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Abstract. This article aims to demonstrate how the definitions of slopes can be ex-

tended to multi-valued mappings between metric spaces and applied for characterizing

metric regularity. Several kinds of local and nonlocal slopes are defined and several

metric regularity properties for set-valued mappings between metric spaces are inves-

tigated.

2000 Mathematics Subject Classification. 49J52, 49J53, 58C06, 47H04, 54C60.

Key words. Variational analysis, error bounds, slope, multifunction, metric regular-

ity.

1. Introduction

This article aims to demonstrate how the definitions of slopes which have proved
to be very useful tools for analyzing local properties of real-valued functions [1–

⋆ The research was partially supported by the Australian Research Council, grant
DP110102011.
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3, 6, 10–13, 15–17] can be extended to multi-valued mappings between metric
spaces and applied for characterizing metric regularity.

Several kinds of local and nonlocal slopes are defined in Section 2 following the
scheme developed in [10] for real-valued functions and extended in [4, 5] to vector-
valued functions. The idea is not quite new. Some elements of the definitions
introduced in the current article are present implicitly in many publications
[2, 3, 12, 13, 16, 15]. It seems the definitions can be useful and the time has
come to formulate them explicitly.

In this article we investigate several metric regularity properties for set-valued
mappings between metric spaces:

• conventional local metric regularity and uniform metric regularity for map-
pings depending on a parameter (Section 3);

• metric regularity along a subspace (Section 4);

• metric multi-regularity for mappings into product spaces (Section 5)

and formulate the corresponding necessary and sufficient regularity criteria in
terms of slopes. For the definitions and characterizations of the mentioned above
extensions of metric regularity we refer the reader to [8, 9].

Our basic notation is standard, see [14, 18]. Depending on the context, X
and Y are either metric or normed spaces. Metrics in all spaces are denoted by
the same symbol d(·, ·). d(x,A) = infa∈A ‖x − a‖ is the point-to-set distance
from x to A. When dealing with product spaces we always assume that the
product topology is given by the maximum type norm/distance. We also use the
denotation α+ = max(α, 0), where α ∈ R.

Recall that a set-valued mapping (multifunction) F : X ⇉ Y is a mapping
which assigns to every x ∈ X a subset (possibly empty) F (x) of Y . As usual, we
use the notation gphF := {(x, y) ∈ X × Y | y ∈ F (x)} for the graph of F and
F−1 : Y ⇉ X for the inverse of F . This inverse (which always exists) is defined
by F−1(y) := {x ∈ X | y ∈ F (x)}, y ∈ Y , and satisfies

(x, y) ∈ gphF ⇔ (y, x) ∈ gphF−1.

2. Slopes

We start with considering an extended-real-valued function f on a metric space
X . Recall that the local (strong) slope [7] of f at x (|f(x)| < ∞) is defined as

|∇f |(x) := lim sup
u→x, u6=x

[f(x)− f(u)]+
d(u, x)

. (1)

This quantity provides a convenient characterization of the local behaviour of f
near x.

Given a y ∈ R, we set
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fy(x) := max{f(x), y}, x ∈ X (2)

and define the nonlocal slope of f at x relative to y:

|∇f |⋄y(x) := sup
u6=x

[fy(x) − fy(u)]+
d(u, x)

. (3)

If f(x) ≤ y, then f(x) ≤ fy(u) and fy(x) ≤ fy(u), and consequently [fy(x) −
fy(u)]+ = [f(x)− fy(u)]+ = 0. Hence, [fy(x)− fy(u)]+ = [f(x)− fy(u)]+ for all
x and u, and the subscript y in fy(x) in the last formula can be removed:

|∇f |⋄y(x) = sup
u6=x

[f(x)− fy(u)]+
d(u, x)

. (4)

As mentioned above, |∇f |⋄y(x) = 0 if f(x) ≤ y. So only the case f(x) > y can
be of interest. Note that the supremum in the right-hand side of (3) (or (4)) can
be restricted to a certain neighborhood of x since [fy(x) − fy(u)]+/d(u, x) → 0
as d(u, x) → ∞.

It is easy to see from definitions (1) and (3) that, when y < f(x), the two
slopes are related by the inequality:

|∇f |(x) ≤ |∇f |⋄y(x).

At the same time, the nonlocal slope (3) is an important ingredient in the defi-
nition (1) of the local one: for any y < f(x), it holds that

|∇f |(x) = lim
ε↓0

|∇fBε(x)|
⋄
y(x),

where fBε(x) is the restriction of f to Bε(x).

The following relations hold true:

|∇f |(x) = lim sup
u→x, u6=x

[f(x)− cl f(u)]+
d(u, x)

, |∇f |⋄y(x) = sup
u6=x

[f(x)− cl fy(u)]+
d(u, x)

, (5)

where cl f is the lower semicontinuous envelope of f (defined by cl f(x) =
lim infu→x f(u)).

In the special case y = 0, we will omit y in the denotation of the nonlocal
slope. Thus

|∇f |⋄(x) := sup
u6=x

[f(x)− f+(u)]+
d(u, x)

, (6)

where the function f+ is defined by f+(x) = [f(x)]+. We will refer to (6) simply
as the nonlocal slope of f at x.

If f takes only nonnegative values, then (6) takes a simpler form:

|∇f |⋄(x) := sup
u6=x

[f(x)− f(u)]+
d(u, x)

(7)
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and coincides with the global slope defined in [16].

Let x̄ ∈ X and ȳ = f(x̄), |ȳ| < ∞. Using (1) and (3), we define respectively
the strict outer and uniform strict slopes [10, 11] of f at x̄:

|∇f |>(x̄) := lim inf
x→x̄, f(x)↓f(x̄)

|∇f |(x), (8)

|∇f |⋄(x̄) := lim inf
x→x̄, f(x)↓f(x̄)

|∇f |⋄ȳ(x). (9)

The word “strict” reflects the fact that slopes at nearby points contribute to
definitions (8) and (9) making them analogues of the strict derivative. The word
“outer” is used to emphasize that only points outside the set Sȳ(f) := {x ∈
X |f(x) ≤ ȳ} are taken into account. The word “uniform” emphasizes the non-
local character of |∇f |⋄ȳ(x) involved in definition (9).

Taking into account (5), we have the relations:

|∇f |>(x̄) := lim inf
x→x̄, cl f(x)↓f(x̄)

|∇(cl f)|(x),

|∇f |⋄(x̄) := lim inf
x→x̄, cl f(x)↓f(x̄)

|∇(cl f)|⋄ȳ(x).

Consider now a multifunction F : X ⇉ Y between metric spaces. We are
going to define slopes of F using basically the same scheme as described above.
To this end, an appropriate scalarization function is needed to replace (2). Given
a y ∈ Y , we set

fy(x) := d(y, F (x)), x ∈ X. (10)

Next we apply (1) and (7) to function (10) to define respectively the local
and nonlocal slopes of F at x relative to y:

|∇F |y(x) := |∇fy|(x) = lim sup
u→x, u6=x

[fy(x) − fy(u)]+
d(u, x)

, (11)

|∇F |⋄y(x) := |∇fy|
⋄(x) = sup

u6=x

[fy(x) − fy(u)]+
d(u, x)

. (12)

The following representations are straightforward:

|∇F |y(x) = lim sup
u→x, u6=x
v∈F (u)

[fy(x)− d(y, v)]+
d(u, x)

,

|∇F |⋄y(x) = sup
u6=x

v∈F (u)

[fy(x) − d(y, v)]+
d(u, x)

,

as well as the inequality:

|∇F |y(x) ≤ |∇F |⋄y(x).
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Given a point (x̄, ȳ) ∈ gphF , we now define the strict outer and uniform

strict slopes of F at (x̄, ȳ)

|∇F |>(x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ), fy(x)↓0

|∇F |y(x), (13)

|∇F |⋄(x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ), fy(x)↓0

|∇F |⋄y(x). (14)

It is easy to check that quantities (13) and (14) do not change if function (10)
is replaced in definitions (11), (12), (13), and (14) by its lower semicontinuous
envelope. Note also the obvious inequality

|∇F |>(x̄, ȳ) ≤ |∇F |⋄(x̄, ȳ).

Example 2.1. Consider the mapping F : R2 → R2 given by F (x) = (x1 +
x2, x1 − x2), where x = (x1, x2). If y = (y1, y2), then

fy(x) = ‖y1 − (x1 + x2), y2 − (x1 − x2)‖.

Let x ∈ R2 and y ∈ R2 be such that fy(x) > 0. Denote

z1 :=
y1 + y2

2
− x1 and z2 :=

y1 − y2
2

− x2.

Then
z1 + z2 = y1 − (x1 + x2), z1 − z2 = y2 − (x1 − x2),

and ‖z1, z2‖ 6= 0. Indeed, if we assume that z1 = z2 = 0, then x1 + x2 = y1 and
x1−x2 = y2 which contradicts the assumption that fy(x) > 0. Take u1 = x1+tz1,
u2 = x2 + tz2 for t > 0, and u = (u1, u2). Then

fy(u) = ‖y1 − (x1 + x2)− t(z1 + z2), y2 − (x1 − x2)− t(z1 − z2)‖

= (1− t)‖z1 + z2, z1 − z2‖

and
f(x)− f(u)

d(u, x)
=

‖z1 + z2, z1 − z2‖

‖z1, z2‖
≥ γ > 0,

where the positive constant γ depends only on the norm on R2. For instance,
if R2 is equipped with the maximum type norm, then denoting α := |z1|/|z2| if
|z1| ≤ |z2| or α := |z2|/|z1| otherwise, one has

f(x)− f(u)

d(u, x)
= max{1 + α, 1− α} ≥ 1

and we can take γ = 1.

By (11) and (12), it follows that |∇F |y(x) ≥ γ and |∇F |⋄y(x) ≥ γ. Since x

and y are arbitrary, it also follows from (13) and (14) that |∇F |>(0, 0) ≥ γ and
|∇F |⋄(0, 0) ≥ γ.
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3. Metric regularity

Recall (see e.g. [14, 18]) that a multifunction F : X ⇉ Y between metric spaces
is said to be metrically regular near (x̄, ȳ) ∈ gphF if there exist a τ > 0 and
neighborhoods U and V of x̄ and ȳ respectively such that

d(x, F−1(y)) ≤ τd(y, F (x)) ∀x ∈ U, ∀y ∈ V. (15)

The following (possibly infinite) constant is convenient for characterizing the
metric regularity property:

r[F ](x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ)
(x,y)/∈gphF

d(y, F (x))

d(x, F−1(y))
. (16)

It is easy to check that F is metrically regular near (x̄, ȳ) if and only if
r[F ](x̄, ȳ) > 0. Moreover, when positive, constant (16) provides a quantitative
characterization of this property. It coincides with the reciprocal of the infimum
of all positive τ such that (15) holds for some U and V (metric regularity modu-
lus). Constant (16) is also known as the rate or modulus of surjection or covering
(see [12, 14]).

The next theorem provides an equivalent characterization of the metric regu-
larity property in terms of slopes (13) and (14). It follows from [16, Theorem 5]
where a slightly more general statement is established and formulated without
the explicit use of constants (13), (14) and (16).

Theorem 3.1. Let X and Y be a complete metric space and a metric space,

respectively, F : X ⇉ Y be a closed multifunction, and (x̄, ȳ) ∈ gphF . Then

r[F ](x̄, ȳ) = |∇F |⋄(x̄, ȳ) ≥ |∇F |>(x̄, ȳ).

If, additionally, Y is a normed linear space, then the last inequality holds as

equality.

Corollary 3.2. Let X and Y be a complete metric space and a metric space,

respectively, F : X ⇉ Y be a closed multifunction, and (x̄, ȳ) ∈ gphF . Consider

the following conditions:

(i) F is metrically regular near (x̄, ȳ);

(ii) |∇F |⋄(x̄, ȳ) > 0;

(iii) |∇F |>(x̄, ȳ) > 0.

Then (iii) ⇒ (ii) ⇔ (i).

Moreover, the following assertions are true:

(a) if (15) holds with some τ > 0, U and V , then τ−1 ≤ |∇F |⋄(x̄, ȳ);

(b) if 0 < τ−1 < |∇F |⋄(x̄, ȳ), then (15) holds with some U and V .
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If, additionally, Y is a normed linear space, then |∇F |⋄(x̄, ȳ) in (a) and (b)
above can be replaced by |∇F |>(x̄, ȳ).

Example 3.3. Considering the linear continuous mapping F : R2 → R2 from
Example 2.1 given by F (x) = (x1+x2, x1−x2), where x = (x1, x2), we see that
it is surjective and consequently metrically regular near (0, 0). This conclusion
also follows from Corollary 3.2 thanks to the estimates for the strict slopes of F
established in Example 2.1.

The statement of Theorem 3.1 can be extended to the case of set-valued
mappings depending on a parameter.

Consider a multifunction F : P ×X ⇉ Y , where X and Y are metric spaces
and P is a topological space. Denote Fp = F (p, ·) : X ⇉ Y . Let (p̄, x̄, ȳ) ∈ gphF .

We say that F is uniformly metrically regular (see e.g. [8]) near (p̄, x̄, ȳ) with
respect to (x, y) if there exist a τ > 0 and neighborhoods U , V and W of x̄, ȳ
and p̄, respectively, such that

d(x, F−1
p (y)) ≤ τd(y, F (p, x)) ∀x ∈ U, ∀y ∈ V, ∀p ∈ W. (17)

This property can be equivalently characterized using the following analogue of
(16):

rp̄[F ](x̄, ȳ) := lim inf
(p,x,y)→(p̄,x̄,ȳ)
(p,x,y)/∈gphF

d(y, F (p, x))

d(x, F−1
p (y))

. (18)

F is uniformly metrically regular near (p̄, x̄, ȳ) with respect to (x, y) if and only
if rp̄[F ](x̄, ȳ) > 0.

To formulate uniform metric regularity criteria in terms of slopes, some mod-
ifications of definitions (10)–(14) are required:

fy,p(x) := d(y, F (p, x)), x ∈ X,

|∇F |y,p(x) := |∇fy,p|(x) = lim sup
u→x, u6=x

[fy,p(x) − fy,p(u)]+
d(u, x)

, (19)

|∇F |⋄y,p(x) := |∇fy,p|
⋄(x) = sup

u6=x

[fy,p(x) − fy,p(u)]+
d(u, x)

, (20)

|∇F |>p̄ (x̄, ȳ) := lim inf
(p,x,y)→(p̄,x̄,ȳ), fy,p(x)↓0

|∇F |y,p(x), (21)

|∇F |⋄p̄(x̄, ȳ) := lim inf
(p,x,y)→(p̄,x̄,ȳ), fy,p(x)↓0

|∇F |⋄y,p(x). (22)

The required characterization of the uniform metric regularity property in terms
of slopes (21) and (22) is similar to the one provided by Theorem 3.1 and follows
from [16, Theorem 8], the latter one being formulated without slopes (21) and
(22) and regularity constant (18).
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Theorem 3.4. Let X, Y and P be a complete metric space, a metric space and

a topological space respectively, F : P ×X ⇉ Y be a closed multifunction, and

(p̄, x̄, ȳ) ∈ gphF . Then

rp̄[F ](x̄, ȳ) = |∇F |⋄p̄(x̄, ȳ) ≥ |∇F |>p̄ (x̄, ȳ).

If, additionally, Y is a normed linear space, then the last inequality holds as

equality.

Corollary 3.5. Let X, Y and P be a complete metric space, a metric space and

a topological space respectively, F : P ×X ⇉ Y be a closed multifunction, and

(p̄, x̄, ȳ) ∈ gphF . Consider the following conditions:

(i) F is uniformly metrically regular near (p̄, x̄, ȳ);

(ii) |∇F |⋄p̄(x̄, ȳ) > 0;

(iii) |∇F |>p̄ (x̄, ȳ) > 0.

Then (iii) ⇒ (ii) ⇔ (i).

Moreover, the following assertions are true:

(a) if (17) holds with some τ > 0, U , V and W , then τ−1 ≤ |∇F |⋄p̄(x̄, ȳ);

(b) if 0 < τ−1 < |∇F |⋄p̄(x̄, ȳ), then (17) holds with some U , V and W .

If, additionally, Y is a normed linear space, then |∇F |⋄p̄(x̄, ȳ) in (a) and (b)

above can be replaced by |∇F |>p̄ (x̄, ȳ).

4. Metric regularity along a subspace

Consider a multifunction F : X ⇉ Y from a normed linear space to a metric
space. Let H be a (closed) subspace of X . F is called metrically regular along

H [9] near (x̄, ȳ) ∈ gphF if there exist a τ > 0 and neighborhoods U and V of
x̄ and ȳ, respectively, such that

inf
h∈H

{‖h‖
∣

∣x+ h ∈ F−1(y)} ≤ τd(y, F (x)) ∀x ∈ U, y ∈ V. (23)

Obviously, if H = X , then this property coincides with the conventional metric
regularity of F near (x̄, ȳ).

In the definition of metric regularity along H , it is convenient to use the
point-to-set distance along H defined for x ∈ X and M ⊂ X as

dH(x,M) := inf
h∈H

{‖h‖
∣

∣x+ h ∈ M} = d(0, (M − x) ∩H).

Of course, it is not a real distance onX . For instance, dH(x1, x2) = ∞ if x1−x2 6∈
H . In general, dH(x,M) ≥ d(x,M), and the equality holds when H = X .
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The above property can be equivalently characterized using the following
constant:

rH [F ](x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ)
(x,y)/∈gphF

d(y, F (x))

dH(x, F−1(y))
. (24)

F is metrically regular along H near (x̄, ȳ) if and only if rH [F ](x̄, ȳ) > 0.

Evidently, rH [F ](x̄, ȳ) ≤ r[F ](x̄, ȳ), and metric regularity of F along some sub-
space implies its conventional the metric regularity.

The metric regularity along a subspace can be treated in the framework of
the previously considered property of parametric metric regularity.

Given a multifunction F : X ⇉ Y , define another multifunction Φ : X×H ⇉

Y by the formula

Φ(x, h) := F (x+ h), x ∈ X, h ∈ H. (25)

Then, for this multifunction,X can be viewed as a parameter space and the above
parametric definitions can be reformulated for this particular case, the point
h̄ = 0 being of special interest. The next proposition (cf. [9, Proposition 4.1 (iii)])
shows that the uniform metric regularity of Φ near (x̄, 0, ȳ) is exactly the metric
regularity of F near (x̄, ȳ) along H .

Proposition 4.1. Let the mapping Φ : X × H ⇉ Y be defined by (25). Then
rH [F ](x̄, ȳ) = rx̄[Φ](0, ȳ).

Proof. Taking into account (25) and the obvious relations

F (x) = Φ(x, 0), Φ−1
x (y) = (F−1(y)−x)∩H, d(h, Φ−1

x (y)) = dH(x+h, F−1(y)),

we have

rx̄[Φ](0, ȳ) = lim inf
(x,h,y)→(x̄,0,ȳ)
(x+h,y)/∈gphF

d(y, F (x+ h))

dh(x+ h, F−1(y))

≤ lim inf
(x,y)→(x̄,ȳ)
(x,y)/∈gphF

d(y, F (x))

dh(x, F−1(y))
= rH [F ](x̄, ȳ).

On the other hand,

rx̄[Φ](0, ȳ) = lim
δ↓0

inf
(x,h,y)∈Bδ(x̄,0,ȳ)
(x+h,y)/∈gphF

d(y, F (x+ h))

dh(x + h, F−1(y))

= lim
δ↓0

inf
x∈B2δ(x̄), y∈Bδ(ȳ)

(x,y)/∈gphF

d(y, F (x))

dh(x, F−1(y))
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≥ lim
δ↓0

inf
(x,y)∈B2δ(x̄,ȳ)
(x,y)/∈gphF

d(y, F (x))

dh(x, F−1(y))
= rH [F ](x̄, ȳ).

Formulas (19)–(22) applied to multifunction (25) lead to the following defini-
tions:

|∇F |y,H(x) := lim sup
u→x, u6=x, u−x∈H

[fy(x)− fy(u)]+
d(u, x)

, (26)

|∇F |⋄y,H(x) := sup
u6=x, u−x∈H

[fy(x)− fy(u)]+
d(u, x)

, (27)

|∇F |>H(x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ), fy(x)↓0

|∇F |y,H(x), (28)

|∇F |⋄H(x̄, ȳ) := lim inf
(x,y)→(x̄,ȳ), fy(x)↓0

|∇F |⋄y,H(x), (29)

where fy is defined by (10).

The next theorem is a consequence of Theorem 3.4.

Theorem 4.2. Let X and Y be a Banach space and a metric space, respectively,

F : X ⇉ Y be a closed multifunction, and (x̄, ȳ) ∈ gphF . Suppose H is a

subspace of X. Then

rH [F ](x̄, ȳ) = |∇F |⋄H(x̄, ȳ) ≥ |∇F |>H(x̄, ȳ).

If, additionally, Y is a normed linear space, then the last inequality holds as

equality.

Corollary 4.3. Let X and Y be a Banach space and a metric space, respectively,

F : X ⇉ Y be a closed multifunction, and (x̄, ȳ) ∈ gphF . Suppose H is a

subspace of X. Consider the following conditions:

(i) F is metrically regular along H near (x̄, ȳ);

(ii) |∇F |⋄H(x̄, ȳ) > 0;

(iii) |∇F |>H(x̄, ȳ) > 0.

Then (iii) ⇒ (ii) ⇔ (i).

Moreover, the following assertions are true:

(a) if (23) holds with some τ > 0, U and V , then τ−1 ≤ |∇F |⋄H(x̄, ȳ);

(b) if 0 < τ−1 < |∇F |⋄H(x̄, ȳ), then (23) holds with some U and V .

If, additionally, Y is a normed linear space, then |∇F |⋄H(x̄, ȳ) in (a) and (b)

above can be replaced by |∇F |>H(x̄, ȳ).
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Example 4.4. Consider again the mapping F : R2 → R2 given by F (x) =
(x1 + x2, x1 − x2), where x = (x1, x2). As established in Examples 2.1 and 3.3,
it is metrically regular near (0, 0). We are going to show that it is not metrically
regular near (0, 0) along the subspace H = R × {0}. For simplicity, we assume
that R2 is equipped with the maximum type norm. Take x = (0, α) with α 6= 0
and y = (0, 0). Then fy(x) = ‖ − α, α‖ = |α| and, for any h = (β, 0) ∈ H ,

fy(x+h) = ‖−(α+β), α−β‖ = max{|α+β|, |α−β|} ≥ |α|. Hence, |∇F |⋄H(0, 0) =

|∇F |>H(0, 0) = |∇F |⋄y,H(x) = |∇F |y,H(x) = 0. The claimed assertion follows
from Corollary 4.3.

5. Metric multi-regularity

Let F : X ⇉ Y be a mapping between a normed linear space X and the product
of n ≥ 1 metric spaces Y = Y1 × Y2 × . . . × Yn. Throughout this section we
assume that F can be represented as F = (F1, F2, . . . , Fn), where each Fi is a
mapping from X into Yi. This means that for any x ∈ X its image F (x) under
F is the product of the images:

F (x) = F1(x) × F2(x) × . . .× Fn(x). (30)

If F is single-valued, this assumption is fulfilled automatically.

Let x̄ ∈ X and ȳ = (ȳ1, ȳ2, . . . , ȳn) ∈ F (x̄).

Besides considering metric regularity of F , one can also examine this property
componentwise. The next proposition which strengthens [9, Proposition 5.2 (ii)]
shows that the metric regularity of F implies metric regularity of all its compo-
nents.

Proposition 5.1. r[F ](x̄, ȳ) ≤ min1≤i≤n r[Fi](x̄, ȳi).

Proof. If r[F ](x̄, ȳ) = 0, the inequality holds true trivially. Let r[F ](x̄, ȳ) > 0.
Take any neighborhoods U of x̄ and V = V1 × V2 × . . .× Vn of ȳ. By definition
(16), taking a smaller U if necessary, we can ensure that F (x) ∩ V 6= ∅ for all
x ∈ U . Take any i, 1 ≤ i ≤ n, any x ∈ U and any yi ∈ Vi. For all j 6= i
take some yj ∈ Fj(x) ∩ Vj and compose y = (y1, y2, . . . , yn). Then y ∈ V ,
d(y, F (x)) = d(yi, Fi(x)) and d(x, F−1(y)) = d(x, F−1

i (yi)). By the definition
(16), r[F ](x̄, ȳ) ≤ r[Fi](x̄, ȳi). Since this inequality is valid for any i, the assertion
has been proved.

The inequality in Proposition 5.1 can be strict [9, Example 5.3].

There is another way of dealing with mappings into product spaces. The
following local regularity property of F near (x̄, ȳ), taking into account the be-
haviour of its components, can be of interest.

F is called metrically multi-regular [8] at (x̄, ȳ) if there exist a τ > 0 and
neighborhoods U of x̄ and Vi of ȳi, i = 1, 2, . . . , n, such that
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d(0,
n
⋂

i=1

(F−1
i (yi)− xi)) ≤ τ max

1≤i≤n
d(yi, Fi(xi))

∀xi ∈ U, ∀yi ∈ Vi, i = 1, 2, . . . , n. (31)

Obviously, when n = 1, the above property coincides with the conventional
one. When n > 1, this property is stronger than the metric regularity which
corresponds to taking xi = x̄, i = 1, 2, . . . , n, in the above definition.

A multifunction F : X ⇉ Y of the type (30) can be used, for instance, to
define a system of generalized equations :

0Yi
∈ Fi(x), i = 1, 2, . . . , n. (32)

If x̄ is a solution of (32), then the metric multi-regularity of F at (x̄, 0) means
the existence of a joint “stabilizing” action satisfying an “error bound” type
estimate when both the right-hand sides and variables of each of the generalized
equations are perturbed independently.

The following constant corresponds to the above metric multi-regularity prop-
erty:

r̂[F ](x̄, ȳ) := lim inf
(xi,yi)→(x̄,ȳi), i=1,2,...,n

(y1,...,yn)/∈F1(x1)×...×Fn(xn)

max
1≤i≤n

d(yi, Fi(xi))

d(0,
n
⋂

i=1

(F−1
i (yi)− xi))

. (33)

Its relationship with (16) is straightforward:

r̂[F ](x̄, ȳ) ≤ r[F ](x̄, ȳ),

where the equality holds if n = 1.

The metric multi-regularity property can be treated in the framework of
metric regularity along a subspace examined above. Indeed, let Z = Xn and
z = (x1, x2, . . . , xn) ∈ Z. One can consider the multifunction Φ : Z ⇉ Y defined
by

Φ(z) = F1(x1)× F2(x2)× . . .× Fn(xn). (34)

Note that each “component” of Φ in the above formula depends on its own
argument.

In the space Z, one can consider the diagonal subspace

H = {(x1, x2, . . . , xn) ∈ Xn|x1 = x2 = . . . = xn}. (35)

Evidently, Φ(z) = F (x) if z = (x, x, . . . , x) ∈ H , and (z̄, ȳ) ∈ gphΦ, where
z̄ = (x̄, x̄, . . . , x̄).

The next proposition shows that the metric regularity of Φ near (z̄, ȳ) along
H is exactly the metric multi-regularity of F near (x̄, ȳ) (cf. [9, Proposi-
tion 5.5 (iv)]).
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Proposition 5.2. Let the multifunction Φ : Z ⇉ Y and the subspace H of Z be

defined by (34) and (35), respectively. Then r̂[F ](x̄, ȳ) = rH [Φ](z̄, ȳ).

Proof. It follows immediately from definition (34) that, for any z = (x1, x2, . . . ,
xn) ∈ Z and y = (y1, y2, . . . , yn) ∈ Y , one has

d(y, Φ(z)) = max
1≤i≤n

d(yi, Fi(xi)),

Φ−1(y) = F−1
1 (y1)× F−1

2 (y2)× . . .× F−1
n (yn),

dH(z, Φ−1(y)) = d(0,
n
⋂

i=1

(F−1
i (yi)− xi)).

The assertion follows by comparing definitions (24) and (33).

Formulas (26)–(29) applied to multifunction (34) and subspace (35) lead to
the following definitions, where ŷ = (y1, y2, . . . , yn) ∈ Y :

f i
y(x) := d(y, Fi(x)), x ∈ X, y ∈ Yi,

fŷ(x1, . . . , xn) := max
1≤i≤n

f i
yi
(xi),

|∇F |ŷ(x1, . . . , xn) := lim sup
06=u→0X

[fŷ(x1, . . . , xn)− fŷ(x1 + u, . . . , xn + u)]+
‖u‖

,

|∇F |⋄ŷ(x1, . . . , xn) := sup
u6=0X

[fŷ(x1, . . . , xn)− fŷ(x1 + u, . . . , xn + u)]+
‖u‖

,

̂|∇F |>(x̄, ȳ) := lim inf
(xi,yi)→(x̄,ȳ), i=1,2,...,n

fŷ(x1,...,xn)↓0

|∇F |ŷ(x1, . . . , xn),

̂|∇F |⋄(x̄, ȳ) := lim inf
(xi,yi)→(x̄,ȳ), i=1,2,...,n

fŷ(x1,...,xn)↓0

|∇F |⋄ŷ(x1, . . . , xn).

Application of Theorem 4.2 to the setting of metric multi-regularity yields
the following statement.

Theorem 5.3. Let X be a Banach space and Y = Y1×Y2×. . .×Yn be the product

of n ≥ 1 metric spaces. Suppose that F : X ⇉ Y is a closed multifunction which

can be represented as F = (F1, F2, . . . , Fn) where Fi : X ⇉ Yi, i = 1, 2, . . . , n,
and ȳ = (ȳ1, ȳ2, . . . , ȳn) ∈ F (x̄). Then

r̂[F ](x̄, ȳ) = ̂|∇F |⋄(x̄, ȳ) ≥ ̂|∇F |>(x̄, ȳ).

If, additionally, Y is a normed linear space, then the last inequality holds as

equality.

Corollary 5.4. Let X be a Banach space and Y = Y1×Y2×. . .×Yn be the product

of n ≥ 1 metric spaces. Suppose that F : X ⇉ Y is a closed multifunction which
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can be represented as F = (F1, F2, . . . , Fn) where Fi : X ⇉ Yi, i = 1, 2, . . . , n,
and ȳ = (ȳ1, ȳ2, . . . , ȳn) ∈ F (x̄). Consider the following conditions:

(i) F is metrically multi-regular near (x̄, ȳ);

(ii) ̂|∇F |⋄(x̄, ȳ) > 0;

(iii) ̂|∇F |>(x̄, ȳ) > 0.

Then (iii) ⇒ (ii) ⇔ (i).

Moreover, the following assertions are true:

(a) if (31) holds with some τ > 0, U , V1,. . . ,Vn, then τ−1 ≤ ̂|∇F |⋄(x̄, ȳ);

(b) if 0 < τ−1 < ̂|∇F |⋄(x̄, ȳ), then (31) holds with some U , V1,. . . ,Vn.

If, additionally, Y1, . . . , Yn are normed linear spaces, then
̂|∇F |⋄(x̄, ȳ) in (a)

and (b) above can be replaced by
̂|∇F |>(x̄, ȳ).
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