Vietnam Journal
of
MATHEMATICS
© VAST

Viscosity Approximation Method for Lipschitzian Pseudocontraction Semigroups in Banach Spaces

Duong Viet Thong

Faculty of Economics Mathematics, National Economics University, 207 Giai Phong, Hai Ba Trung, Hanoi, Vietnam

> Received October 27, 2010 Revised April 22, 2012

Abstract. Let E be a real Banach space which admits a weakly sequentially continuous duality mapping from E to E^* , and K be a nonempty closed convex subset of E. Let $\{T(t): t \geq 0\}$ be a Lipschitzian pseudocontractive semigroup on K such that $F:=\bigcap_{t\geq 0}\operatorname{Fix}(T(t))\neq\emptyset$, and $f:K\to K$ be a fixed contractive mapping. When $\{\alpha_n\},\{t_n\}$ satisfy some appropriate conditions, the iterative process given by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n) x_n$$
 for $n \in \mathbb{N}$,

converges strongly to $p \in F$, which is the unique solution in F to the following variational inequality:

$$\langle (f-I)p, j(x-p)\rangle \le 0 \quad \forall x \in F.$$

Our results presented in this paper extend and improve recent results of R. Chen and H. He [1], Y. Song and R. Chen [8], Xu [13].

2000 Mathematics Subject Classification. 47H09, 47H10, 47H20.

Key words. Lipschitzian pseudocontraction semigroup, demiclosed principle, common fixed point, Opial's condition, implicit iteration process.

1. Introduction

Let E be a real Banach space and let J denote the normalized duality mapping from E into 2^{E^*} given by $J(x) := \{ f \in E^*, \langle x, f \rangle = \|x\| \|f\|, \|x\| = \|f\| \} \ \forall x \in E$, where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality

pairing. In the following, we shall denote the single-valued duality mapping by j, and denote $F(T) = \{x \in E; Tx = x\}$. When $\{x_n\}$ is a sequence in E, then $x_n \to x$ (respectively $x_n \to x, x_n \stackrel{*}{\to} x$) will denote strong (respectively weak, weak*) convergence of the sequence $\{x_n\}$ to x.

Recall that the norm of a Banach spaces E is said to be Gâteaux differentiable (or E is said to be smooth), if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{1}$$

exists for each x, y on the unit sphere S(E) of E. Moreover, if for each $y \in S(E)$ the limit defined by (1) is uniformly attained for x in S(E), we say that the norm E is uniformly Gâteaux differentiable. The norm of E is said to be Fréchet differentiable, if for each $x \in S(E)$, the limit (1) is attained uniformly for $y \in S(E)$. The norm of E is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth), if the limit (1) is attained uniformly for $(x,y) \in S(E) \times S(E)$.

The following results are well known:

- i) The duality mapping J in a smooth Banach space E is single valued and strong-weak* continuous [11, Lemma 4.3.3].
- ii) In a uniformly smooth Banach E, the mapping $J: E \to E^*$ is single valued and norm to norm uniformly continuous on bounded sets of E [11, Theorem 4.3.6].
- iii) If E admits a weakly sequentially continuous duality mapping, then E satisfies Opial's condition, and E is smooth; for the details, see [4].

Definition 1.1. (Zhang [17]) A one-parameter family $\{T(t): t \geq 0\}$ of mappings from K into itself is said to be a pseudo-contraction semigroup on K, if the following conditions are satisfied:

- i) T(0)x = x for each $x \in K$;
- ii) T(t+s)x = T(t)T(s)x for any $t, s \in \mathbb{R}_+$ and $x \in K$;
- iii) for each $x \in E$, the mapping $T(\cdot)x$ from \mathbb{R}_+ into K is continuous;
- iv) for any $x, y \in C$, there exists $j(x y) \in J(x y)$ such that

$$\langle T(t)x - T(t)y, j(x-y)\rangle \le ||x-y||^2$$
 for each $t > 0$.

A pseudocontraction semigroup $\{T(t): t \geq 0\}$ is said to be Lipschitzian [5], [16], if the conditions (1)–(4) and the following condition (5) are satisfied:

v) There exists a bounded measurable function $L:(0,\infty)\to [0,\infty)$ such that, for any $x,y\in K$,

$$||T(t)x - T(t)y|| \le L(t)||x - y||$$
 for each $t > 0$.

In the sequel, we denote

$$M:= \sup_{t>0} L(t) < \infty \ \ \text{and} \ \ F:= \underset{t\geq 0}{\cap} \operatorname{Fix}(T(t)).$$

In [6], Shioji and Takahashi introduce in a Hilbert space the implicit iteration

$$x_n = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_{0}^{t_n} T(s) x_n ds, \quad n \in \mathbb{N},$$

where $\{\alpha_n\}$ is a sequence in (0,1), $\{t_n\}$ a sequence of positive real numbers divergent to ∞ , and for each $n \geq 0$ and $x \in C$. Under certain restrictions on the sequence $\{\alpha_n\}$, Shioji and Takahashi [6] prove the strong convergence of $\{x_n\}$ to a member of F (see also [15]). In [7], Shimizu and Takahashi studied the strong convergence of the sequence $\{x_n\}$ defined by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_{0}^{t_n} T(s) x_n ds, \quad n \in \mathbb{N}$$

in a Hilbert space H, where $\{T(t): t \geq 0\}$ is a strongly continuous semigroup of nonexpansive mappings on a closed convex subset C of H, $t_n \geq 0$, and $t_n \to \infty$.

In [2] Chen and Yunyan Song studied the strong convergence of the following sequences (2) and (3) for a nonexpansive semigroup $\{T(t): t \geq 0\}$ with $F \neq \emptyset$ in a Banach space:

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) \frac{1}{t_n} \int_{0}^{t_n} T(s) x_n ds, \quad n \in \mathbb{N},$$
 (2)

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds, \quad n \in \mathbb{N}.$$
 (3)

In 2002, Suzuki [10] was the first to introduce again in a Hilbert space the following implicit iteration process:

$$x_n = \alpha_n u + (1 - \alpha_n) T(t_n) x_n, \quad n \ge 1$$
(4)

for the nonexpansive semigroup case. In 2005, Xu [14] established a Banach space version of sequence (4) of Suzuki [10].

Recently, in [1] R. Chen and H. He studied the vicosity approximation process for a nonexpansive semigroup and proved another strong convergence theorem for a nonexpansive semigroup in a Banach space, which is defined by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n) x_n \quad \forall n \in \mathbb{N}, \tag{5}$$

$$y_{n+1} = \beta_n f(x_n) + (1 - \beta_n) T(t_n) y_n \quad \forall n \in \mathbb{N}.$$

For a continuous pseudocontractive mapping $T: K \to K$ and a fixed contractive mapping $f: K \to K$, the mapping $T_f = tf + (1-t)T$ obviously is a continuous strongly pseudocontractive mapping from K to K. Therefore, T_f has a unique fixed point in K [3, Corollary 2], i.e., for any given $t \in (0,1)$ there exists $x_t \in K$ such that $x_t = f(x_t) + (1-t)T(x_t)$. This implies that the viscosity iterative process also applies to continuous pesudocontractive mappings.

In this paper, motivated by the above results, we study the vicosity approximation process for a Lipschitzian pseudocontractive semigroup and prove another strong convergence theorem for a continuous pseudocontractive mapping in a Banach space which is defined by (5).

Recall that $S: K \to K$ is called accretive if I - S is pseudocontractive. We denote by J_r the resolvent of S, i.e., $J_r = (I + rS)^{-1}$. It is well known that J_r is nonexpansive, single valued and $F(J_r) = S^{-1}(0) := \{z \in D(S); 0 = S(z)\}$ for all r > 0. For more details, see [11].

Let K be a nonempty closed convex subset of a real Banach space E and $T: K \to K$ be a pseudocontractive map, then I - T is accretive. We denote $A = J_1 = (2I - T)^{-1}$, then F(A) = F(T), $A: R(2I - T) \to K$ is nonexpansive and single valued.

In the sequel, we will need the following definition and results.

Definition 1.2. A Banach space E is said to satisfy Opial's condition if whenever $\{x_n\}$ is a sequence in E which converges weakly to x, as $n \to \infty$, then

$$\limsup_{n \to \infty} ||x_n - x|| < \limsup_{n \to \infty} ||x_n - y|| \quad \forall y \in E, y \neq x.$$

It is well known that every Hilbert space and $l^p(1 space satisfy Opial's condition.$

Lemma 1.3. [12, Lemma 1] Let $\{t_n\}$ be a real sequence and τ be a real number such that $\liminf_{n\to\infty} t_n \leq \tau \leq \limsup_{n\to\infty} t_n$. Suppose that either of the following holds

- i) $\limsup_{n\to\infty} (t_{n+1}-t_n) \leq 0$, or
- ii) $\liminf_{n\to\infty} (t_{n+1}-t_n) \geq 0$.

Then τ is a cluster point of $\{t_n\}$. Moreover, for $\epsilon > 0, k, m \in \mathbb{N}$, there exists $m_0 \geq m$ such that $|t_j - \tau| < \epsilon$ for every integer j with $m_0 \leq j \leq m_0 + k$.

Lemma 1.4. [9, Lemma 1.1] Let K be a nonempty closed convex subset of a real Banach space E and $T: K \to K$ be a continuous pseudocontractive map. We denote $A = (2I - T)^{-1}$. Then

i) The map A is a nonexpansive self-mapping on K, i.e., for all $x, y \in K$ we have $||Ax - Ay|| \le ||x - y||$ and $Ax \in K$.

ii) If
$$\lim_{n\to\infty} ||x_n - Tx_n|| = 0$$
, then $\lim_{n\to\infty} ||x_n - Ax_n|| = 0$.

Lemma 1.5. (Zhou [18]) Let E be a real reflexive Banach space with the Opial condition. Let C be a nonempty closed convex subset of E and $T: C \to C$ be a continuous pseudocontractive mapping. Then T is demiclosed at zero, i.e., for any sequence $\{x_n\} \subset E$, if $x_n \to y$ and $\|(I-T)x_n\| \to 0$, then (I-T)y = 0.

2. Main results

Theorem 2.1. Let E be a reflexive Banach space which admits a weakly sequentially continuous duality mapping J from E to E^* , suppose K is a nonempty closed convex subset of E. Let $\{T(t): t \geq 0\}$ be a Lipschitzian pseudocontractive semigroup on K such that $F:=\bigcap_{t\geq 0}\operatorname{Fix}(T(t))\neq\emptyset$, and $f:K\to K$ be a fixed contractive mapping with contractive coefficient $\alpha\in(0,1)$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0<\alpha_n<1,t_n>0$, $\lim_{n\to\infty}\alpha_n=0$, $\lim_{n\to\infty}t_n=0$, $\lim_{n\to\infty}t_n>0$, $\lim_{n\to\infty}(t_{n+1}-t_n)=0$. Define a sequence $\{x_n\}$ in K by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n) x_n. \tag{6}$$

Suppose that for any bounded subset $C \subset K$,

$$\lim_{s \to 0} \sup_{x \in C} ||T(s)x - x|| = 0.$$
 (7)

Then $\{x_n\}$ converges strongly to p, as $n \to \infty$, where p is an element of F which is the unique solution in F to the following variational inequality

$$\langle (f-I)p, J(x-p) \rangle \le 0 \quad \text{for all } x \in F.$$
 (8)

Proof. First, we show the uniqueness of solutions of the variational inequality (8). In fact, supposing $p, q \in F$ satisfy (8), we get

$$\langle (f-I)p, J(q-p) \rangle \le 0,$$

 $\langle (f-I)q, J(p-q) \rangle \le 0.$

From the above inequalities we have

$$(1-\alpha)\|p-q\|^2 \le \langle (I-f)p - (I-f)q, J(p-q)\rangle \le 0.$$

We must have p = q and the uniqueness is proved. Below we use $p \in F$ to denote the unique solution of (8). Now we show that $\{x_n\}$ is bounded. In fact, for any fixed $x \in F$, it follows from Eq. (6) that

$$||x_n - x||^2 = \alpha_n \langle f(x_n) - x, J(x_n - x) \rangle + (1 - \alpha_n) \langle T(t_n) x_n - x, J(x_n - x) \rangle$$

$$\leq \alpha_n \langle f(x_n) - f(x), J(x_n - x) \rangle + \alpha_n \langle f(x) - x, J(x_n - x) \rangle$$

$$+ (1 - \alpha_n) ||x_n - x||^2$$

$$\leq [1 - (1 - \alpha)\alpha_n] ||x_n - x||^2 + \alpha_n \langle f(x) - x, J(x_n - x) \rangle.$$

Therefore

$$||x_n - x||^2 \le \frac{1}{1 - \alpha} \langle f(x) - x, J(x_n - x) \rangle$$

$$\le \frac{1}{1 - \alpha} ||f(x) - x|| ||x_n - x||.$$
(9)

Thus

$$||x_n - x|| \le \frac{1}{1 - \alpha} ||f(x) - x||.$$

We claim that $\{x_n\}$ is relatively sequentially compact. Indeed, we have

$$||x_n - T(t_n)x_n|| = \alpha_n ||T(t_n)x_n - f(x_n)|| \to 0 \text{ as } n \to \infty.$$
 (10)

We choose a sequence $\{t_{n_i}\}$ of positive real numbers such that

$$t_{n_j} \to 0, \quad \frac{1}{t_{n_j}} \|x_{n_j} - T(t_{n_j})x_{n_j}\| \to 0.$$
 (11)

We now show that how such a special subsequence can be constructed. Fix $\delta>0$ such that

$$\liminf_{n \to \infty} t_n = 0 < \delta < \limsup_{n \to \infty} t_n.$$

From (10), there exists $m_1 \in \mathbb{N}$ such that $||T(t_n)x_n - x_n|| < \frac{1}{3^2}$ for all $n \geq m_1$. By Lemma 1.3, $\frac{\delta}{2}$ is a cluster point of $\{t_n\}$. In particular, there exists $n_1 > m_1$ such that $\frac{\delta}{3} < t_{n_1} < \delta$. Next, we choose $m_2 > n_1$ such that $||T(t_n)x_n - x_n|| < \frac{1}{4^2}$ for all $n \geq m_2$. Again, by Lemma 1.3, $\frac{\delta}{3}$ is a cluster point of $\{t_n\}$ and this implies that there exists $n_2 > m_2$ such that $\frac{\delta}{4} < t_{n_2} < \frac{\delta}{2}$. Continuing in this way, we obtain a subsequence $\{n_i\}$ of n satisfying

$$||T(t_{n_j})x_{n_j} - x_{n_j}|| < \frac{1}{(j+2)^2}, \quad \frac{\delta}{j+2} < t_{n_j} < \frac{\delta}{j} \quad \text{ for all } j \in \mathbb{N}.$$

Consequently, (11) is satisfied.

Since $\{x_n\}$ is bounded, without loss of generality we may assume that the subsequence $\{x_{n_j}\}$ of $\{x_n\}$ converges weakly to some $q \in K$. Now, we prove that q = T(t)q for any fixed t > 0. Indeed,

$$\begin{split} \|x_{n_{j}} - T(t)x_{n_{j}}\| &\leq \sum_{k=0}^{\left[\frac{t}{tn_{j}}\right]-1} \|T((k+1)t_{n_{j}})x_{n_{j}} - T(kt_{n_{j}})x_{n_{j}}\| \\ &+ \left\|T\left(\left[\frac{t}{tn_{j}}\right]t_{n_{j}}\right)x_{n_{j}} - T(t)x_{n_{j}}\right\| \\ &\leq \left[\frac{t}{tn_{j}}\right]M\|T(t_{n_{j}})x_{n_{j}} - x_{n_{j}}\| + M\left\|T\left(t - \left[\frac{t}{tn_{j}}\right]t_{n_{j}}\right)x_{n_{j}} - x_{n_{j}}\right\| \\ &\leq Mt\frac{\|T(t_{n_{j}})x_{n_{j}} - x_{n_{j}}\|}{t_{n_{j}}} + M\max_{0 \leq s \leq tn_{j}} \{\|T(s)x_{n_{j}} - x_{n_{j}}\|\} \end{split}$$

for all $j \in \mathbb{N}$, [t] denotes the integral part of t. From (11) and the continuity of the mapping $t \mapsto T(t)x$, $x \in K$, we get

$$\lim_{j \to \infty} ||x_{n_j} - T(t)x_{n_j}|| = 0.$$

By Lemma 1.5, then T(t)q = q, therefore $q \in F$. In inequality (9), we have

$$||x_{n_j} - q||^2 \le \frac{1}{1 - \alpha} \langle f(q) - q, J(x_{n_j} - q) \rangle.$$

Since the duality map J is single-valued and weakly sequentially continuous from E to E^* , we get

$$\lim_{j \to \infty} ||x_{n_j} - q||^2 \le \frac{1}{1 - \alpha} \lim_{j \to \infty} \langle f(q) - q, J(x_{n_j} - q) \rangle = 0,$$

i.e., $x_{n_j} \to q$ as $j \to \infty$. Hence, $\{x_n\}$ is relatively sequentially compact. Next we show that q is a solution in F to the variational inequality (8). In fact, for any $x \in F$, from Eq. (6) we obtain

$$||x_n - x||^2 = \alpha_n \langle f(x_n) - x, J(x_n - x) \rangle + (1 - \alpha_n) \langle T(t_n) x_n - x, J(x_n - x) \rangle$$

$$\leq \alpha_n \langle f(x_n) - x_n, J(x_n - x) \rangle + \alpha_n ||x_n - x||^2 + (1 - \alpha_n) ||x_n - x||^2$$

$$= \alpha_n \langle f(x_n) - x_n, J(x_n - x) \rangle + ||x_n - x||^2.$$

Therefore

$$\langle f(x_n) - x_n, J(x - x_n) \rangle \le 0.$$

Since the sets $\{x_n - x\}$ and $\{x_n - f(x_n)\}$ are bounded and the duality mapping J is single-valued and weakly sequentially continuous from E to E^* , for any fixed $x \in F$, we have

$$\langle f(q) - q, J(x - q) \rangle = \lim_{j \to \infty} \langle f(x_{n_j}) - x_{n_j}, J(x - x_{n_j}) \rangle \le 0.$$

This $q \in F$ is a solution of variational inequality (8), hence q = p by the uniqueness. In summary, we have proved that $\{x_n\}$ is relatively sequentially compact

and each cluster point of $\{x_n\}$ (as $n \to \infty$) equals p. Therefore $x_n \to p$ as $n \to \infty$. The proof is complete.

Theorem 2.2. Let E be a reflexive Banach space which admits a weakly sequentially continuous duality mapping J from E to E^* . Suppose K is a nonempty closed convex subset of E. Let $\{T(t): t \geq 0\}$ be a Lipschitzian pseudocontractive semigroup on K such that $F = \bigcap_{t \geq 0} \operatorname{Fix}(T(t)) \neq \emptyset$, and $f: K \to K$ be a fixed contractive mapping with the contractive coefficient $\alpha \in (0,1)$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0 < \alpha_n < 1, t_n > 0$ and $\lim_{n \to \infty} t_n = \lim_{n \to \infty} \frac{\alpha_n}{t_n} = 0$. Define a sequence $\{x_n\}$ in K by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n) x_n.$$

Suppose that for any bounded subset $C \subset K$,

$$\lim_{s \to 0} \sup_{x \in C} ||T(s)x - x|| = 0.$$

Then $\{x_n\}$ converges strongly to p as $n \to \infty$, where p is an element of F which is the unique solution in F to the following variational inequality

$$\langle (f-I)p, J(x-p) \rangle \leq 0$$
 for all $x \in F$.

Proof. We have proved in Theorem 2.1 that $\{x_n\}$ is bounded, so are $\{T(t_n)x_n\}$ and $\{f(x_n)\}$.

Now we show that for t > 0, $||T(t)x_n - x_n|| \to 0$ as $n \to \infty$. In fact, we have

$$||x_{n} - T(t_{n})x_{n}|| \leq \sum_{k=0}^{\left[\frac{t}{t_{n}}\right]-1} ||T((k+1)t_{n})x_{n} - T(kt_{n})x_{n}||$$

$$+ \left\|T\left(\left[\frac{t}{t_{n}}\right]t_{n}\right)x_{n} - T(t)x_{n}\right\|$$

$$\leq M\left[\frac{t}{t_{n}}\right]||T(t_{n})x_{n} - x_{n}|| + M\left\|T\left(t - \left[\frac{t}{t_{n}}\right]t_{n}\right)x_{n} - x_{n}\right\|$$

$$\leq Mt\frac{\alpha_{n}}{t_{n}}||f(x_{n}) - T(t_{n})x_{n}||$$

$$+ M\max\{||T(s)x_{n} - x_{n}|| : 0 \leq s \leq t_{n}\}.$$

From $\lim_{n\to\infty}\frac{\alpha_n}{t_n}=0$ and the continuity of the mapping $t\mapsto T(t)x,\ x\in K$, it follows that the conclusion is proved. Since the remainder of the proof is the same as the proof of Theorem 2.1, we omit it. This completes the proof.

Corollary 2.3. Let E be a real reflexive Banach space which satisfies Opial's condition with a uniformly Gâteaux differentiable norm, and K be a nonempty closed convex subset of E. Let $\{T(t): t \geq 0\}$ be a Lipschitzian pseudocontractive

semigroup on K such that $F:=\bigcap_{t\geq 0}\operatorname{Fix}(T(t))\neq\emptyset$ and satisfying (7). Let $f:K\to K$ be a fixed contractive mapping with contractive coefficient $\alpha\in(0,1)$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0<\alpha_n<1,t_n>0$, $\lim_{n\to\infty}\alpha_n=0,\liminf_{n\to\infty}t_n=0$, $\limsup_{n\to\infty}t_n>0$, $\lim_{n\to\infty}(t_{n+1}-t_n)=0$. Define a sequence $\{x_n\}$ in K by Eq. (6). Then $\{x_n\}$ converges strongly to a point p of F which is the unique solution in F to the variational inequality (8).

Corollary 2.4. Let E be a real reflexive Banach space which satisfies Opial's condition with a uniformly Gâteaux differentiable norm, and E be a nonempty closed convex subset of E. Let E be a Lipschitzian pseudocontractive semigroup on E such that E is E be a Lipschitzian pseudocontractive semigroup on E such that E is E be and satisfying (7). Let E is E be a fixed contractive mapping with contractive coefficient E coefficient E converges of real numbers satisfying E converges strongly to a fixed point E of E which is the unique solution in E to the variational inequality (8).

The following theorem was proved by Xu:

Theorem 2.5. [13, Theorem 4.1] Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, and $T: K \to K$ a nonexpansive mapping with a fixed point and $f: K \to K$ a fixed contractive mapping. If there exists a bounded sequence $\{x_n\}$ such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$, then

$$\lim_{n \to \infty} \sup \langle f(p) - p, j(x_n - p) \rangle \le 0,$$

where p is the unique solution in Fix(T) to the variational inequality

$$\langle (f-I)p, j(x-p) \rangle$$
 for all $x \in \text{Fix}(T)$. (12)

Theorem 2.6. Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, and $T: K \to K$ be a continuous pseudocontractive mapping with a fixed point and $f: K \to K$ be a fixed contractive mapping with contractive coefficient $\alpha \in (0,1)$. Let $\{\alpha_n\}$ be a sequence of real numbers satisfying $0 < \alpha_n < 1$, $\lim_{n \to \infty} \alpha_n = 0$. Define a sequence $\{x_n\}$ in K by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T x_n.$$

Then $\{x_n\}$ converges strongly to a fixed point p of Fix(T) which is the unique solution in Fix(T) to the variational inequality (12).

Proof. As in the proof of Theorem 2.1, we can conclude that

- i) The sets $\{x_n\}, \{Tx_n\}, \{f(x_n)\}\$ are bounded;
- ii) $\lim_{n \to \infty} ||x_n Tx_n|| = 0.$

Denoting $A = (2I - T)^{-1}$, from Lemma 1.4 we get that Fix(T) = Fix(A), and A is a nonexpansive self-mapping on K and

$$\lim_{n \to \infty} ||x_n - Ax_n|| = 0.$$

By Theorem 2.5, for the nonexpansive self-mapping A, we obtain

$$\lim_{n \to \infty} \sup \langle f(p) - p, J(x_n - p) \rangle \le 0,$$

where $p \in \text{Fix}(A) = \text{Fix}(T)$ is a unique solution to the variational inequality (12) in Fix(A) = Fix(T). Finally, we show that $x_n \to p$ $(n \to \infty)$. Indeed

$$||x_n - p||^2 = \alpha_n \langle f(x_n) - p, J(x_n - p) \rangle + (1 - \alpha_n) \langle Tx_n - p, J(x_n - p) \rangle$$

$$\leq \alpha_n \langle f(x_n) - f(p), J(x_n - p) \rangle + \alpha_n \langle f(p) - p, J(x_n - p) \rangle$$

$$+ (1 - \alpha_n) ||x_n - p||^2.$$

Thus

$$||x_n - p||^2 \le \frac{1}{1 - \alpha} \langle f(p) - p, J(x_n - p) \rangle.$$

Therefore $\limsup_{n\to\infty} ||x_n - p||^2 = 0$. So, the conclusion is proved.

Acknowledgment. The author is grateful to the anonymous referee for valuable suggestions which helped to improve the manuscript.

References

- 1. R. Chen and H. He, Viscosity approximation of common fixed points of nonexpansive semigroups in Banach spaces, *Appl. Math. Lett.* **20** (2007), 751–757.
- 2. R. Chen and Y. Song, Convergence to common fixed point of nonexpansive semi-groups, *J. Comput. Appl. Math.* **200** (2007), 566–573.
- 3. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374.
- 4. J.-P. Gossez and E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, *Pacific J. Math.* **40** (1972), 565–573.
- T. H. Kim and H.-K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, *Nonlinear Anal.* 64 (2006), 1140–1152.
- N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998), 87–99.
- T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71–83.
- 8. Y. Song and R. Chen, An approximation method for continuous pseudocontractive mappings, *J. Inequal. Appl.* Vol. 2006, pages 1–9. Article ID 28950.
- 9. Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, *Nonlinear Anal.* **67** (2007), 486–497.
- 10. T. Suzuki, On strong convergence to common fixed points of nonexpansive semi-groups in Hilbert spaces, *Proc. Amer. Math. Soc.* **131** (2003), 2133–2136.
- 11. W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000.

- 12. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, *J. Math. Anal. Appl.* **305** (2005), 227–239.
- 13. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, *J. Math. Anal. Appl.* **298** (2004), 279–291.
- 14. H. K. Xu, A strong convergence theorem for contraction semi-groups in Banach spaces, *Bull. Aust. Math. Soc.* **72** (2005), 371–379.
- 15. H. K. Xu, Approximations to fixed points of contraction semigroups in Hilbert spaces, *Numer. Funct. Anal. Optim.* **19** (1998), 157–163.
- 16. H.-K. Xu, Strong asymptotic behavior of almost-robits of nonlinear semigroups, *Nonlinear Anal.* **46** (2001), 135–151.
- 17. S. S. Zhang, Weak convergence theorem for Lipschitzian pseudocontraction semi-groups in Banach spaces, *Acta Math. Sin. (Engl. Ser.)* **26** (2010), 337–344.
- 18. H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, *Nonlinear Anal.* **68** (2008), 2977–2983.