Vietnam Journal
of
MATHEMATICS
© VAST

Nadler's Fixed Point Theorem in Cone Metric Spaces

Do Hong Tan¹ and Nguyen Thi Thanh Ha²

¹Institute of Mathematics, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

²Department of Mathematics and Informatics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

> Received October 31, 2011 Revised December 3, 2011

Abstract. In this note we establish an analogue of Nadler's fixed point theorem for multivalued contractions in cone metric spaces.

2000 Mathematics Subject Classification. 47H10.

Key words. Fixed point theorem, multivalued contraction, Hausdorff distance, cone metric space.

1. Introduction and preliminaries

The notion of cone metric was introduced in 2007 by Huang and Zhang [9]. Since then a lot of papers are devoted to this subject, see [3–5, 10, 13] and the references therein. In [10] the authors established some fixed point theorems for multivalued contractions in cone metric spaces but the conditions are very complicated and no relation to the well-known Nadler's fixed point theorem is indicated. Recently, in [4] Du gave a simple proof for Banach contraction principle in cone metric spaces. In this note, following the idea of Du we give a simple proof for Nadler's fixed point theorem, a multivalued version of Banach contraction principle in cone metric spaces.

Given a metric space (X,d), CB(X) denotes the collection of all nonempty closed bounded subsets of X. For $x \in X, A \in CB(X)$ and r > 0 we shall use the following notations:

$$B(x,r) = \{ y \in X : d(x,y) < r \},$$

$$d(x,A) = \inf \{ d(x,y) : y \in A \} = \inf \{ r > 0 : B(x,r) \cap A \neq \emptyset \},$$

$$N_r(A) = \bigcup_{x \in A} B(x,r) = \{ y \in X : d(y,A) < r \},$$

$$H(A,B) = \max \{ \sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \}$$

 $=\inf\{r>0:\ A\subset N_r(B), B\subset N_r(A)\}\$

(the Hausdorff distance between A and B).

The following results are well-known.

Theorem 1.1 (Nadler's theorem). [11] Let (X, d) be a complete metric space, $T: X \longrightarrow CB(X)$ a multivalued mapping such that

$$H(Tx, Ty) \le ad(x, y) \quad \forall x, y \in X$$

for some $a \in [0,1)$. Then T has a fixed point, i. e., there is $x^* \in X$ such that $x^* \in Tx^*$.

Theorem 1.2 (Generalized Nadler's theorem). [1, 12] Let (X, d) be a complete metric space, $T: X \longrightarrow CB(X)$ such that

$$H(Tx, Ty) \le ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(x, Ty) + d(y, Tx)]$$

for all $x, y \in X$ and for some $a, b, c \in [0, 1)$ with a + 2b + 2c < 1. Then T has a fixed point.

Let $(E, \|\cdot\|)$ be a Banach space, K be a convex closed pointed cone in E with int $K \neq \emptyset$. Define a partial ordering \leq_K in E by

$$x \leq_K y \Leftrightarrow y - x \in K$$
.

If $y - x \in \text{int } K$, we write $x \ll_K y$.

Fixing an $e \in \text{int } K$ we define a functional $\xi_e : E \longrightarrow \mathbb{R}$ as follows

$$\xi_e(u) = \inf\{r \in \mathbb{R} : u \in re - K\}, u \in E.$$

The functional ξ_e has the following properties [2, 3, 5–8]:

- (i) $\xi_e(u) \le r \Leftrightarrow u \in re K, u \in E, r \in \mathbb{R},$
- (ii) $\xi_e(u) < r \Leftrightarrow u \in re \text{int } K$,
- (iii) $\xi_e(\lambda u) = \lambda \xi_e(u), \quad \lambda \ge 0, \ u \in E,$
- (iv) $\xi_e(u+v) \le \xi_e(u) + \xi_e(v), u, v \in E,$
- (v) $u \leq_K v \Rightarrow \xi_e(u) \leq \xi_e(v)$,
- (vi) $\xi_e(e) = 1$.

In the following we always suppose that E is a Banach space, K is a convex closed pointed cone in E with int $K \neq \emptyset$ and \leq_K is partial ordering with respect to K

Let X be a nonempty set. A mapping $p: X \times X \longrightarrow E$ is called a cone metric if

 $\theta \leq_K p(x,y) \ \forall x,y \in X \text{ and } p(x,y) = \theta \Leftrightarrow x = y \text{ (where } \theta \text{ is the origin of } E),$ $p(x,y) = p(y,x) \ \forall x,y \in X,$

$$p(x,z) \leq_K p(x,y) + p(y,z) \ \forall x,y,z \in X.$$

The pair (X, p) is then called a cone metric space.

The convergence in (X,p) is defined as follows. Let $\{x_n\}$ be a sequence in (X,p). $\{x_n\}$ cone-converges to x whenever for every $c \in E$ with $\theta \ll_K c$ there is a natural number n_0 such that $p(x_n,x) \ll_K c$ for all $n \geq n_0$ and we write $x_n \stackrel{p}{\longrightarrow} x$. $\{x_n\}$ is called a cone-Cauchy sequence if for every $c \in E$ with $\theta \ll_K c$ there is n_0 such that $p(x_n,x_m) \ll_K c$ for all $n,m \geq n_0$. A cone metric space is said to be cone-complete if every cone-Cauchy sequence in X is cone-convergent.

Fixing an $e \in \text{int } K$ and defining $d_e = \xi_e \circ p : X \times X \longrightarrow \mathbb{R}$, Du established in [4] the following interesting results:

Theorem 1.3. Let (X, p) be a cone metric space. Then $d_e = \xi_e \circ p$ is a metric in X.

Theorem 1.4. Let (X, p) and d_e be as in Theorem 1.3. Then the following statements hold:

- (i) If $x_n \xrightarrow{p} x$ then $d_e(x_n, x) \to 0$ as $n \to \infty$.
- (ii) If $\{x_n\}$ is a cone-Cauchy sequence in (X, p) then it is a Cauchy sequence (in the usual sense) in (X, d_e) .
- (iii) If (X, p) is cone-complete then (X, d_e) is complete (in the usual sense).

Theorem 1.5. Let (X,p) be a cone-complete metric space and $T: X \longrightarrow X$ satisfy the contractive condition

$$p(Tx, Ty) \leq_K \lambda p(x, y) \ \forall x, y \in X$$

for some $\lambda \in [0,1)$. Then T has a unique fixed point and $\{T^n x\}$ cone-converges to the fixed point for every $x \in X$.

Our aim is to generalize Theorem 1.5 for multivalued contractions.

2. Main results

First of all we introduce the following notions.

Definition 2.1. A subset $A \subset (X, p)$ is said to be bounded in direction $e \in \operatorname{int} K$ if there exists $M < \infty$ such that $p(x, y) \leq_K Me$ for all $x, y \in A$.

From property (i) of ξ_e we have

$$p(x,y) \le Me \Leftrightarrow d_e(x,y) \le M.$$
 (1)

So, if A is bounded in direction e then it is bounded in the metric space (X, d_e) . We say that A is cone-bounded if it is bounded in every direction $e \in \text{int } K$.

Definition 2.2. A sequence $\{x_n\} \subset (X, p)$ converges to x in direction $e \in \text{int } K$ if for every $\varepsilon > 0$ there is n_0 such that $p(x_n, x) \ll_K \varepsilon e$ for all $n \geq n_0$.

A subset $A \subset (X, p)$ is said to be closed in direction $e \in \text{int } K$ if every sequence $\{x_n\}$ in A converging in direction e to a point x then $x \in A$.

From property (i) of ξ_e we have

$$p(x_n, x) \ll_K \varepsilon e \Leftrightarrow d_e(x_n, x) < \varepsilon.$$
 (2)

So, it is clear that if $A \subset (X, p)$ is closed in direction $e \in \text{int}K$ then it is closed in the metric space (X, d_e) .

We say that A is cone-closed if it is closed in every direction $e \in \text{int } K$.

Definition 2.3. Let (X, p) be a cone metric space, $e \in \text{int}K$, $A \subset X$. The re-neighborhood of A in (X, p) is defined as follows:

$$N_{re}(A) = \bigcup_{x \in A} B_p(x, re),$$

where $B_p(x, re) = \{ y \in X : p(x, y) \ll_K re \}.$

The Hausdorff distance in direction e between $A, B \subset X$ is defined by

$$P_e(A, B) = \inf\{r > 0 : A \subset N_{re}(B), B \subset N_{re}(A)\} \cdot e.$$
 (3)

From (2) it follows that $N_{re}(A) = N_r(A)$, the r-neighborhood of A in the metric space (X, d_e) . Hence

$$\inf\{r > 0 : A \subset N_{re}(B), B \subset N_{re}(A)\}\$$

= $\inf\{r > 0 : A \subset N_r(B), B \subset N_r(A)\} = H_e(A, B),$

the usual Hausdorff distance in (X, d_e) .

Thus, from (3) we have

$$P_e(A,B) = H_e(A,B) \cdot e. \tag{4}$$

Applying the functional ξ_e to both sides of (4) and using properties (iii) and (vi) of ξ_e we get

$$\xi_e\left(P_e(A,B)\right) = H_e(A,B).$$

Now we are in a position to state our first result.

Theorem 2.4. Let (X,p) be a cone-complete metric space, T be a multivalued mapping in X with cone-closed, cone-bounded values. If there is an $e \in intK$ such that

$$P_e(Tx, Ty) \le_K ap(x, y) \quad \forall x, y \in X \tag{5}$$

for some $a \in [0,1)$, then T has a fixed point.

Proof. Applying ξ_e to both sides of (5) and using properties (iii) and (v) of ξ_e we get

$$H_e(Tx, Ty) \le ad_e(x, y) \ \forall x, y \in X.$$

The result follows from Nadler's theorem.

For further generalization we need the following.

Definition 2.5. Let (X, p) be a cone metric space, $x \in X, A \subset X, e \in \text{int } K$. The distance in direction e from x to A is defined as follows:

$$p_e(x, A) = \inf\{r > 0 : B_p(x, re) \cap A \neq \emptyset\} \cdot e.$$

From (2) we get

$$\inf\{r > 0: \ B_p(x, re) \cap A \neq \emptyset\}$$

=
$$\inf\{r > 0: \ B_d(x, r) \cap A \neq \emptyset\} = \inf_{y \in A} d_e(x, y) = d_e(x, A),$$

where $B_d(x,r) = \{ y \in X : d_e(x,y) < r \}.$

Hence

$$p_e(x, A) = d_e(x, A) \cdot e,$$

from this

$$\xi_e\left(p_e(x,A)\right) = d_e(x,A).$$

Theorem 2.4 can be generalized as follows.

Theorem 2.6. Theorem 2.4 is still valid if we replace (5) by

$$P_e(Tx, Ty) \le_K ap(x, y) + b[p_e(x, Tx) + p_e(y, Ty)] + c[p_e(x, Ty) + p_e(y, Tx)]$$
 (6)

for all $x, y \in X$, with $a, b, c \in [0, 1), a + 2b + 2c < 1$.

Proof. Applying ξ_e to both sides of (6) and using properties (iii), (iv), (v) of ξ_e we get

$$H_e(Tx, Ty) \le ad_e(x, y) + b[d_e(x, Tx) + d_e(y, Ty)] + c[d_e(x, Ty) + d_e(y, Tx)]$$

 $\forall x, y \in X.$

The result follows from generalized Nadler's theorem.

Remark 2.7. When $E = \mathbb{R}, K = \mathbb{R}^+, e = 1$, Theorems 2.4 and 2.6 coincide with Nadler's and generalized Nadler's theorems respectively.

Acknowledgement. The authors would like to thank the members of Seminar "Fixed point theory and applications" organized at Hanoi University of Education for useful comments.

References

- 1. A. Alesina, S. Massa and D. Roux, Punti uniti di multifunzioni con condizioni di typo Boyd-Wong, *Boll. Union Math. Ital.* 8 (1973), 29–34.
- 2. G. Y. Chen, X. X. Huang and X. Q. Yang, *Vector Optimization*, Springer-Verlag, Berlin, Heidelberg, 2005.
- 3. W. S. Du, On some nonlinear problems introduced by an abstract maximal principle, *J. Math. Anal. Appl.* **347** (2008), 391–399.
- 4. W. S. Du, A note on cone metric fixed point theory and its equivalence, *Nonlinear Anal.* **72** (2010), 2259–2261.
- 5. W. S. Du, New cone fixed point theorems for nonlinear multivalued maps with their applications, *Appl. Math. Lett.* **24** (2011) 172–178.
- Chr. Gerth (Tammer) and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67 (1990), 297–320.
- A. Göpfert, Chr. Tammer and C. Zalimescu, On the vectorial Ekeland's variational principle and minimal point in product spaces, Nonlinear Anal. 39 (2000), 909–922.
- 8. A. Göpfert, Chr. Tammer, H. Riahi and C. Zalimescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.
- 9. L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, *J. Math. Anal. Appl.* **332** (2007), 1468–1476.
- 10. D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), 132–139.
- S. B. Nadler, Multivalued contractive mappings, Proc. Amer. Math. Soc. 20 (1969), 458–468.
- 12. D. H. Tan, Some remark on fixed points and their continuity, Tap chí Toán học (J. Math.) 6 (1978), 15–23 (in Vietnamese).
- D. Wardowski, On set-valued contractions of Nadler type in cone metric spaces, Appl. Math. Lett. 24 (2011), 275–278.