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Abstract. On the topic of hyperbolic spaces there are some excellent surveys. In [28], Lang
discussed the relation between hyperbolic geometry and Diophantine geometry. The paper
of Zaidenberg [48] described main results on hyperbolicity in projective spaces. Noguchi
[38] gave a survey of open problems in Nevanlinna theory; theory of hyperbolic spaces and
Diophantine geometry. In these papers, the reader can find a picture of the development of
the theory up to the 1990-th year. This survey arose out of attemps to give a brief descrip-
tion of recent results in the study of hyperbolic spaces. Of course, it does not pretend to be
an exhaustive study, but it does focus mainly on new results leading towards a solution of
Kobayashi's conjectures.

1. Basic Notions. Problems

We first reclll a few basic facts concerning the concept of hyperbolicity.
Let D be a unit disc. The Poincari metric, also called the hyperbolic metric, on

D is defined bv the form

dz dz

(r - l,l')'

The tangent space T"(D) at a given point z can be identified with C, and if
u e T"(D): Cz under this identification, then the hyperbolic norm of u under the
metric is

l r lurp,":H,

where lu lro" is the ordinary absolute value on C. Note that for z : 0 the Poincar6
metric is the Euclidean metric.

Now let X be a complex space. Let x,y e X. We consider sequences of
holomorphic maps

f i : D - - - + X , j : 1 , - . . , m
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and points pj, qj e D such that f1(p1) : x, f^(q*) - y, and

fi@) : fi*t@i*).

In other words, we join x to y by a chain of discs. We add the hyperbolic dis-
tances between pi and. Qj, and take the infimum over all such choices of f1, pi, ej
to define Kobayashi semi distance

d, (x, y): irrf f dn p(pi, Qi) .
j:1

Then d, satisfies the properties of a distance, except that d,(x, y) mry be 0 if
x * y, so d, is a semi distance.

Definition 1.1. The space X is said to be hyperbolic (in the sense of Kobayashi) if d,
is actually a distance, namely f d,(x, /) > 0 for all pairs of distinct points (x,y)
in X.

We say that a complex space X is complete hyperbolic if X is hyperbolic and
complete with respect to the distance d,.

Let X be a complex subspace of a complex space I. Then X is said to be
hyperbolically embedded in Y if X is hyperbolic, and satisfies the following con-
dition. Let {xr}, {y"} be two sequences in X converging to points x, y in the clo-
sure of X in f, respectively. If d,(xn, !n) ---+ 0, then x: !.

One of the important properties of a hyperbolic space X is that every holomor-
phic map from the complex plane C into X is constant. We have the following.

Definition 1.2. A complex space X is said to be Brody hyperbolic if there is no
nonconstant holomorphic curue f : C - X.

If is well known that for a compact complex space, Brody hyperbolic is equiu-
alent to Kobayashi hyperbolic.

In the 1970s, Kobayashi posed the following problems [27].
Is a generic hypersurface X cPn of degree d large enough (say d>2n+l)

hyperbolically? 1s P'\X hyperbolic (moreouer, hyperbolically embedded into P" ) ?
In fact, the problems are closely related to each other. Let X ::

{l(r0,..., zr):0} be a smooth hypersurface of degree d inP"; one may look at
the hypersurface

*  r :  { tX t  :  P(20 , . . . ,  
" , ) \  

.  Pn+ l

which is a cyclic covering of Pn. Since any holomorphic map f : C -- P'\X can
be lifted to X, it is clear that the hyperbolicity of X would imply the hyperbolicity
o f  P ' \X .

Now let us formulate more precisely Kobayashi's questions. LetPn7: PN,
/  r \

N: (":o ) - l, be the projective space whose points parameterize hyper-
\ 4  /
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surfaces of degree d inP" (not necessary reduced). Let H,1 cPnd be the subset
corresponding to hyperbolic hypersurfaces. To precise the meaning of "genericity"
one could ask whether Hn1 contains a Zariski open subset of Pn,a for d large
enough with respect to n. More generally, is the complement Png\Hnd contained in
q countable union of hypersurfaces in Pn,6 for d >> n?

2. Conshuction of Hyperbolic Hypersurfaces

Although the set of hyperbolic hypersurfaces of degree d large enough with respect
to n is conjectured to be Zariski dense in PN(''d), it is not easy to construct explicit
examples of hyperbolic hypersurfaces.

The first example of smooth hyperbolic surfaces of even degree d > 50 was
given by Brody and Green [5]. We will describe some recent examples later, after
recalling a general construction of Masuda and Noguchi.

Let X be a hypersurface of degree d(, of Pn defined by the equation

X : c 1 M ( + " ' +  c r M (  : 9 ,  c i € C + , d e Z , d > 0 ,

where {Mt : ,30 . . .tX!'}',=, is a set of distinct monomials of degree /
(a7o *. ..1o;n: l). Masuda and Noguchi proved the following:

Theorem 2.1 1331. Assume d > s(s - 2). Then there exists an algebraic subset
X c (C*)" such that X is hyperbolic if and only f (c1) e (C-)"\X.

We give here a sketch of the proof. Suppose that X is not hyperbolic, and let

f  :  ( f i , . . . ,  f " + )  "  
C - - - +  x

be a nonconstant holomorphic curve in X. We are going to show that {c;} belongs
to an algebraic subset of (C-)". We may assume that any fi + O.

First of all we claim that, under the hypothesis of Theorem 2.1, there is a
decomposition of indices {1,..., r} : u It such that
(i) euery IC contains at least 2 indices,
(ii) the ratio of Mf o f (z) and Mf o f (z) is constant for j, k e 11,
(iii) D c1 M! of (z) : 0 for att (.

j e l e

The statement is proved by induction on s. The case of s : 2 is trivial. One can
reduce to the case of (s - 1)monomials by showing that {M! of , j :1,..., s - 1}
are linearly dependent over C. If it is not the case, then the holomorphic curve

s: z e C,-- (M( "f (z),. . . , M!-, "f (t)) e P"-2

is non-degenerate in P"-2. Consider the set of hyperplanes in general position

H 1  :  { 2 1  : 0 } , .  . . ,  H , - 1  :  { 2 " - r  : 0 } ,

H ,  :  { 4  4  *  . . .  f  c r - r  z " - r  :  0 } .
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Then g ramifies at least d on Hi, j : 1,.. . , s, and by Cartan's theorem, we have
s / - , t \

I ( t - ' = " 1 < s - 1 .
F \  d  /

This is a contradiction, since d > s(s - 2). Now for a decomposition of {1, .. ., s}
as above, we set by : M! o f (z) I Mf " f 

(z).Then the linear system of equations

A Y :  B ,

/vo \
where,4 is the matr ix {ui t -aw}, , :  I -  |  l ,  

" :  
{ logb1*},has the solut ion

\, .  )
{log"fo,...,logfi}. Thus, the matrix I satisfies certain conditions on the rank.
On the other hand, by the condition (iii) there exist (ls, ..., An) ePn such that
(c;) e (C-)" satisfies the following equations:

Dr tn6" ' . .AX" :0 .  (1 )
i e  Ig

Hence, (c;) e (C-)" belongs to the projection I . (C-)' of an algebraic subset in
(C*)" t Pu. The proof of the reciprocity is not difficult.

In [33], Masuda and Noguchi gave an algorithm to construct a system
{Mi,i - 1,..., s} such that the corresponding matrix I does not satisfy the
mentioned condition on the rank. Such a system is called admissible.

Remark 1. In the case that {Mi, j - 1,..., s} is an admissible system (and
d>s(s-2)), the hypersurface X is hyperbolic for all (c) e(C*)', and !:0.
Hence, by the algorithm of Masuda and Noguchi, we can construct explicit
examples of hyperbolic hypersurfaces for every n (and, d >> n).

Remark 2. In some cases, the set I is not proper. For example, take M i : zi, | : l,
j :1, . . . ,n* l ,n)3. For al l  (cr.)  e (C-)" and for arbi trary d, the hypersurface
corresponding to this case is not hyperbolic (it is the Fermat variety).

Remark 3. It is interesting to show the cases when ! is a nonempty proper subset of
(C*)". Here we give such a case. By Masuda-Noguchi's result, for every n there
exists d(n) such that for d > d(n) there exists a hyperbolic hypersurface ofdegree
d inP'.Take d large enough so that Hn,a # 0. Since the set H4 is open (in the
usual topology) (see l47l), by a small deformation, if necessary, we can take a
hypersurface X in H,,a with all nonzero coefficients in the defining equation.
Hence, if s : N(n, d) the set X is nonempty and proper.

By using the method based on the proof of Theorem 2.1, Masuda and Noguchi
constructed explicit examples of hyperbolic hypersurfaces in P3, Pa, P5 .

For the case of surfaces in P3 we can use the following method. Take at first a
surface X c P3 such that every holomorphic curve in x is degenerate. This means
that the image of a holomorphic map from C into X, f : C --+ X, is contained in a
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proper algebraic subset of X. If one could prove that the image /(C) is contained
in a curve of genus at least two, then / is cofistant and X is hyperbolic.

In [34], Nadel used a method based on a rather difficult and technical theorem
of Siu l42l dealng with meromorphic connections to construct a class of hyper-
bolic surfaces in P', in which every holomorphic curve is degenerate. Then he
applied this result to the case of P3 and calculated the genus of curves containing
images of holomorphic curves and gave explicit examples of hyperbolic surfaces in
P3(C) of degree 6k + 3 > 21.

By using Cartan's theorem, Ha Huy Khoai [2ll gave other classes of hyper-
surfaces in Pn with the property of degeneracy of holomorphic curves and con-
structed examples of hyperbolic surfaces in P' of arbitrary d > 22 (without the
restriction 3ld). We have the following.

Theorem 2.2l2ll. Let X be a hypersurface in P" defined by the equation

X  :  c 1  M 1  +  " ' +  c r M r : 0 ,  c i  * 0 ,

w h e r e  M i - r ? 0 . . . 2 f ; " ,  a p + . " +  d i n : d ,  j : 1 , . . . , s .  M o r e o u e r ,  l e t  X  b e  a
perturbat ion of  the Fermat uar iety ,  i .e . ,  s)  n*1,  Mi :  z f  ,  j  -  1 , . .  . ,  n i l .  Sup-
pose that there is an integer k > 0 such that X satisfies thi following conditions
( i )  u 1 ^ i s e i t h e r 0 , o r  >  d - k ,  j  -  1 , . . . t s , n t : 0 , . . . , i l .

. . . ,  ( n +  1 ) ( s - 2 )  ( s - 2 ) ( s - n - l \
,n ,  -  

d  
T-- - - - - - - -=T-\ , .

Then any holomorphic curue in X is degenerate.

From Theorem2.2, one can give the following examples of hyperbolic surfaces
in P3:

X : z( + rl + t! + z! + czf' zl 'r l '  :0,

where c * 0,  q * az+ at :  d,  ai  > 7 ( i  :  l ,  2,  3),  d > 22.
Notice that all explicit examples of hyperbolic hypersurfaces constructed

before by Brody and Green, Nadel, and Masuda and Noguchi are of degree
divided by some integer > 1.

Very recently, Goul [3] used a technique similar to that of Nadel to prove
the following.

Theorem 2.3 tl3l. The surfalce X cP3 defined by the equation

x : z( + ,( + 
"! 

+ z! + e1 z2o rf-z * e2zf, tl-2 :0

is hyperbolic for d > 14 and for all but a finite number of e1, q e C" .

3. Hyperbolicity of Complements of Hypersurfaces

As mentioned in Sec. 1, the problem of constructing hyperbolic hypersurfaces is
closely related to the problem of finding hypersurfaces with hyperbolic com-
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plements. Recall that by Kobayashi's conjecture, the set of all hypersurfaces of
degree d inPn with hyperbolic complements lVould be Zariski dense in pn(z'd) i1
d>2n * 1. However, it seems difficult to construct explicit examples of such
hypersurfaces. The reducible case is much easier, and we will consider it first.

By the classical results of Borel, Bloch, and Cartan, the complement of d
hyperplanes in general position is hyperbolic lf d > 2n * l. In [40], Ru gave a
necessary and sufficient condition for the set lf, of hyperplanes in P'(C) (not
necessarily in a general position) such that P"\ltrl is Brody hyperbolic.

Theorem 3.1 [40]. Let af, be a set of hyperplanes in P" (C) and let I be the corre-
sponding set of linear forms in n * | uariables defining the hyperplanes in af,. Then
the complement of the union of hyperplanes in 3f is Brody hyperbolic in Pn if and
only if drm9 : n * l, and for each proper nonempty subset g 1 of g,

9 1 a ( 9 - 9 r ) a g : 6 .

Theorem 3.1 follows the mentioned result of Bloch, Borel, and Cartan, and
that the complement of 2nhyperplanes is not hyperbolic (Kiernan [26], Snurnitsyn
t44D.

Babets [2] and Eremenko and Sodin [4] generalized Cartan's theorem on
value distribution of holomorphic curves to the case of hypersurfaces, and proved
the following.

Theorem 3.2 l2l, ll4l. Euery holomorphic mqp .f : C -- P'(C) , omitting 2n * |
hypersurfaces in general position is constant.

Recall that hypersurfaces X1,..., Xq(q>n+2) is said to be in general
position if their defining homogeneous polynomials are multiplicatively inde-
pendent (pairwise linearly independent), and any n * I among the equations
9j(t0,. . . , zn): 0, I (,t < q do not have common nonzero solutions in C'+1. Ru
gave another proof of the Babets-Eremenko-Sodin theorem, and also discussed
the case of the corrplement of 2n hypersurfaces.

Defnition 3.3. The hypersurfaces Xr,. . . , Xo are said to be geometrically in general
position tf they are in general position and they intersect transuersally, i.e., the
components haue no common tangent at the points of, intersection. We haue the fol-
lowing theorem.

Theorem 3.4 [39]. Let X be the union of q (irreducible) hypersurfaces in P"(C)
geometrically in general position. Let f : C --- P'(C)\X be holomorphic. Then the
image of f is contained in a subuariety of P'(C) of dimension 2n - q I l. In par-
ticular, ,f q:Zn, then P'(C)\X is Brody hyperbolic (in fact, it is Kobayashi
hyperbolic and hyperbolically embedded) with three exceptional cases:
(i) X ,r the union of2n hyperplanes, haue n hyperplanes intersect at a point p and the
other n hyperplanes intersect at a point s, where /(C) ls contained in the line joining
p and s.
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is bitangent to these two quadrics.

Dethloff et at.llll determined the case of reducible curves (n : 2) and proved

the following theorem by using the method of the Nevanlinna theory.

Theorem 3.5 U1]. Let S be the space of 3-tuples of quadrics. Then there exists a

proper algebraic uariety V e S such that for s e S\V the quasiprojectit)e uariety
J

P'\ U f /s) (where (fr(s), f2(s), f3(s)) is the 3-tuple corresponding to s) is com-

p t e t i hy p er b o lic and hy p e rb o lic ally emb e dde d.

The algebraic subset Z in Theorem 3.5 is defined by the following conditions:

(i) All fi(s) are smooth (and of multiplicity one).
(ii) The fi(s), i : 1,2,3 intersect transversally'
(iii) For any common tangent line of two of quadrics f;(s) which is tangential to

ihese in points p and s resp., the third quadric does not intersect the tangent in

both point p and s.
ln 1+e1,-similar results were also obtained for the case of curves with at least

four irreducible components.
Now consider the case of irreducibles hypersurfaces. In 1471, Zaidenberg proved

the existence of smooth curves (resp. surfaces) of arbitrary degree > 5 (resp' even

degree >350) of p2(C) (resp. P3(C)) of which complements are hyperbolic and

hyf,erbolically embedded into P2(C) (resp. P3(C)); however, their equations are

Theorem 3.6 t33]. There exists a smooth hyperbolic hypersurface of euery degree

d > d(n) of P"(C) such that its complement is complete hyperbolic and hyperboli-

cally emibedded into P"(C), where d(n) is a positiue integer depending only on n.

Theorem 3.6 follows from the existence of hyperbolic hypersurfaces (Theorem
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bolic hypersurfaces, of which complements are hyperbolic and hyperbolically
embedded. ,

Recently, Siu and Yeung [43] made remarkable progress by proving the analog
of Kobayashi's conjecture for plane curves of degree large enough.

Theorem 3.7 1431. There exists a positiue integer 6s satisfying the following. Let c
be a generic smooth complex curue inP2 such that the degree 6 of c is at least 6s.
Then, there is no nonconstant holomorphic map from C to pz\C. Here, generic
means that C ̂ belongs to a Zariski open subset in the space of all complex curues of
degree 6 inP2.

Moreover, Y. J. Siu and S. K. Yeung gave a condition to compute possible
values of de. For example, one can take 66 : 5 x 1013.

The proof of rheorem 3.7 is based on the construction ofindependent holo-
morphic 2-jet diflerentials. The authors said that their method should be appli-
cable also to the case of dimension n with n-jets being used instead of 2-jets;
however, the technical details arc far more involved.

very recently, Dethloffandzaidenberyllzlhave given examples of families of
irreducible curves for any even _d > 6 of which complements are hyperbolic and
hyperbolically embedded into P2. Notice that while all examples which are known
before are hyperbolic curves, Dethloff and Zaidenberg get examples of eliiptic or
rational curves.

4. Diophantine Geometry

Recent studies suggest that the hyperbolicity of complete space x is related to the
finiteness of the number of rational on integral points of x. In particular, Lang
made the following conjecture.

conjecture 4.1 1291. A projectiue uariety x has only finitely many k-rational
points for euery number field k if and only if the associated complex space is Brody
hyperbolic.

For affine varieties, Langl2gl also conjectured the following.
. For an affine uariety X, if X is hyperbolically embedded in its projectiue closure,

then the number of integral points of X is finite. Conuersely, this finiteness con-
jecturely implies that X is Brody hyperbolic.

Lang's conjecture is true for smooth projective curves: curves of genus >2 are
Brody hyperbolic, which is an easy consequence of the Uniformization Theorem
and Liouville's theorem; such curves have only finitely many rational points by
Falting's theorem (the Mordell-weil conjecture). Faltings [15] also proved the
conjecture for hyperbolic subspaces contained in an Abelian variety.

vojta [45] observed the similarity between the Second Main Theorem (sMF)
of the value Distribution Theory and the Roth theorem in the theory of Dio-
phantine approximations. Notice that most of the results on hyperbolic spaces



Recent Work on Hyperbolic SPaces

mentioned in previous sections are obtained by using the Value Distribution
Theory. Then, due to Vojta's correspondence, one could translate a proof of
hyperbolicity of a variety into a proof of finiteness of rational points on the cor-
responding variety over a number field. Let us recall some recent results in this
direction.

Ru and Wong [41] proved the following arithmetic analog of the Bloch-
Cartan result:

Theorem 4.2 l4ll. Let k be a number field. Then P'(fr)\{2n * l} hyperplanes in
general position (with algebraic cofficients) haue only finitely many integral points.

This theorem was generalized to the case of the complement of a set of hyper-
planes in P'(k). We can formulate a theorem exactly as Theorem 3.1.

Theorem 4,3 1401. Let tr be a set of hyperplanes in P" with algebraic cofficients.
Let 9 be the corresponding set of linear forms in n * | uariables defining the
hyperplanes in #. Giuen a number field k, let M(k) be the set of all nonequioalent
ualuations on k. Then P"(k)\l/fl has only finitely many (5, llfl)-integral points,

for euery finite set s c M(k) containing the Archimedean ualuations, if and only if,
dimg : n * | and for each proper nonempty subset 91 of I ,

9 1 o ( 9  -  g r ) o 9 : 0 .

Combining Theorem 3.1 and Theorem 4.3 one can say that P'(C)\l/fl is
Brody hyperbolic if and only if P"(k)\l/fl has only finitely many (S, l#l)-integral
points, for every number field k, every finite set s c M(k) containing the Archi-
medean valuations. In other words, Lang's conjecture is true for the case of the
complement of hyperplanes in P'.

Theorem 3.2 and Theorem 3.4 also have arithmetic analogs.

Theorem 4.41391. Let k be a number feld' M(k), S as aboue- Let X1,. . . , Xo be
hypersurfaces inP"(k) in general position (any n]_l of them haue empty inter-
sections ) with algebraic cofficients If s 

7 
2n f- | , then P" (k)\x has only finitely

many (5, X)-integral points, where * : 
9_r*t.

Theorem 4.5 t391. Let k be.q number field M ( k), s as aboue. Let x be the union of q
(irreducibte) hypersurfaces inP"(k) geometically in general position. Then the set
of (5, X)-integral points of P" (k)\X is contained in a finite union of subuarieties of
P"(k) of dimension 2n - q + l.

In particular, ,f q:2r, thenP"(k)\X has only finitely many (5, X)-integral
points with the following three exceptional cases:
(D X rr the union of2n hyperplanes, where n hyperplanes intersect at a point p and
the other n hyperplanes intersect at a point s.
(11) X consists of 2n - | hyperplanes and one smooth quadric (Q) such that n
hyperplanes intersect at a point p and the rest of the hyperplanes intersect with Q at
a point s;
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(iii) x consists of 2n-2 hyperplanes qnd two smooth quadrics (h, ez) such that
n - | hyperplqnes intersect with Q1 at a point,p qnd the rest of the hyperplanes
intersect with Q2 at a point s.

For n : 2 (the case of curves), similar results were also obtained by wong [46].
From the proof of rheorem 2.1, one can see that the construction of Masuda

and Noguchi would have an arithmetic analog if one could prove the following.

Coniecture 4.6 133]. Consider a homogeneous equation of Fermat type

c l z f  + - . .  1  c , z !  :  g ,

where ci e k* : k\{0} Let s denote the set k-integral sorutions. Assume that

d > s ( s - 2 ) .

Then there is a finite decomposition s : U s,, and for each s, there is a decom-
position of indices, {1,..., s} : U I4 satisfying the following;
(1) Euery It contains at least 2 indices.
(ii) Let i, k e \ be arbitrary indices. Then the ratio of zl and zf; are the same for all
but finitely many z e Sn.
(ttt) 

,? 
cl zl : 0 for atl but finitely many z e Sn and for each y.

Notice that the proof of Theorem 2.1 used as an essential tool the so-called
Cartan's Second Main Theorem with n-truncated counting functions. rJp to now we
have only arithmetic Cartan's Second Main Theorem with nontruncaled counting
functions (Schmidt-schlikewei; see [45]).

Bombieri and Mueller [3] proved the function field analog of conjecture 4.6
f o r d > s ! ( s ! - 2 ) .

5. tr'inal Remarks

while Kobayashi conjectured that the sets of hyperbolic hypersurfaces and
hypersurfaces with hyperbolic complements contain a zariskj open subset, Zai-
denberg [47] proved that these sets are open in the usual topology. Hence, the
Kobayashi conjectures would be proved if one could prove that the property of
being hyperbolic is an algebraic property. There have been several attempts to find
an algebraic characterization of complex hyperbolicity. We refer the reader to the
papers of Lang t28l-t301 for detailed discussions on this topic. Here, we describe
some new ideas of Demailly and ones arising from the work of Masuda and
Noguchi [33].

Let x be a projective algebraic vaiety. If x is hyperbolic, then x has no
rational and elliptic curyes, and more generally, every holomorphic map
f : Z --+ x from an Abelian variety (or complex torus) to x must be constani.
conversely, it has been suggested by Kobayashi and Lang that these algebraic
properties are equivalent to hyperbolicity. To prove this, one would have to con-
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struct a torus Z and a nontrivial holomorphic map f :Z--- X whenever X is

pact curves (C) with genus (C,)/degree (Cr) --+ 0 should have a cluster set swept

out by the image of a map f : Z --- X from a complex torus Z, such that the limit

of some subsequence of the sequence of universal covering map A ---+ C1 ---+ X
(suitably repanmetized) coincides with the image of a (not necessarily compact)
straight line of Z into X. A related conjecture of Lang [2]states that a projective

variety is hyperbolic if all its irreducible algebraic varieties are of general type. The
most elementary step would be to exclude the case of manifolds with c1 : 0, by

showing for instance that it does admit a sequence of compact curves (C1) with
genus (C1)/degree (C1) -' 0.

Another approach to Kobayashi's conjectures is suggested by the proof of
Theorem 2.1 . ln 1221, Ha Huy Khoai introduced the notion of the Borel curue. By

definition, a holomorphic curve in a hypersutface X is called a Borel curue if the

conditions (i), (iD, (iii) in the proof of Theorem 2.1 hold. A hypersurface X is said
tobe Borel hyperbolic if every Borel curve in X is constant. Let B(n, d) denote the

set of Borel hyperbolic hypersurfaces of degree d in Pn. It is proved l22l that

B(n, d)is a Zariski dense subset in PN, N: N(n, il : (" i ') 
- | for d large'  

\ q  /

enough with respect to n. As a consequence we have the following.

Theorem 5.11221. For euery n e Z, n > 0, there exists an integer d(n) satisfying the

following. For any d > d(n) there exists a nonempty Zqriski open subset Z of

PN, N : N(n, d), such that for any X in Z andfor dt > N(N -2), the hypersur-

face X4, is hyperbolic.

Here, we use the following notation. If X is defined by

X : c 1  M 1 + . . . +  c r M r : 0 ,

then X1, is defined by

X d , : c t U ( ' +  " ' * c ,  M ! '  : 0 .

To conclude this survey, we would like to mention that in the recent few years,

the hyperbolicity in the non-Archimedean case has been investigated. We refer

the reader to the papers [8], [9], [19], [20], [23], [31], 1321,1361, [37] for details.
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