Vietnam Journal
of
MATHEMATICS
© VAST 2010

Certain Subclasses of Analytic Functions Involving Sălăgean-Ruscheweyh Operator

L. Dileep 1 and S. Latha 2

¹Department of Mathematics, Vidyavardhaka College Of Engineering, Gokulum 2nd Stage, Mysore-570 002, India

²Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore-570 005, India

> Received June 26, 2010 Revised November 25, 2010

Abstract. The objective of the present paper is to define the class $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$ using the differential operator D_{λ}^{n} . For functions belonging to this class we obtain coefficient estimates and many more properties. We also determine the extreme points.

2000 Mathematics Subject Classification: 30C45.

 $\mathit{Key\ words:}$ Univalent functions, Ruscheweyh derivative, Sălăgean derivative, Komato operator.

1. Introduction

Let \mathcal{A} denote the class of all analytic univalent functions of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m \tag{1}$$

defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$.

Let \mathcal{T} denote the subclass of \mathcal{A} in \mathcal{U} , consisting of analytic functions whose non-zero coefficients from the second onwards are negative. That is, an analytic function $f \in \mathcal{T}$ if it has a Taylor expansion of the form

$$f(z) = z - \sum_{m=2}^{\infty} a_m z^m \quad (a_m \ge 0)$$
 (2)

which are univalent in the open disc \mathcal{U} .

For $f \in \mathcal{A}$, Sălăgean [6], introduced the following operator S^n which is called the Sălăgean differential operator.

$$S^{0}f(z) = f(z), \quad S^{1}f(z) = zf'(z),$$

$$S^n f(z) = S(S^{n-1} f(z)), \quad (n \in \mathbb{N}_0).$$

We note that for $f \in \mathcal{A}$,

$$S^{n} f(z) = z + \sum_{m=2}^{\infty} m^{n} a_{m} z^{m}, \quad (n \in \mathbb{N}_{0}).$$

For $n \in \mathbb{N}_0$ and $\lambda \geq 0$, let D_{λ}^n [3] denote the linear operator defined by

$$D^n_{\lambda}: A \to A$$

such that

$$D_{\lambda}^{n} f(z) = (1 - \lambda) S^{n} f(z) + \lambda R^{n} f(z), \quad z \in \mathcal{U},$$

where S^n is the Sălăgean differential operator, and R^n is the Ruscheweyh differential operator [5] defined by

$$R^{0}f(z) = f(z), \quad R^{1}f(z) = zf'(z),$$

with recurrence relation given by

$$(n+1)R^{n+1}f(z) = z[R^n f(z)]' + nR^n f(z) \quad (z \in \mathcal{U}).$$

For $f \in \mathcal{A}$ given by (1)

$$R^{n}f(z) = z + \sum_{m=2}^{\infty} {n \choose n+m-1} a_{m}z^{m}.$$

Notice that D_{λ}^n is a linear operator and for $f \in \mathcal{A}$ of the form (1), we have

$$D_{\lambda}^{n} f(z) = z + \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} z^{m}, \tag{3}$$

where

$$B_{\lambda}(m,n) = \left[(1-\lambda)m^n + \lambda \binom{n}{n+m-1} \right].$$

It is observed that for n = 0,

$$D_{\lambda}^{0} f(z) = (1 - \lambda) S^{0} f(z) + \lambda R^{0} f(z) = f(z) = S^{0} f(z) = R^{0} f(z),$$

and for n=1,

$$D_{\lambda}^{1} f(z) = (1 - \lambda) S^{1} f(z) + \lambda R^{1} f(z) = z f'(z) = S^{1} f(z) = R^{1} f(z).$$

Now using D_{λ}^n linear operator, we define the following subclass of \mathcal{T} .

 $\mathcal{T}_{\lambda}^{n}(\alpha,\gamma)$ is the subclass of \mathcal{T} consisting of functions which satisfy the condition

$$\Re\left\{\frac{z(D_{\lambda}^nf)'}{\gamma z(D_{\lambda}^nf)'+(1-\gamma)D_{\lambda}^nf}\right\}>\alpha,$$

for some α , γ , $(0 \le \alpha, \gamma < 1)$ and $n \in \mathbb{N}_0$.

For different parametric values of λ , n, we get the classes studied by Mostafa [4].

2. Main Results

Theorem 2.1. A function f defined by (2) is in the class $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$ if and only if

$$\sum_{m=2}^{\infty} B_{\lambda}(m, n) a_m [m - \alpha + \alpha \gamma - \alpha \gamma m] < 1 - \alpha, \tag{4}$$

where α , γ $(0 \le \alpha, \gamma < 1)$ and $n \in \mathbf{N}_0$.

Proof. Suppose $f \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$. Then

$$\Re\left\{\frac{z(D_{\lambda}^{n}f)'}{\gamma z(D_{\lambda}^{n}f)'+(1-\gamma)D_{\gamma}^{n}f}\right\} > \alpha,$$

$$\Re\left\{\frac{z-\sum_{m=2}^{\infty}B_{\lambda}(m,n)ma_{m}z^{m}}{\gamma\left[z-\sum_{m=2}^{\infty}B_{\lambda}(m,n)ma_{m}z^{m}\right]+(1-\gamma)\left[z-\sum_{m=2}^{\infty}B_{\lambda}(m,n)a_{m}z^{m}\right]}\right\} > \alpha.$$

$$\Re\left\{\frac{z-\sum_{m=2}^{\infty}mB_{\lambda}(m,n)a_{m}z^{m}}{z-\sum_{m=2}^{\infty}B_{\lambda}(m,n)a_{m}z^{m}\left[\gamma(m-1)+1\right]}\right\} > \alpha.$$

Letting $z \to 1$ then we get

$$1 - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_m m > \alpha \left\{ 1 - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_m \left[\gamma(m-1) + 1 \right] \right\},$$

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n)a_{m}m - \alpha \sum_{m=2}^{\infty} B_{\lambda}(m,n)a_{m} \left[\gamma(m-1) + 1\right] < (1-\alpha),$$

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n)a_{m} \left[m - \alpha\gamma m + \alpha\gamma - \alpha\right] < (1-\alpha).$$

Conversely, assume that (4) is true. We have to show that (3) is satisfied or equivalently

 $\left| \left\{ \frac{z(D_{\lambda}^n f)'}{\gamma z(D_{\lambda}^n f)' + (1 - \gamma)D_{\lambda}^n f} \right\} - 1 \right| < 1 - \alpha.$

But

$$\left\{ \frac{z - \sum_{m=2}^{\infty} m B_{\lambda}(m, n) a_{m} z^{m}}{z - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} z^{m} \left[\gamma(m-1) + 1\right]} \right\} - 1 \\
= \left\{ \frac{\sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m}(m-1)(\gamma - 1) z^{m}}{z - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} \left[\gamma(m-1) + 1\right] z^{m}} \\
\leq \frac{\sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m}(m-1)(\gamma - 1) |z^{m}|}{|z| - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} \left[\gamma(m-1) + 1\right] |z^{m}|} \\
\leq \frac{\sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} \left[\gamma(m-1) + 1\right]}{1 - \sum_{m=2}^{\infty} B_{\lambda}(m, n) a_{m} \left[\gamma(m-1) + 1\right]}.$$

The last expression is bounded above by $1-\alpha$ if

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n) a_m(m-1)(\gamma-1) \le (1-\alpha) \left(1 - \sum_{m=2}^{\infty} B_{\lambda}(m,n) a_m[\gamma(m-1)+1]\right),$$

or

$$\sum_{m=2}^{\infty} B_{\lambda}(m, n) a_m [m - \alpha + \alpha \gamma - \alpha \gamma m] < 1 - \alpha,$$

which is true by hypothesis. This completes the assertion of Theorem 2.1.

For parametric value $\lambda=0$ we get the following result studied by Dileep and Latha [2].

Corollary 2.2. A function f defined by (2) is in the class $\mathcal{T}_n(\alpha, \gamma)$ if and only if

$$\sum_{m=2}^{\infty} m^n a_m [m - \alpha + \alpha \gamma - \alpha \gamma m] < 1 - \alpha,$$

where α , γ $(0 \le \alpha, \gamma < 1)$ and $n \in \mathbb{N}_0$.

For parametric values n=0 and n=1 in Corollary 2.2, we have the following result of Mostafa [4] respectively.

Corollary 2.3. (a) A function f(z) defined by (2) is in the class $\mathcal{T}(\gamma, \alpha)$ if and only if

$$\sum_{m=2}^{\infty} (m - \gamma \alpha m - \alpha + \gamma \alpha) a_m \le 1 - \alpha.$$

(b) A function f(z) defined by (2) is in the class $C(\gamma, \alpha)$ if and only if

$$\sum_{m=2}^{\infty} m(m - \gamma \alpha m - \alpha + \gamma \alpha) a_m \le 1 - \alpha.$$

Corollary 2.4. If $f \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$ then

$$|a_m| \le \frac{1 - \alpha}{B_{\lambda}(m, n) [m - \alpha \gamma m + \alpha \gamma - \alpha]}.$$

Theorem 2.5. Let $0 \le \alpha < 1$, $0 \le \gamma_1 \le \gamma_2 < 1$, $n \in \mathbb{N}_0$, then

$$\mathcal{T}_{\lambda}^{n}(\alpha, \gamma_2) \subset \mathcal{T}_{\lambda}^{n}(\alpha, \gamma_1).$$

Proof. From Theorem 2.1,

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma_2 m + \alpha \gamma_2 - \alpha \right] a_m \le \sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma_1 m + \alpha \gamma_1 - \alpha \right] a_m \le (1 - \alpha),$$

for
$$f(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma_{2})$$
. Hence $f(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma_{1})$.

Theorem 2.6. Let $f(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$. Define $f_{1}(z) = z$ and

$$f_m(z) = z + \frac{1 - \alpha}{B_{\lambda}(m, n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha\right]} z^m, \quad m = 2, 3, \dots,$$

for some α , γ $(0 \le \gamma < 1)$, $n \in \mathbb{N}_0$ and $z \in \mathcal{U}$. $f \in \mathcal{T}_{\lambda}^n(\alpha, \gamma)$ if and only if f can be expressed as $f(z) = \sum_{m=1}^{\infty} \mu_m f_m(z)$, where $\mu_m \ge 0$ and $\sum_{m=1}^{\infty} \mu_m = 1$.

Proof. If
$$f(z) = \sum_{m=1}^{\infty} \mu_m f_m(z)$$
 with $\sum_{m=1}^{\infty} \mu_m = 1$, $\mu_m \ge 0$, then

$$\sum_{m=2}^{\infty} \frac{B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha\right] \mu_m}{B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha\right]} (1 - \alpha) \sum_{m=2}^{\infty} \mu_m (1 - \alpha) = (1 - \mu_1)(1 - \alpha)$$

$$\leq (1 - \alpha).$$

Hence $f \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

Conversely, let
$$f(z) = z - \sum_{m=2}^{\infty} a_m z^m \in \mathcal{T}_{\lambda}^n(\alpha, \gamma)$$
, define

$$\mu_m = \frac{B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] |a_m|}{(1 - \alpha)}, \quad m = 2, 3, \dots,$$

and define
$$\mu_1 = 1 - \sum_{m=2}^{\infty} \mu_m$$
. From Theorem 2.1, $\sum_{m=2}^{\infty} \mu_m \le 1$ and so $\mu_1 \ge 0$.

Since
$$\mu_m f_m(z) = \mu_m f + a_m z^m$$
, $\sum_{m=1}^{\infty} \mu_m f_m(z) = z - \sum_{m=2}^{\infty} a_m z^m = f(z)$.

Theorem 2.7. The class $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$ is closed under convex linear combination.

Proof. Let $f, g \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$ and let

$$f(z) = z - \sum_{m=2}^{\infty} a_m z^m, \quad g(z) = z - \sum_{m=2}^{\infty} b_m z^m.$$

For η such that $0 \leq \eta \leq 1$, it suffices to show that the function defined by $h(z) = (1 - \eta)f(z) + \eta g(z), z \in \mathcal{U}$ belongs to $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$. Now

$$h(z) = z - \sum_{m=2}^{\infty} [(1 - \eta)a_m + \eta b_m]z^m.$$

Applying Theorem 2.1 to $f, g \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$, we have

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] \left[(1 - \eta) a_m + \eta b_m \right]$$

$$= (1 - \eta) \sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] a_m$$

$$+ \eta \sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] b_m$$

$$\leq (1 - \eta)(1 - \alpha) + \eta(1 - \alpha) = (1 - \alpha).$$

This implies that $h \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

Corollary 2.8. If f_1 , f_2 are in $\mathcal{T}^n_{\lambda}(\alpha, \gamma)$ then the function defined by $g(z) = \frac{1}{2}[f_1(z) + f_2(z)]$ is also in $\mathcal{T}^n_{\lambda}(\alpha, \gamma)$.

Theorem 2.9. Let for j = 1, 2, ..., m, $f_j(z) = z - \sum_{m=2}^{\infty} a_{m,j} z^m \in \mathcal{T}_{\lambda}^n(\alpha, \gamma)$ and $0 < \gamma_j < 1$ such that $\sum_{j=1}^m \gamma_j = 1$, then the function F(z) defined by

$$F(z) = \sum_{j=1}^{m} \gamma_j f_j(z)$$

is also in $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

Proof. For each $j \in \{1, 2, 3, ..., m\}$ we obtain

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] |a_m| < (1 - \alpha).$$

Since

$$F(z) = \sum_{j=1}^{m} \gamma_j (z - \sum_{m=2}^{\infty} a_{m,j} z^m) = z - \sum_{m=2}^{\infty} (\sum_{j=1}^{m} \gamma_j a_{m,j}) z^m,$$

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] \left[\sum_{j=1}^{m} \gamma_{j} a_{m,j} \right]$$

$$= \sum_{j=1}^{m} \gamma_{j} \left[\sum_{m=2}^{\infty} B_{\lambda}(m,n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] \right]$$

$$< \sum_{j=1}^{m} \gamma_{j} (1 - \alpha)$$

$$< (1 - \alpha).$$

Therefore $F(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

For $f \in \mathcal{U}$ we define the integral transform

$$\mathcal{V}_{\mu}(f)(z) = \int_{0}^{1} \mu(t) \frac{f(tz)}{t} dt,$$

where μ is a real valued nonnegative weight function normalized so that $\int\limits_0^1 \mu dt = 1.$ Some special cases of $\mu(t)$ are particularly interesting as $\mu(t) = (1+c)t^c, \ c > -1, \ \text{for which} \ \mathcal{V}_{\mu} \ \text{is known as the Bernardi operator and}$

$$\mu(t) = \frac{(c+1)^{\eta}}{\mu(\eta)} t^c \left(\log \frac{1}{t}\right)^{\eta-1}, c > -1, \quad \eta \ge 0,$$

which gives Komato operator.

Theorem 2.10. Let $f(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$. Then $\mathcal{V}_{\mu}(f) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

Proof. By definition, we have

$$\begin{split} \mathcal{V}_{\mu}(f)(z) &= \frac{(c+1)^{\eta}}{\mu(\eta)} \int_{0}^{1} (-1)^{\eta-1} t^{c} \left(\log \frac{1}{t} \right)^{\eta-1} \left(z - \sum_{m=2}^{\infty} a_{m} z^{m} t^{m-1} \right) dt \\ &= \frac{(-1)^{\eta-1} (c+1)^{\eta}}{\mu(\eta)} \lim_{\epsilon \to 0} \left[\int_{\epsilon}^{1} t^{c} (\log t)^{\eta-1} \left(z - \sum_{m=2}^{\infty} a_{m} z^{m} t^{m-1} \right) dt \right] \\ &= z - \sum_{m=2}^{\infty} \left(\frac{c+1}{c+m} \right)^{\eta} a_{m} z^{m}. \end{split}$$

We need to prove that

$$\sum_{m=2}^{\infty} \left(\frac{c+1}{c+m} \right)^{\eta} B_{\lambda}(m,n) [m - \alpha \gamma m + \alpha \gamma - \alpha] a_m < 1 - \alpha.$$
 (5)

On the other hand, from Theorem 2.1 we have

$$\sum_{m=2}^{\infty} B_{\lambda}(m,n)[m - \alpha \gamma m + \alpha \gamma - \alpha]a_m < 1 - \alpha.$$

Hence $\left(\frac{c+1}{c+m}\right)^{\eta} < 1$. Therefore, (5) holds. Hence the proof is complete.

Theorem 2.11. Let $f \in T_{\lambda}^{n}(\alpha, \gamma)$, then $V_{\mu}(f)$ is starlike of order β , $\beta \in [0, 1]$ in $|z| < R_1$, where

$$R_1 = \inf_{n} \left[\left(\frac{c+m}{c+1} \right)^{\eta} \frac{(1-\beta)[m-\alpha\gamma m + \alpha\gamma - \alpha]B_{\lambda}(m,n)}{(m-\beta)(1-\alpha)} \right]^{\frac{1}{m-1}}.$$

Proof. It is sufficient to prove

$$\left| \frac{z(\mathcal{V}_{\mu}f(z))'}{\mathcal{V}_{\mu}f(z)} - 1 \right| = \left| \frac{\sum_{m=2}^{\infty} (1-m) \left(\frac{c+1}{c+m}\right)^{\eta} a_m z^{m-1}}{1 - \sum_{m=2}^{\infty} \left(\frac{c+1}{c+m}\right)^{\eta} a_m z^{m-1}} \right|$$

$$\leq \frac{\sum_{m=2}^{\infty} (m-1) \left(\frac{c+1}{c+m}\right)^{\eta} a_m |z|^{m-1}}{1 - \sum_{m=2}^{\infty} \left(\frac{c+1}{c+m}\right)^{\eta} a_m |z|^{m-1}}.$$

The last expression is less than $1 - \beta$, since

$$|z|^{m-1} \le \left(\frac{c+m}{c+1}\right)^{\eta} \frac{(1-\beta)[m-\alpha\gamma m + \alpha\gamma - \alpha]B_{\lambda}(m,n)}{(m-\beta)(1-\alpha)}.$$

Hence the proof is finished.

Using the fact that f is convex if and only if zf' is starlike, we obtain the following:

Theorem 2.12. Let $f \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$, then $\mathcal{V}_{\mu}(f)$ is convex of order β , $\beta \in [0, 1]$ in $|z| < R_2$ where

$$R_2 = \inf_{n} \left[\left(\frac{c+m}{c+1} \right)^{\eta} \frac{(1-\beta)[m-\alpha\gamma m + \alpha\gamma - \alpha]B_{\lambda}(m,n)}{m(m-\beta)(1-\alpha)} \right]^{\frac{1}{m-1}}.$$

Theorem 2.13. Let $f \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$, then for every $0 \leq \delta < 1$ the function

$$\mathcal{H}_{\delta}(z) = (1 - \delta)f(z) + \delta \int_{0}^{z} \frac{f(t)}{t} dt$$

belongs to $\mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

Proof. We have $\mathcal{H}_{\delta}(z) = z - \sum_{m=2}^{\infty} \left(1 + \frac{\delta}{m} - \delta\right) a_m z^m$. Since $\left(1 + \frac{\delta}{m} - \delta\right) < 1$, $m \ge 2$, so by Theorem 2.1,

$$\sum_{m=2}^{\infty} \left(1 + \frac{\delta}{m} - \delta \right) B_{\lambda}(m, n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] a_{m}$$

$$< \sum_{m=2}^{\infty} B_{\lambda}(m, n) \left[m - \alpha \gamma m + \alpha \gamma - \alpha \right] a_{m}$$

$$< (1 - \alpha).$$

Therefore $\mathcal{H}_{\delta}(z) \in \mathcal{T}_{\lambda}^{n}(\alpha, \gamma)$.

References

- 1. H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38 (1980), 87-84.
- 2. L. Dileep and S. Latha, A note on Sălăgean type functions, Global Journal of Mathematical Sciences, (Accepted for publication).
- 3. S. M. Khairnar and M. More, On a certain subclass of analytic functions involving the Al-Oboudi differential operator, *JIPAM* **10** (2) (2009), Art. 57, 11pp.
- 4. A. O. Mostafa, A study on starlike and convex properties for hypergeometric functions, *JIPAM* **10** (3) (2009), Art. 87, 8pp.
- 5. St. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.* 49 (1) (1975), 109–115.
- 6. G. S. Sălăgean, Subclasses of univalent functions, Lectures Notes in Math. Springer -Verlag 2013 (1983), 362–372.