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Absfract. In the spirit of the Bass-Papp theorem, this paper is concerned with rings for
which any (finite) direct sum of quasi-continuous modules is quasi-continuous or for which
any (finite) direct sum of CS-modules is CS.

l. Introduction

we show that a ring R is right QI if and only if the direct sum of any two quasi-
injective right R-modules is quasi-injective. on the other hand, a ring R is semi-
prime Artinian if and only if the direct sum of any two quasi-continuous right
R-modules is quasi-continuous. A right nonsingular ring R is right Noetherian if
and only if every direct sum of injective right R-modules is cs. we also show that
if R is a ring with finitely generated right socle such that the direct sum of any two
cs right R-module is cs, then every right R-modules is cs and R is right and
left Artinian.

All rings are associative and have identity elements and all modules are unital
right modules. Let R be any ring. A right R-module M is called a cs-module if
every submodule is essential in a direct summand ("c,s" stands for complements
are summands). Recall also that the module M is called quasi-continuous if M is
cs and for all direct summands K andz with K a L: 0, the submodule K @ z is
also a direct summand of M. The module M is called continuous if M is cs and
for each direct summand N of M and each monomorphism e; N - M, the sub-
module p(N) is also a direct summand of M.Finally, the module M is quasi-
injectiue if M is M-injective, i.e., for every submodule 11 of M, any homo-
morphism 0: H - M can be lifted to M.It is well known that the following
implications hold for M:

M is injective + M is quasi-injective + M is continuous
> M is quasi-continuous + M ls CS.

For these facts and a good account ofthis area, see [3] or [7].
The Bass-Papp theorem states that a ring R is ring Noetherian if and only if

every direct sum of (a countable number of) injective right R-modules is injective
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(see, for example, [1, Proposition 18.13] or [1], Theorem 4.lD. It is natural to raise
the following general question: for which rings R is every direct sum of quasi-
injective (respectively, continuous, quasi-continuous, CS) right R-modules quasi-
injective (continuous, quasi-continuous, CS)? The purpose of this note is to try to
answer these questions.

For any unexplained terminology, please see [1], [3], or [7].

2. Quasi-Iniective, Continuous and Quasi-Continuous Modules

In this section, we are concerned with the problem of finding which rings R have
the property that the classes of quasi-injective or continuous or quasi-continuous
modules are closed under taking direct sums (coproducts). lf M is an R-module,
then E(M) will denote the injective hull of M, Soc(M) the socle of M, Z(M) the
singular submodule of M,i.e.,

Z(M) : {m e M : mA :0 for some essential right ideal ,4 of R}

and Z2(M) the second singular submodule of M, r.e., Zz(M) is the submodule of
M, containin9 Z(M) such that Z2(M)lZ(M) : Z(M lZ(M)). A ring R is called
a right Ql-ing if every quasi-injective right R-module is injective.

Our first result gives a characterization of right Q/-rings.

Proposition l. The following statements are equiualent for a ring R:
(i) R ls a right Ql-ring.
(11) The direct sum of any two quasi-injectiue right R-modules is quasi-injectiue.
(111) The direct sum of any family of quasi-injectiue right R-modules is quasi-injectiue.

Proof. (i) = (iii). Let R be a right Ql-ri'ng. Every semisimple R-module is quasi-
injective and hence injective. By [], Theorem 4.1], R is right Noetherian. Now
(iii) follows by the Bass-Papp theorem.

(iii) + (ii). Clear.
(ii) > (i). Let M be any quasi-injective right R-module. Then E(Ra) @ M is

quasi-injective by hypothesis, and hence M is an injective R-module by [7, Prop-
osition 1.31.

Proposition 2. The following statements are equiualent for a ring R:
(i) Euery continuous right R-module is injectiue.
(ii) The direct sum of any two continuous right R-modules is continuous.
Qll fhe direct sum of any family of continuous right R-modules is continuous.

Proof. (1) + (iii). In particular, R is a ight Ql-nng and hence is right Noetherian.
Now (iii) follows by the Bass-Papp theorem.

(iii) - (ii). Clear.
(ii) + (i). Let M be a continuous R-module. The E(Rn @ M) is continuous

by hypothesis. Hence, M is an injective R-module by [7, Propositions 1.3 and
2.101. r
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Propositions I and 2 raise the following natural question: if R is a right
Ql-ing, is every continuous right R-module injective?

Theorem 3. The following statements are equiualent for a ring R:
(i) R r semiprime Artinian.
(ri) Euery quasi-continuous right R-module is injectiue.
(iii) The direct sum of any two quasi-continuous right R-modules is quasi-continuous.
(iv) The direct sum of any family of quasi-continuous right R-modules is quasi-
continuous.

Proof. (i) > (iv) + (iii). Clear.
(iii) + (ii). By the proof of Proposition 2 (ii) + (i).
(iD - G). Suppose every quasi-continuous R-module is injective. Then R

is a right Ql-ing and hence is right Noetherian. By [ll, Theorem 4.4],
E(Rn) : (D i. r E;, where E; is indecomposable injective for each i e I. Let i e I.
Let 0 * u e Ei. Then zR is uniform, whence quasi-continuous. By hypothesis, aR
is injective. Hence, rzR is a direct summand of E; and we have Ei:uR. Thus,Ei
is simple. It follows that.E(Ra) is semisimple and hence so too is Ra. I

It is not the case that every right Ql-ing is semiprime Artinian (see for
example, 14,19.491).

3. Direct Sums of Iniectives

A ring R is right Noetherian if and only if the direct sum of every (countable)
collection of injective right R-modules is quasi-continuous. First, suppose that the
direct sum of every countable collection of injective right R-modules is quasi-
continuous. Let E;(i e 1) be any countable collection of injective R-modules. Then
(@rE,)@E(RR) is quasi-continuous and hence, by [7, Proposition 2.10], @7E;
is an injective R-module. By [1, Theorem 4.1], R is right Noetherian. The con-
verse also clearly follows from [1], Theorem 4.1].

We shall show that a right nonsingular ring R is right Noetherian if and only if
every direct sum of injective right R-modules is CS.

Lemma 4. Let R be a ring with right socle S.
(1) If the direct sum of euery' countable collection of injectiue hulls of singular simple
right R-modules is injectiue, then R/^S,s right Noetherian.
(ii) If RIS is right Noetherian, then euery direct sum of singular injectiue right
R-mo dule s is inj e c tiue.

Proof. (l) By a result of Goodearl [5, Proposition 3.6], it is sufficient to prove that
the R-module RIE is Noetherian for any essential right ideal -E of R. This is done
by adapting the proof of [1 1 , Theorem 4. I ].

(ii) By [9, Corollary 1l].

Lemma 5. Let R be a right nonsingular ring right socle S such that the direct sum of
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euery countable collection of injectiue right R-modules is CS. Then the right RIS is
right Noetherian.

Proof. Let & (l e 1) be singular simple right R-modules. Let E -

E(Sr )@E(Sz)@E(Sr )@. . .and le t  M:E(Rn)@E.  By  hypothes is ,  M is  a
CS-module. By [6, Theorem 1], because E(Rn) is nonsingular and E : Zz(M),
we deduce that E is E(Rp)-injective. Hence, E is an injective R-module. By
Lemma 4, RIS is right Noetherian. I

Recall that a ring R has finite right unifurm dimension if it contains no infinite
direct sums of nonzero right ideals.

Corollary 6. A right nonsingular ring R is right Noetherian if and only if R has finite
right unifurm dimension and the direct sum of euery ( countable ) collection of inde-
composable injectiue right R-mo&tles is CS.

Proof. By Lemma 5.
Let R be a right nonsingular ring and let Q denote the maximal right quotient

ring of R. Recall that Q is a von Neumann regular right self-injective ring, R is a
subring of Q, and the right R-module Q is the injective hull of the right R-module
R. Let X be a right Q-module such that as a right R-module, X is nonsingular
and CS. Let Y be any submodule of Xg. There exist submodules Z, Zt of Xp such
that X : Z @ Z' and I is essential in Z. Since Xa is nonsingular, it is easy to
check that X : (ZQ)@Q'Q).Moreover, Z is essential in (ZQ)^ so that I is
essential in (ZQ) ̂ . But this implies that Y is essential in (ZQ) o.It follows that the
p-module X is CS. I

We have proved the following.

Lemma 7. Let R be a right nonsingular ring with maximal right quotient ring Q. Let
X be a right Q-module such that the right R-module X is nonsingular CS. Then the
right Q-module X is CS.

Corollary 8. Let R be a right nonsingular ring with maximal right quotient ring Q.
Then R has finite right uniform dimension if and only if the right R-module QV) tt
CS for any index set I.

Proof. Sttppose that R has finite right uniform dimension. Clearly, Q is a non-
singular right R-module. Let A be a right ideal of R and let g : A ---+ Q0 6s ^
holomorphism. There exists a finitely generated right ideal ,B of R such that
-B is an essential submodule of Ap. There exists a finite subset J of I such that
a@) = 0(4. Sitrce pa is nonsingular, it follows that q(A) c. Q@ also. But Q@ is
injective, so that there exists q e Q@ c. 90 with 9@) - qa for all a in.4. Thus,
0(1) ir injective and hence CS. Conversely, if the right R-module 20 is C^S for
any index set 1, then the right Q-module Q0 is CS (Lemma 7). Thus, Q is right
Artinian by [8, Theorem II] (or see [3, 11.13D. It follows that R has finite right

Iuniform dimension.
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Combining Lemma 5 and Corollary 8 we have at once:

Theorem 9. A right nonsingular ring R is right Noetherian if and only if the direct
sum of euery collection of injectiue right R-modules is CS.

4. Direct Sums of C,S-Modules

In this section, our concern is with rings R having the property that any direct sum
of CS-modules is CS. It turns out that if the direct sum of any two CS-modules is
CS, then in many cases the direct sum of any collection of CS-modules is CS.
Recall that any uniform module is CS. Note that if R is any ring, then the fol-
lowing statements are equivalent:
(i) the direct sum of any two uniform right R-modules is CS;
(ii) the direct sum of any collection of uniform right R-modules is CS (see
[3, l3. l ] ) .

A ring R is a right V-ring if every simple right R-module is injective. It is well
known that a commutative ring R is a Z-ring if and only if R is von Neumann
regular. A ring R is called right semi-Artinian if every nonzero right R-module has
nonzero socle. For examples of such rings, see [2].

Proposition 10. Let R be a ring which is either (a) a commutatiue uon Neumann
regular ring or (b) a right semi-Artinion, right V-ring. Then euery unifurm right
R-module is simple and euery direct sum of unifurm right R-modules is CS.

Proof. First, suppose that R is a commutative von Neumann regular ring. Let U
be a uniform R-module. Let 0 * u e U. Let r eR with ur + 0. Then rR : eR for
some idempotent  e  in  R.  A lso ,  0*urR:ueR c  Ue.  Now U:Ue@U( l -e )
gives U(l - e) :0 and hence u(l - e) : 0. Thus, tt : ue e urR.It follows that uR
is simple and hence injective. Thus, [/: aR. Hence, U is simple.

Now suppose that R is a right semi-artinian right Z-ring. Let U be any uni-
form right R-module. Then U contains a simple submodule S and S is injective, so
that U: S.

Thus in either case uniform modules are simple and clearly direct sums of
uniform modules are CS, because semisimple modules are CS. I

Lemma ll. Let R be any ring, M a semisimple right R-module, and M2 a right R-
module with zero socle such that M : Mr @ M2 is a CS-module. Then M1 is M2-
injectiue.

Proof. Clearly, Mr : Soc(M). Let N be any submodule of M2 and let rp : N -+ M1
be a homomorphism. Let L: {* - q(*): x e N}. Then Z is a submodule of M
andLaMr :0 .  Thereex is tsubmodu les  K,  K 'o f  M such tha tM:K@ Ktand
Z is an essential submodule of K. Note that Soc(K) : K a Mt :0, so that
Mt :Soc(M) = K' . Thus, K/ : Mr @ (K' a M2) and M : K @ Mr @ (K' n 1',Iz).
Let n ; M ---+ M1 denote the projection with kernel K @ (K' n TrIz). Let 0 denote
the restriction of g to Mz. Then 0 : M2---+ M1 and 0(x) : 9Q) for all x in N. It
follows that Ml is M2-injective.
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Lemma 12. Let R be a ring such that the direct sum of any two CS right R-module
is CS. Then R is right semi-Artinian.

Proof. Stppose first that R has zero right socle. Let X be any semisimple right
R-module and let E : E(Rn). By hypothesis, M : X @ n is CS and hence, by
Lemma 11, X is E-injective. It follows that every semisimple right R-module is
injective. By [1], Theorem 4.1], R is right Noetherian. Now [3, 13.3] gives that
every right R-module is CS and [3, 13.5] gives R right Artinian.

In  genera l ,  le t  0 : .Se(R)  =S1(R)  c  . .  -&(R)  cS"*1(R)  c  . . .  denote
the right Loewy series of R, i.e., for each ordinal a ) 0, S'11(R)/S-(R) is the
right socle of the ring R/&(R) and S,(R) : (Jl<p<oSp(R) if a is a limit ordinal.
There exists an ordinal p > 0 such that Sr(R) : Sp+r(R), i.e., the ring R/S'(R)
has zero right socle. By the above argument, R/S,(R) is right Artinian
and hence ,Sp(R) : R. It follows that R is semi-Artinian (see, for example,
[2, Proposition l]).

Theorem 13. The following statements are equiualent for a ring R with Jacobson
radical J.
(1) R has finite right uniform dimension and the direct sum of any two uniform right
R-modules is CS.
(ii) R has finite left uniform dimension and the direct sum of any two unifurm left
R-modules is CS.
(iiD R has finitely generated right socle and the direct sum of any two CS right
R-modules is CS.
(iv) R has finitely generated left socle and the direct sum of any two CS left
R-modules is CS.
(v) Euery right R-module is CS.
(vi) Euery left R-module is CS.
(vii) R is (right and left) Artinian serial and Jz :0.

Proof. (v)+(vi)+(vii). By [3, 13.5].
(v) + (i). Clear.
(i) = (v). There exist a positive integer n and indecomposable injective right

R-modu les  E i  ( l< i  <n)  such tha t  E(Ra)  :Er@ . . .@8, .  By  [3 ,  13 .1 ]  E ;  i s
Artinian for each I and hence, R is right Artinian. Clearly, every cyclic right
R-module has finite uniform dimension. By [3, 13.3], every right R-module is CS.

(i i)e(v). As for (i)e(v).
(v) + (iii). Clear.
(iii) + (i). By Lemma 12.
(iv)e(v). Similar to (iii)+(v).

Two questions spring to mind at this point. First of all, if R is a ring such that
the direct sum of any two CS-modules is CS, then is any direct sum of CS-mod-
ules CS? Related to this, we also ask: if R is a ring such that the direct sum of any
two CS-modules is CS, is any R-module CS?

T



The Bass-Papp Theorem and Some Related Results

Finally, we give an example of a commutative ring for which the direct sum of
every collection of uniform modules is CS but not every direct sum of CS-modules
is CS.

Example. Let R denote the group algebra K[G] where K is a field of characteristic
O and G is the direct product of an infinite family of cyclic groups. Then
(i) R is a commutative von Neumann regular ring (and hence is nonsingular).
(ii) R has zero socle (and hence R is not semi-Artinian).
(iii) Every direct sum of uniform R-modules is CS.
(iv) There exist CS R-modules X and I such that X @ I is not CS.

Proof. (i) by [10, Theorem 3.1.5].
(ii) Suppose R has nonzero socle. Let U be a minimal ideal. Let0*ueU.

Then there exist a finite subgroup G1 and a nontrivial subgroup Gz with
G : Gr x G2 and u e KlGl]. Let | * g e Gz. Then z(l - S) +0 and hence, u :
u( I  -  g)r  for  some re R.  Suppose g has order  n.  Then z( l  - t  s  * . . .  *  gn- t )  :  0
and hence,  u+ug +. . .+ ugn- t  -  0 .  I t  fo l lows thatu:0,  acontradic t ion.

(iii) By Proposition 10.
(iv) By (ii) and Lemma 12. I
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