On the Regularity of Generalized Local Cohomology

Naser Zamani

Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

> Received October 13, 2011 Revised April 3, 2012

Abstract. Let $R = \bigoplus_{j \geq 0} R_j$ be a positively graded Noetherian ring with local base ring (R_0, \mathfrak{m}_0) and the irrelevant ideal $R_+ = \bigoplus_{j \geq 1} R_j$. Let M, N be two finitely generated graded R-modules with $\operatorname{pd}(M) < \infty$. The vanishing of homogeneous components of generalized local cohomology modules with support in different graded ideals in a certain graded ring will be compared and using the result a bound for the regularity of the pair (M, N) relative to the graded ideal $\mathfrak{a} \supseteq R_+$ will be obtained.

2000 Mathematics Subject Classification. 13D45, 13E10.

Key words. Generalized local cohomology, regularity.

1. Introduction

Let $R=\oplus_{j\in\mathbb{Z}}R_j$ be a graded Noetherian ring, $\mathfrak a$ a graded ideal of R and M,N be two finitely generated graded R-modules. Let $H^i_{\mathfrak a}(M,N)$ be the i-th generalized local cohomology of M and N with support in $\mathfrak a$ [7]. Then, as it has been shown in [9], the R-module $H^i_{\mathfrak a}(M,N)=\oplus_{j\in\mathbb{Z}}[H^i_{\mathfrak a}(M,N)]_j$ has a natural graded structure in such a way that the connected sequence of functors $(H^i_{\mathfrak a}(M,-))_{i\geq 0}$ from the category of finitely generated R-modules to itself has the *restriction property in the sense of [2, Chapter 12] . Furthermore, whenever $R=\oplus_{j=0}^{\infty}R_j$ is positively graded, the R_0 -module $[H^i_{R_+}(M,N)]_j$ is finitely generated for all j and is zero for all $j\gg 0$.

Now, assume that pd(M) (the projective dimension of M) is finite. Then, by $[8, 2.5], H^i_{\mathfrak{a}}(M, N) = 0$ for all $i > pd(M) + ara(\mathfrak{a})$, where $ara(\mathfrak{a})$ is the arithmetic

498 N. Zamani

rank of the ideal \mathfrak{a} , i.e., the least number of elements of R required to generate an ideal of R with the same radical as \mathfrak{a} . In the light of the above properties of the generalized local cohomology, in [3], the authors defined the generalized regularity of the pair (M, N) of finitely generated graded $R = \bigoplus_{j \geq 0} R_j$ -modules as

$$reg(M, N) = max\{end(H_{R_{+}}^{i}(M, N)) + i | 0 \le i \le pd(M) + ara(R_{+})\},$$

and obtained interesting concerning results, whereas for a graded R-module X, we denote by $\operatorname{end}(X)$ the supremum of j-th such that $X_j \neq 0$, with the convention that $\operatorname{end}(0) = -\infty$. In the following, by abuse of terminology, for each graded ideal $\mathfrak a$ containing R_+ , we shall define the regularity of the pair (M,N) relative to $\mathfrak a$ as

$$\operatorname{reg}_{\mathfrak{a}}(M, N) = \max\{\operatorname{end}(H^{i}_{\mathfrak{a}}(M, N)) + i | \quad 0 \le i \le \operatorname{pd}(M) + \operatorname{ara}(\mathfrak{a})\}.$$

Assume that R is a positively graded (Noetherian) ring with local base ring (R_0, \mathfrak{m}_0) and M, N be two finitely generated graded R-modules with $\mathrm{pd}(M) < \infty$. We put $s(M, N) = \mathrm{pd}_R(M) + \dim_R(N)$, and for each prime ideal \mathfrak{p}_0 of R_0 , $s(\mathfrak{p}_0, M, N) = \mathrm{pd}_{R_{\mathfrak{p}_0}}(M_{\mathfrak{p}_0}) + \dim_{R_{\mathfrak{p}_0}}(N_{\mathfrak{p}_0})$. The aim of this paper is to prove the following theorem.

Theorem 1.1. Let R be a positively graded Noetherian ring with a local base ring and let M, N be two finitely generated graded R-modules with $pd(M) < \infty$. Let n be a given integer such that $[H^i_{\mathfrak{p}_0R_{\mathfrak{p}_0}+(R_{\mathfrak{p}_0})_+}(M_{\mathfrak{p}_0},N_{\mathfrak{p}_0})]_j=0$ for all j>n, all $\mathfrak{p}_0\in Spec(R_0)$ and all $0\leq i\leq s(\mathfrak{p}_0,M,N)$. Then for each graded ideal $\mathfrak{a}\supseteq R_+$,

$$reg_{\mathfrak{a}}(M,N) < s(M,N) + n + 1.$$

2. Proof of Theorem 1.1

For ease in access, we first quote some known observations about generalized local cohomology modules.

In the rest R is a commutative Noetherian ring and M, N are R-modules.

- **Remark 2.1.** A)([1, Lemma 5.1]) Assume that \mathfrak{a} is an ideal of R, M a finitely generated R-module of finite projective dimension $\operatorname{pd}(M)$, and N an R-module of finite Krull dimension $\dim(N)$. Then $H^i_{\mathfrak{a}}(M,N)=0$ for all $i>\operatorname{pd}(M)+\dim(N)$.
- B) ([5, Lemma 2.1 (i)]) For ideal ${\mathfrak a}$ of R, $H^i_{\mathfrak a}(M,N) \cong H^i_{\sqrt{\mathfrak a}}(M,N).$
- C) ([4, Lemma 3.1]) Let \mathfrak{a} be an ideal of R and $x \in R$. Let M, N be finitely generated R-modules. Then there is a natural long exact sequence

$$\cdots \to H^i_{\mathfrak{a}+(x)}(M,N) \to H^i_{\mathfrak{a}}(M,N) \to H^i_{\mathfrak{a}R_x}(M,N) \to H^{i+1}_{\mathfrak{a}+(x)}(M,N) \to \cdots,$$

of generalized local cohomology modules. Furthermore, it is easy to see that, if R, M, N and \mathfrak{a} are graded and x is a homogeneous element of R, then all the maps in this exact sequence are homogeneous, so that for each $j \in \mathbb{Z}$, there exists the long exact sequence

$$\cdots \to [H^i_{\mathfrak{a}+(x)}(M,N)]_j \to [H^i_{\mathfrak{a}}(M,N)]_j \to [H^i_{\mathfrak{a}R_x}(M,N)]_j$$
$$\to [H^{i+1}_{\mathfrak{a}+(x)}(M,N)]_j \to \cdots,$$

of R_0 -modules.

- D)([6, Theorem 3.1]) Assume that R is local and $pd(M) < \infty$. Let \mathfrak{a} be an ideal of R. Then $H^i_{\mathfrak{a}}(M,N) = 0$ for all $i > \dim(R)$.
- E) If R' is another commutative Noetherian ring and $f: R \to R'$ is a flat homomorphism, then for each ideal \mathfrak{a} of R

$$H^i_{\mathfrak{a}}(M,N) \otimes_R R' \cong H^i_{\mathfrak{a}R'}(M \otimes_R R', N \otimes_R R').$$

Thus for a multiplicatively closed subset S of R,

$$S^{-1}H^i_{\mathfrak{g}}(M,N) \cong H^i_{S^{-1}\mathfrak{g}}(S^{-1}M,S^{-1}N).$$

If R, M, N and \mathfrak{a} are graded and $S \subseteq R_0$, then for each $j \in \mathbb{Z}$,

$$S^{-1}([H^i_{\mathfrak{a}}(M,N)]_j) \cong [H^i_{S^{-1}\mathfrak{a}}(S^{-1}M,S^{-1}N)]_j,$$

as R_0 -modules. It follows that given $j \in \mathbb{Z}$ and $r_0 \in R_0$, $[H^i_{\mathfrak{a}R_{r_0}}(M_{r_0}, N_{r_0})]_j = 0$ if and only if for each $\mathfrak{p}_{0r_0} \in \operatorname{Spec}(R_{0r_0})$, $[H^i_{(\mathfrak{a}R_{r_0})_{\mathfrak{p}_0}r_0}(M_{\mathfrak{p}_0}, N_{\mathfrak{p}_0})]_j = 0$.

Now we are ready to prove the following theorem.

Theorem 2.2. Let R be a positively graded Noetherian ring with local base ring (R_0, \mathfrak{m}_0) . Assume that M and N are two finitely generated graded R-modules such that $pd(M) < \infty$. Let n be a given integer. Then the following hold:

- (1) $[H^i_{\mathfrak{p}_0 R_{\mathfrak{p}_0} + (R_{\mathfrak{p}_0})_+}(M_{\mathfrak{p}_0}, N_{\mathfrak{p}_0})]_j = 0$ for all j > n, all $\mathfrak{p}_0 \in Spec(R_0)$ and all $0 \le i \le s(\mathfrak{p}_0, M, N)$ if and only if $[H^i_{\mathfrak{a}}(M, N)]_j = 0$ for all graded ideal $\mathfrak{a} \supseteq R_+$, all j > n and all $0 \le i \le s(M, N)$.
- (2) If $[H_{(R_{\mathfrak{p}_0})_+}^{s(\mathfrak{p}_0,M,N)}(M_{\mathfrak{p}_0},N_{\mathfrak{p}_0})]_j=0$ for all j>n and all $\mathfrak{p}_0\in Spec(R_0)$, then $[H_{\mathfrak{q}}^{s(M,N)}(M,N)]_j=0$ for all graded ideal $\mathfrak{q}\supseteq R_+$ and for all j>n.

Proof. (1) (\Rightarrow) Let j > n and $\mathfrak{a} \supseteq R_+$ be a graded ideal of R. We use the induction argument on $\dim(R/\mathfrak{a})$ to show that $[H^i_{\mathfrak{a}}(M,N)]_j = 0$ for all $0 \le i \le s(M,N)$. If $\dim(R/\mathfrak{a}) = 0$, then we have $\sqrt{\mathfrak{a}} = \mathfrak{m}_0 + R_+$ the graded maximal ideal of R. Thus by Remark 2.1 B) we have $H^i_{\mathfrak{a}}(M,N) \cong H^i_{\mathfrak{m}_0+R_+}(M,N)$ and hence

$$[H^i_{\mathfrak{a}}(M,N)]_j \cong [H^i_{\mathfrak{m}_0 + R_+}(M,N)]_j,$$

500 N. Zamani

for all $j \in \mathbb{Z}$. Now by Remark 2.1 E) we have

$$([H^i_{\mathfrak{m}_0+R_+}(M,N)]_j)_{\mathfrak{m}_0} \cong [H^i_{\mathfrak{m}_0R_{\mathfrak{m}_0}+R_+R_{\mathfrak{m}_0}}(M_{\mathfrak{m}_0},N_{\mathfrak{m}_0})]_j,$$

so that using our assumption together with Remark 2.1 A) we deduce the result (note that the right hand side module is zero for $0 \le i \le s(\mathfrak{m}_0, M_{\mathfrak{m}_0}, N_{\mathfrak{m}_0})$ by our assumption, and is zero for $i > s(\mathfrak{m}_0, M_{\mathfrak{m}_0}, N_{\mathfrak{m}_0})$ by Remark 2.1 A)).

Now assume that $\dim(R/\mathfrak{a}) \geq 1$. Then $\exists r_0 \in R_0$ such that $\dim(R/(\mathfrak{a}, r_0)) < \dim(R/\mathfrak{a})$. By Remark 2.1 C) for each $j \in \mathbb{Z}$ there exists the long exact sequence

$$\cdots \to [H^{i-1}_{\mathfrak{a}R_{r_0}}(M_{r_0}, N_{r_0})]_j \to [H^i_{(\mathfrak{a}, r_0)}(M, N)]_j \to [H^i_{\mathfrak{a}}(M, N)]_j$$
$$\to [H^i_{\mathfrak{a}R_{r_0}}(M_{r_0}, N_{r_0})]_j \to \cdots \tag{*}$$

of R_0 -modules.

Let $\mathfrak{p}_{0r_0} \in \operatorname{Spec}(R_{0r_0})$. Then $r_0 \notin \mathfrak{p}_0$, $\dim(R_{\mathfrak{p}_0}/\mathfrak{a}R_{\mathfrak{p}_0}) < \dim(R/\mathfrak{a})$ and we have

$$([H^{i}_{\mathfrak{a}R_{r_{0}}}(M_{r_{0}}, N_{r_{0}})]_{j})_{\mathfrak{p}_{0}_{r_{0}}} \cong [H^{i}_{(\mathfrak{a}R_{r_{0}})_{\mathfrak{p}_{0}_{r_{0}}}}((M_{r_{0}})_{\mathfrak{p}_{0}_{r_{0}}}, (N_{r_{0}})_{\mathfrak{p}_{0}_{r_{0}}})]_{j}$$

$$\cong [H^{i}_{\mathfrak{a}R_{p_{0}}}(M_{\mathfrak{p}_{0}}, N_{\mathfrak{p}_{0}})]_{j}. \tag{**}$$

But replacing the ring R by $R':=R_{\mathfrak{p}_0}$, the ideal \mathfrak{a} by $\mathfrak{a}'=\mathfrak{a}R'$ and using our assumption, one sees that for all j>n, all $\mathfrak{q}'_0\in \operatorname{Spec}(R'_0)$ and all $0\leq i\leq s(\mathfrak{q}'_0,M_{\mathfrak{p}_0},N_{\mathfrak{p}_0})$

$$[H^{i}_{\mathfrak{q}'_{0}R'_{\mathfrak{q}'_{0}}+(R'_{\mathfrak{q}'_{0}})_{+}}((M_{\mathfrak{p}_{0}})_{\mathfrak{q}'_{0}},(N_{\mathfrak{p}_{0}})_{\mathfrak{q}'_{0}})]_{j}=0.$$

Therefore by our induction on the dimension of R/\mathfrak{a} ,

$$[H^i_{\mathfrak{a}'}(M_{\mathfrak{p}_0}, N_{\mathfrak{p}_0})]_j = 0$$

for all j > n and all $0 \le i \le s(M_{\mathfrak{p}_0}, N_{\mathfrak{p}_0})$. Hence using Remark 2.1 A) we get

$$[H_{\mathfrak{g}'}^{i}(M_{\mathfrak{p}_{0}}, N_{\mathfrak{p}_{0}})]_{i} = 0$$

for all j > n and all $0 \le i \le s(M, N)$. Thus by (**), we have

$$[H_{\sigma'}^i(M_{r_0}, N_{r_0})]_i = 0$$

for all $0 \le i \le s(M, N)$ as R_{0r_0} -module.

On the other hand, by our induction hypothesis we also have

$$[H^i_{(\mathfrak{a},r_0)}(M,N)]_j = 0$$

for all $0 \le i \le s(M, N)$. Now the result follows by the exact sequence (*).

(\Leftarrow) Since by Remark 2.1 A), $H^i_{R_+}(M,N)=0$ for all i>s(M,N), we may assume that $[H^i_{R_+}(M,N)]_j=0$ for all $i\geq 0$ and all j>n. Let $\mathfrak{p}_0\in \operatorname{Spec}(R_0)$. We prove that $[H^i_{\mathfrak{p}_0R_{\mathfrak{p}_0}+(R_{\mathfrak{p}_0})_+}(M_{\mathfrak{p}_0},N_{\mathfrak{p}_0})]_j=0$ for all $i\geq 0$ and all j>n.

We do this by induction argument on $\dim(R_0)$. If $\dim(R_0) = 0$, then evidently \mathfrak{m}_0 is the only prime ideal of R_0 and $\dim(R_{\mathfrak{m}_0}) = 0$. Thus for i > 0, we have $H^i_{\mathfrak{m}_0 R_{\mathfrak{m}_0} + R_+ R_{\mathfrak{m}_0}}(M_{\mathfrak{m}_0}, N_{\mathfrak{m}_0}) = 0$ by Remark 2.1 D), while for i = 0, $[H^i_{\mathfrak{m}_0 + R_+}(M, N)]_j \subseteq [H^i_{R_+}(M, N)]_j = 0$.

So, assume that $\dim(R_0) > 0$. Localizing all at \mathfrak{p}_0 and using our induction hypothesis, we may assume that $\mathfrak{p}_0 = \mathfrak{m}_0$. Put

$$\mathcal{A} = \{\mathfrak{u} \mid \mathfrak{u} \text{ is a graded ideal of } R \text{ such that } R_+ \subseteq \mathfrak{u} \text{ and that } [H^i_{\mathfrak{u}}(M,N)]_j = 0 \quad \forall i \geq 0, j > n\}.$$

We claim that $\mathfrak{m}_0 + R_+$ is the only maximal element of \mathcal{A} . To see this, let \mathfrak{a} be a maximal element of \mathcal{A} such that $\mathfrak{a} \subset \mathfrak{m}_0 + R_+$. Then, $\exists r_0 \in \mathfrak{m}_0 \setminus \mathfrak{a}, i \geq 0$ and j > n such that $[H^i_{(\mathfrak{a},r_0)}(M,N)]_j \neq 0$. On the other hand let $\mathfrak{q}_{0r_0} \in \operatorname{Spec}(R_{0r_0})$. Then $r_0 \notin \mathfrak{q}_0$ and we have

$$([H_{\mathfrak{a}R_{r_0}}^{i-1}(M_{r_0}, N_{r_0})]_j)_{\mathfrak{q}_{0r_0}} \cong [H_{\mathfrak{a}R_{\mathfrak{q}_0}}^{i-1}(M_{\mathfrak{q}_0}, N_{\mathfrak{q}_0})]_j$$
$$\cong ([H_{\mathfrak{a}}^{i-1}(M, N)]_j)_{\mathfrak{q}_0} = 0$$

for all j > n by the choice of \mathfrak{a} . This gives that

$$[H_{\mathfrak{a}R_{r_0}}^{i-1}(M_{r_0}, N_{r_0})]_j = 0$$

for all j > n and so from the long exact sequence (*) we have

$$[H^i_{(\mathfrak{a},r_0)}(M,N)]_j = 0$$

for all $i \ge 0$ and all j > n, which is a contradiction. The claim now follows.

(2) We again proceed by induction on $\dim(R_0)$. If $\dim(R_0) = 0$, then $\dim(R_{\mathfrak{m}_0}) = 0$, $\operatorname{pd}(M_{\mathfrak{m}_0}) = 0 = \dim(N_{\mathfrak{m}_0})$ and the result follows by Remark 2.1 E) and D). So, Assume that $\dim(R_0) > 0$ and the result has been proved over all positively graded Noetherian rings having local base ring of smaller dimension. Let \mathfrak{a} be a graded ideal of R such that $R_+ \subseteq \mathfrak{a}$. Consider the set

$$\mathcal{B} = \{ \mathfrak{b} \mid \mathfrak{b} \text{ is a graded ideal of } R \text{ such that } R_+ \subseteq \mathfrak{b} \subseteq \mathfrak{a}$$
 and that $H_{\mathfrak{b}}^{s(M,N)}(M,N) = 0 \text{ for all } j > n \}.$

Let \mathfrak{A} be a maximal element of \mathcal{B} . We show that $\mathfrak{A} = \mathfrak{a}$. If this is not the case, then $\exists r_0 \in \mathfrak{a} \setminus \mathfrak{A}$ such that $\mathfrak{A} \subseteq (\mathfrak{A}, r_0)$ and that

$$[H_{(\mathfrak{A},r_0)}^{s(M,N)}(M,N)]_j \neq 0$$

for some j > n. Now using the exact sequence (*), we obtain the exact sequence

$$\cdots \to [H^{s(M,N)-1}_{\mathfrak{A}R_{r_0}}(M_{r_0},N_{r_0})]_j \to [H^{s(M,N)}_{\mathfrak{A},r_0}(M,N)]_j \to [H^{s(M,N)}_{\mathfrak{A}}(M,N)]_j \to \cdots$$

502 N. Zamani

of R_0 -modules.

Let $\mathfrak{p}_{0r_0} \in \operatorname{Spec}(R_{0r_0})$. Then evidently $r_0 \notin \mathfrak{p}_0$, $\dim(R_0)_{\mathfrak{p}_0} < \dim(R_0)$ and $s(\mathfrak{p}_0, M, N) \leq s(M, N) - 1$ (note that the assumption on r_0 gives that $r_0 \in \mathfrak{m}_0$). So, if $s(\mathfrak{p}_0, M, N) < s(M, N) - 1$, then by Remark 2.1 A), we have $H^{s(M,N)-1}_{\mathfrak{A}R_{\mathfrak{p}_0}}(M_{\mathfrak{p}_0}, N_{\mathfrak{p}_0}) = 0$.

Otherwise

$$[H_{\mathfrak{A}R_{\mathfrak{p}_0}}^{s(M,N)-1}(M_{\mathfrak{p}_0},N_{\mathfrak{p}_0})]_j=0$$

by induction on $\dim(R_0)$, which by Remark 2.1 E) means that for all j > n,

$$([H^{s(M,N)-1}_{\mathfrak{A}R_{r_0}}(M_{r_0},N_{r_0})]_j)_{\mathfrak{p}_0}{}_{r_0}=0.$$

Thus $[H_{\mathfrak{A}R_{r_0}}^{s(M,N)-1}(M_{r_0},N_{r_0})]_j=0$. Hence, from the exact sequence (*) we obtain $[H_{\mathfrak{A},r_0}^{s(M,N)}(M,N)]_j=0$, which is a contradiction. This completes the proof.

Now the proof of Theorem 1.1 is immediate by the definition of $\operatorname{reg}_{\mathfrak{a}}(M,N)$ and Theorem 2.2.

Theorem 2.3. Let R be a positively graded Noetherian ring with a local base ring and N be a finitely generated graded R-module. Let n be an integer such that $[H^i_{\mathfrak{p}_0R_{\mathfrak{p}_0}+(R_{\mathfrak{p}_0})_+}(N_{\mathfrak{p}_0})]_j=0$ for all j>n, all $\mathfrak{p}_0\in Spec(R_0)$ and all $0\leq i\leq dim_{R_{\mathfrak{p}_0}}(N_{\mathfrak{p}_0})$. Then for each homogeneous ideal $\mathfrak{a}\supseteq R_+$,

$$reg_{\mathfrak{g}}(N) < dim_R(N) + n + 1.$$

Proof. In Theorem 1.1 consider M = R.

Acknowledgments. I would like to thank the referee for carefully reading of the paper and for useful suggestions.

References

- M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasg. Math. J. 21 (1980), 173–181.
- 2. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
- M. Chardin and K. Divaani-Aazar, Generalized local cohomology and regularity of Ext modules, J. Algebra 319 (2008), 4780–4797.
- 4. K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimension, *Comm. Algebra* **39** (2011), 2051–2067.
- 5. N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, *East-West J. Math.* **7** (2005), 107–115.
- 6. N. T. Cuong and N. V. Hoang, On the vanishing and the finiteness of supports of generalized local cohomology modules, *Manuscripta Math.* **126** (2008), 59–72.
- J. Herzog, Komplexe, Auflösungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universität regensburg, 1970.

- S. Yassemi, Generalized section functors, J. Pure Appl. Algebra 95 (1994), 103–119.
 N. Zamani, On the homogeneous pieces of graded generalized local cohomology modules, Colloq. Math. 97 (2003), 181–188.

 $\varphi \phi$