Vietnam Journal
of
MATHEMATICS
© VAST

Strong Convergence Theorems for a Finite Family of Relatively Nonexpansive Mappings

X. F. Liu

Department of Mathematics, New Campus of Tianjin Polytechnic University, Tianjin 300000, P.R.China

> Received September 15, 2010 Revised February 10, 2011

Abstract. In this paper, I proved a strong convergence theorem for a finite family of relatively nonexpansive mappings in a Banach space. The results presented in this work improve the corresponding one announced by many others.

2000 Mathematics Subject Classification: B0290F.

Key words: Strong convergence, relatively nonexpansive mapping, fixed point.

1. Introduction and Preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and $T:C\to C$ a mapping. Recall that T is nonexpansive if $\|Tx-Ty\|\leq \|x-y\|$ for all $x,y\in C$. A point $x\in C$ is a fixed point of T provided Tx=x. Denote by F(T) the set of fixed points of T, i.e., $F(T)=\{x\in C:Tx=x\}$.

Halpern[4] introduced a classical iteration process as follows: take an initial guess $x_0 \in C$ arbitrarily and define $\{x_n\}$ recursively by

$$x_{n+1} = t_n u + (1 - t_n) T x_n, n \ge 0, \tag{1}$$

where $u \in C$ is an arbitrary element, $\{t_n\}_{n=1}^{\infty}$ is a sequence in the interval [0, 1]. He proved that the sequence $\{x_n\}$ converges to a fixed point of a nonexpansive mapping. Acedo and Xu [1] studied the following cyclic algorithm. Let $x_0 \in C$ and $\{\alpha_n\}$ be a sequence in $\{0, 1\}$. $\{x_n\}_{n=1}^{\infty}$ is generated in the following way:

64 X. F. Liu

$$x_{1} = \alpha_{0}x_{0} + (1 - \alpha_{0})T_{0}x_{0},$$

$$x_{2} = \alpha_{1}x_{1} + (1 - \alpha_{1})T_{1}x_{1},$$

$$...$$

$$x_{N} = \alpha_{N-1}x_{N-1} + (1 - \alpha_{N-1})T_{N-1}x_{N-1},$$

$$x_{N+1} = \alpha_{N}x_{N} + (1 - \alpha_{N})T_{0}x_{N},$$

$$...$$

In general, x_{n+1} is defined by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \ \forall n \ge 0, \tag{2}$$

where $T_n = T_{n(\text{mod}N)}$ (here the mod N function takes values in $\{1, 2, ..., N-1\}$). They proved weak and strong convergence theorems in Hilbert spaces by cyclic algorithm (2).

Very recently, Qin and Su [7] proposed the following iteration for a relatively nonexpansive mapping in a Banach space. More precisely, they proved the following:

Theorem 1.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty closed convex subset of E, let $T: C \to C$ be a relatively nonexpansive mapping. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in (0,1) such that $\lim_{n\to\infty} \alpha_n = 0$. Define a sequence $\{x_n\}$ in C by the following algorithm

$$\begin{cases} x_0 = x \in C, \\ y_n = J^{-1}(\alpha_n J x_0 + (1 - \alpha_n) J T x_n), \\ C_n = \{ v \in C : \phi(v, y_n) \le \alpha_n \phi(v, x_0) + (1 - \alpha_n) \phi(v, x_n) \}, \\ Q_n = \{ v \in C : \langle J x_0 - J x_n, x_n - v \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{C_n \cap C_n} x_0, \end{cases}$$
(3)

where J is the single-valued duality mapping on E. If F(T) is nonempty, then $\{x_n\}$ converges to $\Pi_{F(T)}x_0$.

In this paper, motivated and inspired by the above results, we consider an algorithm to modify the iterative process (3) to have strong convergence for a finite family of relatively nonexpansive mappings in the framework of Banach spaces.

$$\begin{cases} x_{0} = x \in C, \\ y_{n} = J^{-1}(\alpha_{n}Jx_{0} + (1 - \alpha_{n})JT_{n}x_{n}), \\ C_{n} = \{v \in C : \phi(v, y_{n}) \leq \alpha_{n}\phi(v, x_{0}) + (1 - \alpha_{n})\phi(v, x_{n})\}, \\ Q_{n} = \{v \in C : \langle Jx_{0} - Jx_{n}, x_{n} - v \rangle \geq 0\}, \\ x_{n+1} = \Pi_{C_{n} \cap Q_{n}}x_{0}, \end{cases}$$
(4)

where $T_n = T_{n(\text{mod}N)}$

Throughout the paper, let E be a real Banach space, E^* the dual space of E. We denote by J the normalized duality mapping defined by

$$Jx := \{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2 \},$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if E^* is strictly convex then J is single valued and if E is uniformly smooth then J is uniformly continuous on bounded subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with a strictly convex dual, then J^{-1} is single valued, one-to-one and surjective.

As we know that if C is a nonempty closed convex subset of a Hilbert space H and $P_C: H \to C$ is the metric projection of H onto C, then P_C is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In this connection, Alber [2] recently introduced a generalized projection operator Π_C in a Banach space E which is an analogue of the metric projection in Hilbert spaces. Consider the functional defined by

$$\phi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2, \tag{5}$$

for all $x, y \in E$. Observe that, in a Hilbert space H, (5) reduces to $\phi(x, y) = \|x - y\|^2$, $x, y \in H$. The generalized projection $\Pi_C : E \to C$ is a map that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem $\phi(\bar{x}, x) = \min_{y \in C} \phi(y, x)$. The existence and uniqueness of the operator Π_C follow from the properties of the functional $\phi(y, x)$ and strict monotonicity of the mapping J. In Hilbert spaces, $\Pi_C = P_C$. It is obvious from the definition of the functional ϕ that

$$(\|x\| - \|y\|)^2 \le \phi(y, x) \le (\|y\|^2 + \|x\|^2), \tag{6}$$

for all $x, y \in E$.

Let C be a closed convex subset of E, and let T be a mapping from C into itself. A point p in C is said to be an asymptotic fixed point of T if C contains a sequence $\{x_n\}$ which converges weakly to p such that $\lim_{n\to\infty} (Tx_n - x_n) = 0$.

The set of asymptotic fixed points of T will be denoted by $\hat{F}(T)$. A mapping T from C into itself is called relatively nonexpansive (see, e.g.,[5]) if $\hat{F}(T) = F(T)$ and $\phi(p,Tx) \leq \phi(p,x)$ for all $x \in C$ and $p \in F(T)$. The asymptotic behavior of relatively nonexpansive mappings was studied in [3].

For the proof of our main results we need the following lemmas.

Lemma 1.2. ([5]) Let E be a uniformly convex and smooth real Banach space and let $\{x_n\}, \{y_n\}$ be two sequences of E. If $\phi(x_n, y_n) \to 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $\|x_n - y_n\| \to 0$.

Lemma 1.3. ([2]) Let C be a nonempty closed convex subset of a smooth real Banach space E and $x \in E$. Then, $x_0 = \Pi_C x$ if and only if $\langle x_0 - y, Jx - Jx_0 \rangle \geq 0$ for all $y \in C$.

Lemma 1.4. ([2]) Let E be a reflexive, strictly convex and smooth real Banach space, let C be a nonempty closed convex subset of E and let $x \in E$. Then $\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \leq \phi(y, x)$ for all $y \in C$.

66 X. F. Liu

Lemma 1.5. ([6]) Let E be a strictly convex and smooth real Banach space, let C be a closed convex subset of E, and let T be a hemi-relatively nonexpansive mapping from C into itself. Then F(T) is closed and convex.

2. Main Result

Theorem 2.1. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E and $\{T_1, T_2, \ldots, T_N\}$ be a finite family of relatively nonexpansive mappings from C into itself with $F \neq \emptyset$, where $F = \bigcap_{i=1}^{N} F(T_i)$. Assume that T_i is uniformly continuous for all $i \in \{1, 2, \ldots, N\}$. Let $\{x_n\}$ be a sequence generated by the following algorithm:

$$\begin{cases} x_{0} = x \in C, \\ y_{n} = J^{-1}(\alpha_{n}Jx_{0} + (1 - \alpha_{n})JT_{n}x_{n}), \\ C_{n} = \{v \in C : \phi(v, y_{n}) \leq \alpha_{n}\phi(v, x_{0}) + (1 - \alpha_{n})\phi(v, x_{n})\}, \\ Q_{n} = \{v \in C : \langle Jx_{0} - Jx_{n}, x_{n} - v \rangle \geq 0\}, \\ x_{n+1} = \Pi_{C_{n} \cap Q_{n}}x_{0}, \end{cases}$$
(7)

where $T_n = T_{n(\text{mod}N)}$. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in (0,1) such that $\lim_{n\to\infty} \alpha_n = 0$. Then $\{x_n\}$ converges to $\Pi_F x_0$.

Proof. We first show that C_n and Q_n are closed and convex for each $n \geq 0$. From the definition of C_n and Q_n , it is obvious that C_n is closed and Q_n are closed and convex for each $n \geq 0$. We prove that C_n is convex. Since

$$\phi(v, y_n) \le \alpha_n \phi(v, x_0) + (1 - \alpha_n) \phi(v, x_n)$$

is equivalent to

$$2\alpha_n \langle v, Jx_0 \rangle + 2(1 - \alpha_n) \langle v, Jx_n \rangle - 2\langle v, Jy_n \rangle \le \alpha_n \|x_0\|^2 + (1 - \alpha_n) \|x_n\|^2 - \|y_n\|^2$$

we obtain C_n is convex. Next, we show that $F \subset C_n$ for all n. Indeed, we have, for each $p \in F$

$$\phi(p, y_n) = \phi(p, J^{-1}(\alpha_n J x_0 + (1 - \alpha_n) J T_n x_n))$$

$$= \|p\|^2 - 2\langle p, \alpha_n J x_0 + (1 - \alpha_n) J T_n x_n \rangle$$

$$+ \|\alpha_n J x_0 + (1 - \alpha_n) J T_n x_n\|^2$$

$$\leq \|p\|^2 - 2\alpha_n \langle p, J x_0 \rangle + 2(1 - \alpha_n) \langle p, J T_n x_n \rangle$$

$$+ \alpha_n \|x_0\|^2 + (1 - \alpha_n) \|T_n x_n\|^2$$

$$\leq \alpha_n \phi(p, x_0) + (1 - \alpha_n) \phi(p, T_n x_n)$$

$$\leq \alpha_n \phi(p, x_0) + (1 - \alpha_n) \phi(p, x_n).$$

So $p \in C_n$ for all n and $F \subset C_n$. Next we show that $F \subset Q_n$ for all n. We prove this by induction. For n = 0, we have $F \subset C = Q_0$. Assume that $F \subset Q_n$. Since

 x_{n+1} is the projection of x_0 onto $C_n \cap Q_n$, by Lemma 1.3, we have

$$\langle Jx_0 - Jx_{n+1}, x_{n+1} - z \rangle \ge 0, \forall z \in C_n \cap Q_n.$$

As $F \subset C_n \cap Q_n$ by the induction assumptions, for all $z \in F$, $\langle Jx_0 - Jx_{n+1}, x_{n+1} - z \rangle \geq 0$ holds. This together with the definition of Q_{n+1} implies that $F \subset Q_{n+1}$. Hence $F \subset Q_n$ for all n. This implies $\{x_n\}$ is well defined. It follows from the definition of Q_n that $x_n = \Pi_{Q_n} x_0$ and $x_{n+1} = \Pi_{C_n \cap Q_n} x_0 \in Q_n$, we have

$$\phi(x_n, x_0) \le \phi(x_{n+1}, x_0).$$

Therefore, $\{\phi(x_n, x_0)\}$ is nondecreasing. It follows from $x_n = \Pi_{Q_n} x_0$ and Lemma 1.4 that

$$\phi(x_n, x_0) \le \phi(p, x_0) - \phi(p, x_n) \le \phi(p, x_0),$$

for each $p \in F \subset Q_n$ and for each $n \geq 0$. Therefore, $\phi(x_n, x_0)$ is bounded. Moreover, from (6), we have that $\{x_n\}$ is bounded. So, we obtain that the limit of $\{\phi(x_n, x_0)\}$ exists. From Lemma 1.4, we have

$$\phi(x_{n+1}, x_n) = \phi(x_{n+1}, \Pi_{Q_n} x_0) \le \phi(x_{n+1}, x_0) - \phi(\Pi_{Q_n} x_0, x_0)$$

= $\phi(x_{n+1}, x_0) - \phi(x_n, x_0),$

for each $n \geq 0$. This implies that

$$\lim_{n \to \infty} \phi(x_{n+1}, x_n) = 0. \tag{8}$$

Since $x_{n+1} = \prod_{C_n \cap Q_n} x_0 \in C_n$, from the definition of C_n , we also have

$$\phi(x_{n+1}, y_n) \le \alpha_n \phi(x_{n+1}, x_0) + (1 - \alpha_n) \phi(x_{n+1}, x_n).$$

It follows from $\lim_{n\to\infty} \alpha_n = 0$ and (8) that

$$\lim_{n \to \infty} \phi(x_{n+1}, y_n) = 0. \tag{9}$$

By using Lemma 1.2, we obtain

$$\lim_{n \to \infty} ||x_{n+1} - y_n|| = \lim_{n \to \infty} ||x_{n+1} - x_n|| = 0,$$

as well as

$$\lim_{n \to \infty} ||x_{n+l} - x_n|| = 0, \tag{10}$$

for all $l \in \{1, 2, ..., N\}$.

$$\lim_{n \to \infty} ||x_n - y_n|| = 0.$$
(11)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

68 X. F. Liu

$$\lim_{n \to \infty} ||Jx_{n+1} - Jy_n|| = \lim_{n \to \infty} ||Jx_{n+1} - Jx_n|| = 0.$$

Note that

$$||JT_n x_n - Jy_n|| = ||JT_n x_n - (\alpha_n J x_0 + (1 - \alpha_n) J T_n x_n)||$$

= $\alpha_n ||Jx_0 - JT_n x_n||$.

Therefore, we have

$$\lim_{n \to \infty} ||JT_n x_n - Jy_n|| = 0.$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets , we have

$$\lim_{n \to \infty} ||T_n x_n - y_n|| = 0. \tag{12}$$

This implies that

$$||x_n - T_n x_n|| \le ||x_n - y_n|| + ||y_n - T_n x_n||.$$

It follows from (11) and (12) that

$$\lim_{n \to \infty} ||T_n x_n - x_n|| = 0.$$
 (13)

Hence

$$||x_n - T_{n+l}x_n|| \le ||x_n - x_{n+l}|| + ||x_{n+l} - T_{n+l}x_{n+l}|| + ||T_{n+l}x_{n+l} - T_{n+l}x_n||,$$

for all $l \in \{1, 2, ..., N\}$. From the assumption on T_l , we know that T_l is uniformly continuous. On the other hand, it follows from (10) and (13) that

$$\lim_{n \to \infty} ||x_n - T_{n+l}x_n|| = 0,$$

for all
$$l \in \{1, 2, ..., N\}$$
. Thus $\lim_{n \to \infty} ||x_n - T_l x_n|| = 0$, for all $l \in \{1, 2, ..., N\}$.

Finally, we prove that $x_n \to \Pi_F x_0$. Assume that $\{x_{n_i}\}$ is a subsequence of $\{x_n\}$ such that $x_{n_i} \to \tilde{x} \in C$, then $\tilde{x} \in \hat{F} = F$. Next we show that $\tilde{x} = \Pi_F x_0$ and the convergence is strong. Put $\bar{x} = \Pi_F x_0$. From $x_{n+1} = \Pi_{C_n \cap Q_n} x_0$ and $\bar{x} \in F \subset C_n \cap Q_n$, we have $\phi(x_{n+1}, x_0) \leq \phi(\bar{x}, x_0)$. On the other hand, from weak lower semicontinuity of the norm, we obtain

$$\phi(\tilde{x}, x_0) = \|\tilde{x}\|^2 - 2\langle \tilde{x}, Jx_0 \rangle + \|x_0\|^2$$

$$\leq \liminf_{i \to \infty} (\|x_{n_i}\|^2 - 2\langle x_{n_i}, Jx_0 \rangle + \|x_0\|^2)$$

$$\leq \liminf_{i \to \infty} \phi(x_{n_i}, x_0)$$

$$\leq \limsup_{i \to \infty} \phi(x_{n_i}, x_0)$$

$$\leq \phi(\bar{x}, x_0).$$

It follows from the definition of $\Pi_F x_0$ that we have $\tilde{x} = \bar{x}$ and hence $\lim_{i \to \infty} \phi(x_{n_i}, x_0) = \phi(\bar{x}, x_0)$. So, we have $\lim_{i \to \infty} \|x_{n_i}\| = \|\bar{x}\|$. By using the Kadec-Klee property of E, we obtain that $\{x_{n_i}\}$ converges strongly to $\Pi_F x_0$. Since $\{x_{n_i}\}$ is an arbitrary weakly convergent subsequence of $\{x_n\}$, we can conclude that $\{x_n\}$ converges strongly to $\Pi_F x_0$. This completes the proof.

References

- 1. G. L. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, *Nonlinear Anal.* **67**(2007), 2258-2271.
- Ya. I. Alber, Metric and generalized projection operators in Banach spaces, in:A. G. Kartsatos(Ed.), Theory and Application of Nonlinear Operators of Monotonic and Accretive Type, Marcel Dekker, New York, 1996, pp.15-50.
- D. Butanriu, S. Reich and A. J. ZasIavski, Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, *Numer. Funct. Anal. Optim.* 24(2003), 489-508.
- 4. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 44(1967), 957-961.
- S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAMJ. Optim. 13(2003), 938-945.
- S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mapping in a Banach space, J. Approx. Theory 134(2005),257-266.
- X.L. Qin and Y.F. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67(2007), 1958-1965.