
Vietnam Journal of Mathematics 38:2(2010) 227-235

 

� �� ���� � �	 
���

��


����
�� �� �

 © VAST 2010 

  

 

 

 

 

 

 

 

 

Random Fixed Points of Probabilistic

Contractions and Applications to Random
Equations?

Ta Ngoc Anh

Faculty of Information Technology, Le Qui Don Technical University

100 Hoang Quoc Viet road, Cau Giay, Hanoi, Vietnam

Received January 12, 2010

Revised May 14, 2010

Abstract. In this paper, we present some necessary and sufficient conditions for the

existence of random fixed points of probabilistic contractions and give some applications

of these results to random equations.

2000 Mathematics Subject Classification: Primary 60H25; Secondary: 60B11, 54H25,

47B80, 47H10.

Key words: Random operator, probabilistic contraction, random equation, random

fixed point.

1. Introduction and Preliminaries

The theory of random fixed points is an important topic of the stochastic analy-
sis and has been investigated by various authors (see e.g [1, 3, 4, 8, 9]), in recent
years. In these researches, random operators are considered in each sample path
(that is T (ω, .) for each fixed ω ∈ Ω) and any assumption about random opera-
tors is imposed on each sample path. In this paper, we approach random fixed
point problems by a viewpoint of the probability, random operators are consid-
ered globally. In Sec. 2, we give some necessary and sufficient conditions for the
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existence of random fixed point of a probabilistic contraction. Sec. 3 presents
some applications of random fixed point theorems to random equations.

Let (Ω,F , P) be a probability space and X be a separable Banach space. We
denote by B(X) the Borel σ-algebra of X, by F×B(X) the σ-algebra on Ω×X,
by LX

0 (Ω) the set of X-valued random variables and by LX
p (Ω) the set of X-

valued random variables ξ such that E‖ξ‖p < +∞, where p > 0. Convergence
in probability of a sequence of random variables {xn} to random variable x is

denoted by xn
P
−→ x.

Definition 1.1. (a) A mapping T : Ω×X → X is said to be a random operator
on X if for each x ∈ X, the mapping T (., x) is an X-valued random variable,
where T (., x) denotes the mapping ω 7→ T (ω, x).
(b) The random operator T : Ω×X → X is said to be measurable if the mapping
T : Ω × X → X is F ×B(X)-measurable.

Definition 1.2. Let T be a measurable random operator on X.

(a) T is said to be stochastically continuous if T (ω, xn)
P
−→ T (ω, x) as xn

P
−→ x,

where x, xn ∈ LX
0 (Ω) (n = 1, 2, ...).

(b) T is called a probabilistic q-contraction where q ∈ (0; 1) if for any x, y ∈
LX

0 (Ω) we have

P(‖T (ω, x) − T (ω, y)‖ > q.t) ≤ P(‖x − y‖ > t)

for any t > 0.

Definition 1.3. Let T be a random operator on X. A random variable ξ(ω) ∈
LX

0 (Ω) is said to be a random fixed point of T if T (ω, ξ(ω)) = ξ(ω) a.s.

2. Random Fixed Points of Probabilistic Contractions

Proposition 2.1. Let T be a probabilistic q-contraction on X. If T has a random

fixed point ξ then it has a unique random fixed point and Tn(ω, x)
P
−→ ξ for any

x ∈ LX
0 (Ω), where T 0(w, x) = x, Tn(w, x) = T (w, Tn−1(w, x)) for any n ≥ 1.

Proof. For each x ∈ LX
0 (Ω), let xn = Tn(ω, x) (n = 0, 1, 2, ...). For any t > 0 we

have

P(‖xn − ξ‖ > t) = P(‖Tn(ω, x) − Tn(ω, ξ)‖ > t)

≤ P(‖Tn−1(ω, x) − Tn−1(ω, ξ)‖ > t/q)

≤ ... ≤ P(‖x − ξ‖ > t/qn).

Let n → ∞ we have lim
n→∞

P(‖xn − ξ‖ > t) ≤ lim
n→∞

P(‖x − ξ‖ > t/qn) = 0. Thus,

xn
P
−→ ξ.
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We suppose that T has two different random fixed points denoted by ξ1 and

ξ2. By the above assertion, we have xn
P
−→ ξ1 and xn

P
−→ ξ2 which is impossible.

Thus, T has a unique random fixed point.

Recall a subset M of LX
0 (Ω) is said to be probabilistic bounded if

lim
t→∞

sup
u∈M

P(‖u‖ > t) = 0.

For each x0 ∈ LX
0 (Ω), let O(T,x0) = {Tn(ω, x0) : n = 0, 1, 2, ...}.

Theorem 2.2. Let T be a probabilistic q-contraction on X. Then T has a unique

random fixed point if and only if there exists a random variable x0 ∈ LX
0 (Ω)

such that O(T,x0) is probabilistic bounded. Moreover, {Tn(ω, x)} converges in

probability to a random fixed point of T for any x ∈ LX
0 (Ω).

Proof. We now suppose that T has a random fixed point denoted by ξ. Let x0 = ξ
then O(T,x0) = {ξ}. Thus O(T,x0) is probabilistic bounded.

Conversely, suppose that there exists x0 ∈ LX
0 (Ω) such that O(T,x0) is prob-

abilistic bounded. Let xn = Tn(ω, x0) (n = 0, 1, 2, ...). We now show that {xn}
converges in probability. Indeed, for any n, m ∈ N and t > 0 we have

P(‖xn+m − xn‖ > t) = P(‖Tn+m(ω, x0) − Tn(ω, x0)‖ > t)

≤ P(‖Tn+m−1(ω, x0) − Tn−1(ω, x0)‖ > t/q)

≤ ... ≤ P(‖Tm(ω, x0) − x0‖ > t/qn)

= P(‖xm − x0‖ > t/qn)

≤ 2 sup
u∈O(T,x0)

P(‖u‖ > t/(2qn)).

Thus, let n → ∞ we have lim
n→∞

P(‖xn+m − xn‖ > t) = 0 for any m ∈ N,

t > 0. This shows that {xn} is a Cauchy sequence in probability. Therefore,
{xn} converges in probability to a random variable ξ. We will point out that ξ
is a random fixed point of T . Indeed, for any t > 0 we have

P(‖T (ω, ξ) − ξ‖ > t) ≤ P(‖T (ω, ξ) − T (ω, xn)‖ > t/2) + P(‖T (ω, xn) − ξ‖ > t/2)

≤ P(‖xn − ξ‖ > t/(2q)) + P(‖xn+1 − ξ‖ > t/2)

for any n ∈ N. Let n → ∞ we have P(‖T (ω, ξ) − ξ‖ > t) = 0, i.e. ξ is a random
fixed point of T . The rest of the proof follows from Proposition 2.1.

Theorem 2.3. Let T be a stochastically continuous random operator on X such

that T k is a probabilistic q-contraction for some k ∈ N. Then T has a unique

random fixed point if and only if there exists a random variable x0 ∈ LX
0 (Ω)

such that O(T,x0) is probabilistic bounded. Moreover, {Tn(ω, x)} converges in

probability to a random fixed point of T for any x ∈ LX
0 (Ω).
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Proof. Firstly, suppose that there exists x0 ∈ LX
0 (Ω) such that O(T,x0) is proba-

bilistic bounded. By Theorem 2.2, T k has a unique random fixed point denoted
by ξ and the sequence {xn} defined by xn = T kn(ω, x0) (n = 1, 2, ...) converges
in probability to ξ. By the continuity of T , T (ω, xn) converges in probability to
T (ω, ξ). We now show that ξ is also a random fixed point of T . Indeed, for any
t > 0 we have

P(‖T (ω, ξ) − ξ‖ > t)

≤ P(‖T (ω, ξ) − T (ω, xn)‖ > t/3) + P(‖T (ω, xn) − xn‖ > t/3)

+ P(‖xn − ξ‖ > t/3)

= P(‖T (ω, ξ) − T (ω, xn)‖ > t/3) + P(‖T (ω, T kn(ω, x0)) − T kn(ω, x0)‖ > t/3)

+ P(‖xn − ξ‖ > t/3)

= P(‖T (ω, ξ) − T (ω, xn)‖ > t/3) + P(‖T kn(ω, T (ω, x0)) − T kn(ω, x0)‖ > t/3)

+ P(‖xn − ξ‖ > t/3)

≤ P(‖T (ω, ξ) − T (ω, xn)‖ > t/3) + P(‖T (ω, x0) − x0‖ > t/(3qn))

+ P(‖xn − ξ‖ > t/3).

Let n → ∞, we have P(‖T (ω, ξ) − ξ‖ > t) = 0, i.e. ξ is a random fixed point of
T . To prove the uniqueness of ξ, we merely note that if T has more than one
random fixed point then so does T k, which is impossible, by Proposition 2.1, T k

is a probabilistic q-contraction.

Conversely, suppose that T has a random fixed point denoted by ξ. Let x0 = ξ
then O(T,x0) = {ξ}. Thus O(T,x0) is probabilistic bounded.

To finish the proof, we show that Tn(ω, x)
P
−→ ξ for each fixed x ∈ LX

0 (Ω).
For n > k we have n = mk + ` where m, ` ∈ N and 0 < ` < k. For t > 0,

P(‖Tn(ω, x) − ξ‖ > t) = P(‖Tn(ω, x) − Tmk(ω, ξ)‖ > t)

= P(‖Tmk(ω, T `(ω, x)) − Tmk(ω, ξ)‖ > t)

≤ P(‖T `(ω, x) − ξ‖ > t/qm)

≤ max
0<`<k

P(‖T `(ω, x) − ξ‖ > t/qm).

Let n → ∞ we have m → ∞. Thus, lim
n→∞

P(‖Tn(ω, x)− ξ‖ > t) = 0, and we are

done.

Lemma 2.4. Let α > 0 and f(x) be a function defined in (q; 1) by f(x) =
(

x

x − q

)α

.
1

1− xα
. Then

min
(q;1)

f(x) =
1

(1 − q
α

1+α )1+α
as x = q

1
1+α .
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Proof. We have lim
x→1

f(x) = lim
x→q

f(x) = +∞ and f ′(x) = 0 if and only if x =

q
1

1+α . By the continuity of f(x), the proof is finished.

The following theorem gives another necessary and sufficient condition for the
existence of random fixed point of a probabilistic q-contraction and estimates
tail probability of the difference of each element of iteration sequence {xn =
Tn(ω, x0)} and the random fixed point ξ of T .

Theorem 2.5. Let T be a probabilistic q-contraction on X. Then T has a unique

random fixed point if and only if there exist a random variable x0 ∈ LX
0 (Ω) and

α > 0 such that

sup
t>0

tαP(‖T (ω, x0) − x0‖ > t) < +∞. (1)

Moreover, if (1) holds then {xn = Tn(ω, x0)} converges in probability to the

random fixed point ξ of T and

P(‖xn − ξ‖ > t) ≤
M

(1 − q
α

1+α )1+α
.
(qα)n

tα
,

where M = sup
t>0

tαP(‖T (ω, x0) − x0‖ > t).

Proof. Firstly, suppose that sup
t>0

tαP(‖T (ω, x0) − x0‖ > t) < +∞ for some x0 ∈

LX
0 (Ω) and α > 0. We will show that {xn} is a Cauchy sequence in probability.

For any n ∈ N and t > 0, by induction

P(‖xn+1 − xn‖ > t) = P(‖Tn+1(ω, x0) − Tn(ω, x0)‖ > t)

≤ P(‖Tn(ω, x0) − Tn−1(ω, x0)‖ > t/q)

≤ ... ≤ P(‖x1 − x0‖ > t/qn).

For any t > 0, by (1) we have

P(‖x1 − x0‖ > t) = P(‖T (ω, x0) − x0‖ > t) ≤
M

tα
.

Thus,

P(‖xn+1 − xn‖ > t) ≤
M(qn)α

tα
.

Let r =
p

q
, where q < p < 1. Then r > 1 and (r − 1)

(

1
r

+ 1
r2 + ... + 1

rm

)

=

1− 1
rm < 1 ∀m ∈ N.

Thus, for any t > 0 and m, n ∈ N we have

P(‖xn+m − xn‖ > t)

≤ P(‖xn+m − xn‖ > (1 − 1/rm)t)

≤ P(‖xn+m − xn+m−1‖ > t(r − 1)/rm) + ...+
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+ P(‖xn+2 − xn+1‖ > t(r − 1)/r2 ) + P(‖xn+1 − xn‖ > t(r − 1)/r)

≤
M

[(r − 1)t]α
[

(rm)α(qn+m−1)α + ... + (r2)α(qn+1)α + rα(qn)α
]

=
M

[(r − 1)t]α
(qn)αrα.

[

(qr)α(m−1) + ... + (qr)α + 1
]

=
M

[(r − 1)t]α
(qn)αrα.

1− (qr)mα

1 − (qr)α

<
Mrα

[(r − 1)t]α[1 − (qr)α]
(qα)n (2)

which tends to 0 as n → ∞. It follows that {xn} is a Cauchy sequence in
probability. Hence, {xn} converges in probability to a random variable ξ. By the
similar arguments as in the proof of Theorem 2.2, we imply that ξ is a uniqe
random fixed point of T .

Conversely, if T has a random fixed point ξ then (1) holds with x0 = ξ for
any α > 0.

By (2), let m → ∞, we have

P(‖xn − ξ‖ > t) ≤
Mrα

[(r − 1)t]α[1 − (qr)α]
(qα)n =

M

1 − pα

( p

p − q

)α
.
(qα)n

tα
.

for any p ∈ (q; 1). Let p = q
1

1+α . By Lemma 2.4, we have

P(‖xn − ξ‖ > t) ≤
M

(1 − q
α

1+α )1+α
.
(qα)

n

tα
.

Thus, the proof is complete.

Corollary 2.6. Let T be a probabilistic q−contraction on X. Then T has a

unique random fixed point if and only if there exists a random variable x0 ∈
LX

0 (Ω) such that E‖T (ω, x0) − x0‖
α < +∞ for some α > 0.

Proof. By Chebyshev inequality we have

P(‖T (ω, x0) − x0‖ > t) ≤
E‖T (ω, x0) − x0‖

α

tα
.

Hence,
sup
t>0

tαP(‖T (ω, x0) − x0‖ > t) ≤ E‖T (ω, x0) − x0‖
α.

The proof is finished by applying Theorem 2.5.

Corollary 2.7. Let T be a stochastically continuous random operator on X such

that T k is a probabilistic q-contraction for some k ∈ N. Then T has a unique

random fixed point if and only if there exists x0 ∈ LX
0 (Ω) such that

sup
t>0

tαP(‖T k(ω, x0) − x0‖ > t) < +∞ (3)
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for some α > 0.

Proof. Firstly, if T has a random fixed point denoted by ξ then (3) holds with
x0 = ξ.

Conversely, suppose that (3) is satisfied. By Theorem 2.5, T k has a unique
random fixed point. The rest of the proof is finished by using the same arguments
as in the proof of Theorem 2.3.

3. Applications to Random Equations

Definition 3.1. Let T be a random operator on X and η(ω) an X-valued ran-
dom variable. A random variable ξ(ω) ∈ LX

0 (Ω) is said to be a solution of the
random equation T (ω, x) = η(ω) if T (ω, ξ(ω)) = η(ω) a.s.

Theorem 3.2. Let T be a probabilistic lipchitzian operator on X in the sense

that there exists a positive real-valued random variable L(ω) such that for any

t > 0
P(‖T (ω, x) − T (ω, y)‖ > L(ω)t) ≤ P(‖x − y‖ > t)

for any x, y ∈ LX
0 (Ω), and k(ω) a real-valued random variable such that |k(ω)| >

α > 0 and
L(ω)

|k(ω)|
< q < 1 a.s. Then the random equation

T (ω, x) − k(ω)x = η(ω) (4)

has a unique solution for any η ∈ LX
p (Ω) if and only if there exists x0 ∈ LX

0 (Ω)
such that E‖T (ω, x0) − k(ω)x0‖

p < +∞.

Moreover, for any x0 ∈ LX
0 (Ω), the sequence of random variables {xn} defined

by xn+1 =
1

k

[

T (ω, xn)−η
]

(n = 0, 1, 2, ...) converges in probability to the solution

of (4).

Proof. Equation (4) is rewritten in the form
T (ω, x) − η(ω)

k(ω)
= x. Let G be

a random operator defined by G(ω, x) =
T (ω, x) − η(ω)

k(ω)
. Then the random

equation (4) has a unique solution if and only if the random operator G has a
unique random fixed point. For any x, y ∈ LX

0 (Ω) and t > 0 we have

P(‖G(ω, x) − G(ω, y)‖ > qt) = P(‖T (ω, x) − T (ω, y)‖ > q|k(ω)|t)

≤ P(‖T (ω, x) − T (ω, y)‖ > L(ω)t)

≤ P(‖x − y‖ > t).

Thus, G is a probabilistic q−contraction.

For any t > 0 and x ∈ LX
0 (Ω), by Chebyshev inequality and Cp inequality,

we have
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P(‖T (ω, x) − kx − η‖ > t) ≤
E‖T (ω, x) − kx − η‖p

tp

≤ Cp.
E‖T (ω, x)− kx‖p + E‖η‖p

tp
,

where

Cp =

{

1 if 0 < p < 1,

2p−1 if p ≥ 1.

So, we have

sup
t>0

tpP(‖G(ω, x) − x‖ > t) = sup
t>0

tpP(‖T (ω, x) − kx − η‖ > |k|t)

≤ sup
t>0

tpP(‖T (ω, x) − kx − η‖ > α.t)

=
1

αp
sup
t>0

tpP(‖T (ω, x) − kx − η‖ > t)

≤
Cp

αp
.
(

E‖T (ω, x) − kx‖p + E‖η‖p
)

. (5)

Firstly, suppose that there exists x0 ∈ LX
0 (Ω) such that E‖T (ω, x0) −

k(ω)x0‖
p < +∞. For any η ∈ LX

p (Ω), by (5) we have sup
t>0

tpP(‖G(ω, x0)−x0‖ >

t) < +∞. By Theorem 2.5, the random operator G has a unique random fixed
point. Thus, the random equation (4) has a unique solution.

Conversely, for any η ∈ LX
p (Ω), suppose that the random equation (4) has a

solution denoted by ξ. Let x0 = ξ. Then E‖T (ω, x0)−k(ω)x0‖
p = E‖η‖p < +∞.

To finish the proof we show that {xn} converges in probability to ξ. Since

xn+1 =
1

k

[

T (ω, xn) − η
]

= G(ω, xn), the convergence of {xn} to ξ follows from

Proposition 2.1. Thus the proof is complete.
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