Vietnam Journal
of
MATHEMATICS
© VAST

Remarks on Rings with Zero Products Commuting and Zero Insertion Properties*

Zhanping Wang

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China

> Received August 15, 2011 Revised December 6, 2011

Abstract. In this paper, we continue to study the rings satisfying zero insertion property for n (abbr., ZI_n) and zero products commuting property for n (abbr., ZC_n). In particular, we prove that R satisfies $ZI_n(\text{resp.}, ZC_n)$ if I is a reduced ideal of R and R/I satisfies $ZI_n(\text{resp.}, ZC_n)$, where n is a positive integer. Furthermore, we show that $[[R^{S,\leqslant}]]$ satisfies $ZI_n(\text{resp.}, ZC_n)$ if and only if R satisfies $ZI_n(\text{resp.}, ZC_n)$ under some additional conditions.

2000 Mathematics Subject Classification. 16U80, 16S70.

Key words. Rings satisfying ZI_n , rings satisfying ZC_n , rings of generalized power series.

1. Introduction

Throughout this paper, R denotes an associative ring not necessarily with identity and n is a positive integer. A ring R is called *reduced* if it has no non-zero nilpotent elements. It is well known that if R is a reduced ring, then

$$ab = 0 \Rightarrow ba = 0 \quad \forall a, b \in R.$$

Cohn [2] called a ring R reversible if this condition holds, while Habeb [4] used the name zero commutative for this notion. Anderson and Camillo [1] extended

 $^{^\}star$ Supported by National Natural Science Foundation of China (No. 10961021, 11126295).

108 Z. P. Wang

the class of zero commutative rings to the class of rings satisfying zero products commuting property for $n \geq 2$. A ring R is said to satisfy the zero products commuting property (abbr., ZC_n) for $n \geq 2$ if for $a_1, a_2, ..., a_n \in R$, $a_1a_2...a_n = 0$ implies $a_{\sigma(1)}a_{\sigma(2)}...a_{\sigma(n)} = 0$ for each $\sigma \in S_n$, where S_n denotes the permutation group on n letters. Every reduced ring satisfies ZC_n for all $n \geq 2$ [1, Theorem I.3], but the converse is not true [1, Example II.5]. A ring R is called symmetric if abc = 0 implies acb = 0 for any $a, b, c \in R$. Observe that a reversible ring coincides with the ring satisfying ZC_2 . Examples 1(1) of [5] showed that a symmetric ring may not be reversible, and a symmetric ring may not satisfy ZC_3 , Example 1(2) of [5] showed that the ring satisfying ZC_n for all $n \geq 4$ may not be symmetric. However, it is noted that if R is a ring with identity, then R is symmetric if and only if R satisfies ZC_3 if and only if R satisfies ZC_n for all $n \geq 3$.

A ring R is called semicommutative if for each $a \in R$, $r(a) = \{b \in R | ab = 0\}$ is an ideal of R. Lemma 1.2 of Shin [10] showed that R is semicommutative if and only if ab = 0 implies aRb = 0 for $a, b \in R$. Habeb [4] used the name zero insertion for this notion. Hong et al. [5] extended the class of zero insertion ring to the class of ring satisfying zero insertion property for $n \geq 2$. A ring R is said to satisfy the zero insertion property for n (abbr., ZI_n) if for $a_1, a_2, ..., a_n \in R$, $a_1a_2...a_n = 0$ implies $a_1Ra_2R...Ra_n = 0$. Observe that a semicommutative ring coincides with the ring satisfying ZI_2 . Moreover, if R is a ring with identity, then R is semicommutative if and only if R satisfies ZI_n for some $n \geq 2$ if and only if R satisfies ZI_n for all $n \geq 2$ by [5, Corollary 7]. In this paper, we continue to study the rings satisfying ZI_n (resp., ZC_n) motivated by [5, 8].

2. On rings satisfying $ZI_n(\text{resp.}, ZC_n)$

Lemma 2.1. [5, Corollary 7(1)] If a ring R satisfies ZC_n , then R satisfies ZI_n for $n \geq 2$.

Lemma 2.2. [1, Theorem I.1] Let S be a semigroup with 0 and let $n \geq 3$. If S satisfies ZC_n , then S satisfies ZC_{n+1} .

Lemma 2.3. [8, Proposition 3.2] Let S be a torsion-free and cancellative monoid, $\leq a$ strict order on S and R be an S-Armendariz ring. If $f_1, ..., f_n \in [[R^{S, \leq}]]$ are such that $f_1 f_2 ... f_n = 0$, then $f_1(u_1) f_2(u_2) ... f_n(u_n) = 0$ for all $u_1, u_2, ..., u_n \in S$.

By [5, Example 13(1)], a ring R does not satisfy ZI_n (resp., ZC_n) for $n \geq 2$, even for nonzero ideal I, R/I and I satisfy ZI_n (resp., ZC_n). However, for reduced ideals I we obtain the following results.

Theorem 2.4. Let R be a ring, I an ideal of R and $n \ge 2$. If R/I satisfies ZI_n and I is reduced, then R satisfies ZI_n .

Remarks on rings 109

Proof. Let $a_1a_2...a_n = 0$ with $a_1, a_2, ..., a_n \in R$. Then we have $a_1Ra_2R...Ra_n \subseteq I$ and $a_nIa_1a_2...a_{n-1} = 0$ since $a_nIa_1a_2...a_{n-1} \subseteq I$, $(a_nIa_1a_2...a_{n-1})^2 = 0$ and I is reduced. Hence

$$(a_{n-1}Ra_nIa_1a_2...a_{n-2})^2 = a_{n-1}R(a_nIa_1a_2...a_{n-2}a_{n-1})Ra_nIa_1a_2...a_{n-2} = 0$$

and so $a_{n-1}Ra_nIa_1a_2...a_{n-2}=0$. Further, we get

$$(a_{n-2}Ra_{n-1}Ra_nIa_1...a_{n-3})^2$$

= $a_{n-2}R(a_{n-1}Ra_nIa_1...a_{n-3}a_{n-2})Ra_{n-1}Ra_nIa_1...a_{n-3} = 0$,

which implies $a_{n-2}Ra_{n-1}Ra_nIa_1a_2...a_{n-3} = 0$ since $a_{n-2}Ra_{n-1}Ra_nIa_1a_2...a_{n-3} \subseteq I$ and I is reduced. Continuing as above, we get $a_1Ra_2R...Ra_nI = 0$. Hence

$$(a_1Ra_2R...Ra_n)^2 \subseteq a_1Ra_2R...Ra_nI = 0,$$

which implies $(a_1Ra_2R...Ra_n)^2 = 0$, and so $a_1Ra_2R...Ra_n = 0$. Thus R satisfies ZI_n .

Theorem 2.5. Let R be a ring, I an ideal of R and $n \ge 2$. If R/I satisfies ZC_n and I is reduced, then R satisfies ZC_n .

Proof. In fact, it suffices to show that we can interchange two elements $a_i, a_j (i < j)$ and still get a zero product. Let $a_1 a_2 ... a_i ... a_j ... a_n = 0$ where $1 \le i < j \le n$, we need $a_1 ... a_{i-1} a_j a_{i+1} ... a_{j-1} a_i a_{j+1} ... a_n = 0$. Since R/I satisfies ZC_n , we have that $a_1 ... a_{i-1} a_j a_{i+1} ... a_{j-1} a_i a_{j+1} ... a_n \in I$ and R/I satisfies ZI_n by Lemma 2.1. Further, we have that R satisfies ZI_n by Theorem 2.4. Hence $a_1 ... a_i ... a_j ... a_n = 0$, which implies $a_1 R ... Ra_i R ... Ra_j R ... Ra_n = 0$. That is,

$$a_1u_1...a_iu_i...a_ju_j...u_{n-1}a_n = 0 \quad \forall \ u_1, u_2, ..., u_{n-1} \in R.$$
 (1)

We have the following two cases for i, j.

Case 1. j = i + 1. For i = 1, multiply equation (1) on the left hand side by a_2 , and set

$$u_1 = a_3 a_4 \dots a_n,$$

$$u_2 = a_1,$$

$$u_3 = a_4 a_5 \dots a_n a_2 a_1 a_3,$$

$$u_4 = a_5 a_6 \dots a_n a_2 a_1 a_3 a_4,$$

$$\vdots$$

$$u_{n-1} = a_n a_2 a_1 a_3 a_4 \dots a_{n-1},$$

we have $(a_2a_1a_3a_4...a_n)^{n-1} = 0$, which implies $a_2a_1a_3a_4...a_n = 0$. For i = n - 1, multiply equation (1) on the right hand side by a_{n-1} , and set

$$u_1 = a_2 a_3 \dots a_{n-2} a_n a_{n-1} a_1,$$

110 Z. P. Wang

$$\begin{aligned} u_2 &= a_3 a_4 ... a_{n-2} a_n a_{n-1} a_1 a_2, \\ &\vdots \\ u_{n-3} &= a_{n-2} a_n a_{n-1} a_1 ... a_{n-3}, \\ u_{n-2} &= a_n, \\ u_{n-1} &= a_1 a_2 ... a_{n-2}, \end{aligned}$$

we have $(a_1 a_2 ... a_{n-2} a_n a_{n-1})^{n-1} = 0$, which implies $a_1 a_2 ... a_{n-2} a_n a_{n-1} = 0$. For $i \neq 1$ and $i \neq n-1$, set

```
\begin{split} u_1 &= a_2 a_3 ... a_{i-1} a_{i+1} a_i a_{i+2} ... a_n a_1, \\ u_2 &= a_3 a_4 ... a_{i-1} a_{i+1} a_i a_{i+2} ... a_n a_1 a_2, \\ &\vdots \\ u_{i-2} &= a_{i-1} a_{i+1} a_i a_{i+2} ... a_n a_1 ... a_{i-2}, \\ u_{i-1} &= a_{i+1}, \\ u_i &= a_{i+2} ... a_n a_1 ... a_{i-1}, \\ u_{i+1} &= a_i, \\ u_{i+2} &= a_{i+3} ... a_n a_1 a_2 ... a_{i-1} a_{i+1} a_i a_{i+2}, \\ u_{i+3} &= a_{i+4} ... a_n a_1 a_2 ... a_{i-1} a_{i+1} a_i a_{i+2} a_{i+3}, \\ &\vdots \\ u_{n-1} &= a_n a_1 a_2 ... a_{i-1} a_{i+1} a_i a_{i+2} ... a_{n-1}, \end{split}
```

we have $(a_1a_2...a_{i-1}a_{i+1}a_ia_{i+2}...a_n)^{n-2} = 0$, which implies $a_1a_2...a_{i-1}a_{i+1}a_i$ $a_{i+2}...a_n = 0$.

Case 2. $j \neq i + 1$. By using the case 1 again and again, the case is true.

Therefore we have $a_1 a_2 ... a_j ... a_n = 0$ for any $1 \le i < j \le n$.

Remark 2.6. [6, Theorem 6] and [7, Proposition 1.12] are obtained from Theorem 2.4 and Theorem 2.5, respectively, when setting n = 2.

An example was given in [5] to show that the conditions ZI_n and ZC_n for $n \geq 2$ are not preserved by homomorphic images. But it was shown in [7, Proposition1.14(1)] that for a symmetric ring R if I is an ideal of R that is an annihilator in R then R/I is a reversible ring. More generally we have the following Proposition 2.7 and Proposition 2.8.

Proposition 2.7. Let R be a ring and I be an ideal of R that is an annihilator in R. If R satisfies ZI_n for $n \geq 2$, then R/I satisfies ZI_n .

Proof. Set $I = r_R(J)$ with $J \subseteq R$ and $\bar{r} = r + I$ for $r \in R$. Let $\bar{a_1}\bar{a_2}\dots\bar{a_n} = 0$ then $a_1a_2\dots a_n \in I$ and so $Ja_1a_2\dots a_n = 0$. Since R satisfies ZI_n , we have that $Ja_1Ra_2R\dots Ra_n = 0$ by [5, Proposition 4(2)], which implies $\bar{a_1}(R/I)\bar{a_2}(R/I)\dots(R/I)\bar{a_n} = 0$. Thus R/I satisfies ZI_n .

Remarks on rings 111

Proposition 2.8. Let R be a ring and I be an ideal of R that is an annihilator in R. If R satisfies ZC_n for $n \geq 3$, then R/I satisfies ZC_n .

Proof. Set $I = r_R(J)$ with $J \subseteq R$ and $\bar{r} = r + I$ for $r \in R$. Let $\bar{a_1}\bar{a_2}...\bar{a_n} = 0$ then $a_1a_2...a_n \in I$ and so $Ja_1a_2...a_n = 0$. Since R satisfies ZC_n , we have that R satisfies ZC_{n+1} by Lemma 2.2. Hence $Ja_1a_2...a_n = 0$ implies $Ja_{\sigma(1)}a_{\sigma(2)}...a_{\sigma(n)} = 0$ by [5, Proposition (2)] and so $\bar{a}_{\sigma(1)}\bar{a}_{\sigma(2)}...\bar{a}_{\sigma(n)} = 0$. Therefore R/I satisfies ZC_n .

Let (S, \leq) be an ordered set. Recall that (S, \leq) is *artinian* if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is *narrow* if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the neutral element by 0. The following definition is due to [3].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{'}, t \in S$ and $s < s^{'}$, then $s + t < s^{'} + t$), and R be a ring. Let $[[R^{S, \leq}]]$ be the set of all maps $f: S \to R$ such that $supp(f) = \{s \in S | f(s) \neq 0\}$ is artinian and narrow with pointwise addition, and the operation of convolution

$$(fg)(s) = \sum_{(u,v) \in X_s(f,q)} f(u)g(v),$$

where $X_s(f,g) = \{(u,v) \in S \times S | s = u + v, f(u) \neq 0, g(v) \neq 0\}$ is a finite set by Ribenboin [9] for every $s \in S$ and $f,g \in [[R^{S,\leqslant}]], [[R^{S,\leqslant}]]$ becomes a ring, which is called the *generalized power series ring* with coefficients in R and exponents in S.

A monoid S is called torsion-free if the following property holds: if $s,t \in S$ and $k \geq 1$ are such that ks = kt, then s = t. An element $t \in S$ is cancellative whenever t + s = t + s' (with $s,s' \in S$) implies s = s'. A monoid S is called cancellative if every element is cancellative. A ring R is called S-Armendariz if whenever $f,g \in [[R^{S,\leqslant}]]$ satisfy fg = 0, then f(u)g(v) = 0 for each $u,v \in S$.

Similar to [8, Proposition 2.7], we get the following result.

Proposition 2.9. Let (S, \leq) be a strictly ordered monoid and R be an S-Armendariz ring. Then $[[R^{S, \leq}]]$ is reversible if and only if R is reversible.

Proof. Suppose that R is reversible and $f, g \in [[R^{S, \leq}]]$ are such that fg = 0. Since R is S-Armendariz and reversible, we have that g(u)f(v) = 0 for any $u \in supp(g)$ and $v \in supp(f)$. Now for any $s \in S$,

$$(gf)(s) = \sum_{(u,v) \in X_s(g,f)} g(u)f(v) = 0.$$

Thus gf = 0. This shows that $[[R^{S, \leqslant}]]$ is reversible.

If $[[R^{S,\leqslant}]]$ is reversible, then R is reversible since subrings of reversible rings are also reversible.

112 Z. P. Wang

Based on Proposition 2.9 and Lemma 2.3, we have a more general result as follows.

Theorem 2.10. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and R be an S-Armendariz ring. Then

- (1) $[[R^{S,\leqslant}]]$ satisfies ZI_n if and only if R satisfies ZI_n for $n \geq 3$;
- (2) $[R^{S,\leqslant}]$ satisfies ZC_n if and only if R satisfies ZC_n for $n \geq 3$.

In particular, $[R^{S,\leqslant}]$ is symmetric if and only if R is symmetric.

Proof. (1) Suppose that R satisfies ZI_n and $f_1, f_2, ..., f_n \in [[R^{S,\leqslant}]]$ are such that $f_1f_2...f_n = 0$. By Lemma 2.3, we have that $f_1(u_1)f_2(u_2)...f_n(u_n) = 0$ for any $u_i \in supp(f_i)(i=1,2,...,n)$, which implies $f_1(u_1)Rf_2(u_2)R...Rf_n(u_n) = 0$ since R satisfies ZI_n . Now for any $g_1, g_2, ..., g_{n-1} \in [[R^{S,\leqslant}]]$ and any $s \in S$,

$$(f_1g_1f_2g_2...g_{n-1}f_n)(s)$$

$$= \sum_{(u_1,v_1,u_2,v_2,...,v_{n-1},u_n)} f_1(u_1)g_1(v_1)f_2(u_2)g_2(v_2)...g_{n-1}(v_{n-1})f_n(u_n)$$

$$= 0,$$

where $(u_1, v_1, u_2, v_2, ..., v_{n-1}, u_n) \in X_s(f_1, g_1, f_2, g_2, ..., g_{n-1}, f_n)$. Thus $f_1g_1f_2g_2 ...g_{n-1}f_n = 0$. This shows that $f_1[[R^{S,\leqslant}]]f_2[[R^{S,\leqslant}]]...[[R^{S,\leqslant}]]f_n = 0$. Thus $[[R^{S,\leqslant}]]$ satisfies ZI_n .

If $[[R^{S,\leqslant}]]$ satisfies ZI_n , then R satisfies ZI_n since subrings of rings satisfying ZI_n also satisfy ZI_n .

(2) Suppose that R satisfies ZC_n and $f_1, f_2, ..., f_n \in [[R^{S, \leqslant}]]$ are such that $f_1f_2...f_n = 0$, we next show that $f_{\sigma(1)}f_{\sigma(2)}...f_{\sigma(n)} = 0$ for any $\sigma \in S_n$. By Lemma 2.3, we have that $f_1(u_1)f_2(u_2)...f_n(u_n) = 0$ for any $u_i \in supp(f_i)(i = 1, 2, ..., n)$, which implies

$$f_{\sigma(1)}(v_1)f_{\sigma(2)}(v_2)...f_{\sigma(n)}(v_n) = 0,$$

for any $v_i \in supp(f_{\sigma(i)})$ and any $\sigma \in S_n$ since R satisfies ZC_n . Now for any $s \in S$,

$$(f_{\sigma(1)}f_{\sigma(2)}...f_{\sigma(n)})(s) = \sum_{(v_1, v_2, ..., v_n)} f_{\sigma(1)}(v_1)f_{\sigma(2)}(v_2)...f_{\sigma(n)}(v_n) = 0,$$

where $(v_1, v_2, ..., v_n) \in X_s(f_{\sigma(1)}, f_{\sigma(2)}, ... f_{\sigma(n)})$. Thus $f_{\sigma(1)} f_{\sigma(2)} ... f_{\sigma(n)} = 0$. This shows that $[R^{S, \leq}]$ satisfies ZC_n .

If $[[R^{S,\leq}]]$ satisfies ZC_n , then R satisfies ZC_n since subrings of rings satisfying ZC_n also satisfy ZC_n .

Acknowledgement. The author would like to thank the referee for valuable suggestions and helpful corrections.

Remarks on rings 113

References

D. D. Anderson and V.Camillo, Semigroups and rings whose zero products commute, Commun. Algebra 27 (1999), 2847-2852.

- 2. P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), 641-648.
- G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. 54 (1990), 365-371.
- 4. J. M. Habeb, A note on zero commutative and duo rings, *Math. J. Okayama Univ.* **32** (1990), 73-76.
- C. Y. Hong, N. K. Kim and T. K. Kwak, Extensions of generalized reduced rings, Algebra Collog. 12 (2005), 229-240.
- 6. C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, *Commun. Algebra* **30** (2002), 751-761.
- N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223.
- 8. Z. K. Liu, Special properties of rings of generalized power series, *Commun. Algebra* **32** (2004), 3215-3226.
- P. Ribenboim, Semisimple rings and Von Neumann regular rings of generalized power series, J. Algebra 198 (1997), 327-338.
- G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Am. Math. Soc. 184 (1973), 43-60.