequence
{
εi
}
↓ 0 as i ↑ ∞. For every w ∈ B(0, εi)

and α ∈ D(0,r)(Ki) we have α(.+ w) ∈ D(0,r)(Ω). By the hypothesis (7) we get

∫

Ω

h(z)|α(z + w)|2dV (z)

6

∫

Ω

ϕ(z)
∑

|K|=r−1

′

n∑

j,k=1

∂2

∂zj∂zk

[
αjK(z + w)αkK(z + w)

]
dV (z).

After a change of variables we can write

∫

Ki

h(z − w)|α(z)|2dV (z)

6

∫

Ki

ϕ(z −w)
∑

|K|=r−1

′

n∑

j,k=1

∂2

∂zj∂zk

[
αjK(z)αkK(z)

]
dV (z)

for all w ∈ B(0, εi) and α ∈ D(0,r)(Ki).

By multiplying by %εi
(w) and integrating with respect to dV (w) we have

∫

Ki

h ∗ %εi
|α|2dV 6

∫

Ki

ϕ ∗ %εi

∑

|K|=r−1

′

n∑

j,k=1

∂2

∂zj∂zk
(αjKαkK) dV.

Since Ki is also a q-pseudoconvex domain then using the results of the above
part we can find uεj

∈ L2
(0,r−1)(Ki, loc) such that ∂uεi

= g in Ki and

∫

Ki

|uεi
|2e−ϕεidV 6

∫

Ki

|g|2
h ∗ %εi

e−ϕεidV 6

∫

Ki

|g|2
h ∗ %εi

e−ϕdV 6 1 +
1

i
.

Now using arguments as at the end of the proof of Proposition 3.4 the desired
conclusion follows.
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