Vietnam Journal of Mathematics 25:1 (1997) 33-39

vietnam Journal of MATHEMATICS © Springer-Verlag 1997

The Bass-Papp Theorem and Some Related Results

A. Harmanci, P. F. Smith, A. Tercan, and Y. Tiras Department of Mathematics, Hacettepe University, Beytepe, Ankara, Turkey

Received July 8, 1995

Abstract. In the spirit of the Bass-Papp theorem, this paper is concerned with rings for which any (finite) direct sum of quasi-continuous modules is quasi-continuous or for which any (finite) direct sum of CS-modules is CS.

1. Introduction

We show that a ring R is right QI if and only if the direct sum of any two quasiinjective right R-modules is quasi-injective. On the other hand, a ring R is semiprime Artinian if and only if the direct sum of any two quasi-continuous right R-modules is quasi-continuous. A right nonsingular ring R is right Noetherian if and only if every direct sum of injective right R-modules is CS. We also show that if R is a ring with finitely generated right socle such that the direct sum of any two CS right R-module is CS, then every right R-modules is CS and R is right and left Artinian.

All rings are associative and have identity elements and all modules are unital right modules. Let R be any ring. A right R-module M is called a CS-module if every submodule is essential in a direct summand ("CS" stands for complements are summands). Recall also that the module M is called quasi-continuous if M is CS and for all direct summands K and L with $K \cap L = 0$, the submodule $K \oplus L$ is also a direct summand of M. The module M is called continuous if M is CS and for each direct summand of M and each monomorphism $\varphi: N \to M$, the submodule $\varphi(N)$ is also a direct summand of M. Finally, the module M is quasi-injective if M is M-injective, i.e., for every submodule H of M, any homomorphism $\theta: H \to M$ can be lifted to M. It is well known that the following implications hold for M:

M is injective $\Rightarrow M$ is quasi-injective $\Rightarrow M$ is continuous $\Rightarrow M$ is quasi-continuous $\Rightarrow M$ is CS.

For these facts and a good account of this area, see [3] or [7].

The Bass-Papp theorem states that a ring R is ring Noetherian if and only if every direct sum of (a countable number of) injective right R-modules is injective (see, for example, [1, Proposition 18.13] or [11, Theorem 4.1]). It is natural to raise the following general question: for which rings R is every direct sum of quasiinjective (respectively, continuous, quasi-continuous, CS) right R-modules quasiinjective (continuous, quasi-continuous, CS)? The purpose of this note is to try to answer these questions.

For any unexplained terminology, please see [1], [3], or [7].

2. Quasi-Injective, Continuous and Quasi-Continuous Modules

In this section, we are concerned with the problem of finding which rings R have the property that the classes of quasi-injective or continuous or quasi-continuous modules are closed under taking direct sums (coproducts). If M is an R-module, then E(M) will denote the injective hull of M, Soc(M) the socle of M, Z(M) the singular submodule of M, i.e.,

 $Z(M) = \{m \in M : mA = 0 \text{ for some essential right ideal } A \text{ of } R\}$

and $Z_2(M)$ the second singular submodule of M, i.e., $Z_2(M)$ is the submodule of M, containing Z(M) such that $Z_2(M)/Z(M) = Z(M/Z(M))$. A ring R is called a right QI-ring if every quasi-injective right R-module is injective.

Our first result gives a characterization of right *QI*-rings.

Proposition 1. The following statements are equivalent for a ring R:

(i) R is a right OI-ring.

(ii) The direct sum of any two quasi-injective right R-modules is quasi-injective.

(iii) The direct sum of any family of quasi-injective right R-modules is quasi-injective.

Proof. (i) \Rightarrow (iii). Let R be a right QI-ring. Every semisimple R-module is quasiinjective and hence injective. By [11, Theorem 4.1], R is right Noetherian. Now (iii) follows by the Bass-Papp theorem.

(iii) \Rightarrow (ii). Clear.

(ii) \Rightarrow (i). Let *M* be any quasi-injective right *R*-module. Then $E(R_R) \oplus M$ is quasi-injective by hypothesis, and hence *M* is an injective *R*-module by [7, Proposition 1.3].

Proposition 2. The following statements are equivalent for a ring R:

(i) Every continuous right R-module is injective.

(ii) The direct sum of any two continuous right R-modules is continuous.

(iii) The direct sum of any family of continuous right R-modules is continuous.

Proof. (i) \Rightarrow (iii). In particular, *R* is a right *QI*-ring and hence is right Noetherian. Now (iii) follows by the Bass-Papp theorem.

 $(iii) \Rightarrow (ii)$. Clear.

(ii) \Rightarrow (i). Let *M* be a continuous *R*-module. The $E(R_R \oplus M)$ is continuous by hypothesis. Hence, *M* is an injective *R*-module by [7, Propositions 1.3 and 2.10].

Propositions 1 and 2 raise the following natural question: if R is a right QI-ring, is every continuous right R-module injective?

Theorem 3. The following statements are equivalent for a ring R:

(i) R is semiprime Artinian.

(ii) Every quasi-continuous right R-module is injective.

(iii) The direct sum of any two quasi-continuous right R-modules is quasi-continuous.
(iv) The direct sum of any family of quasi-continuous right R-modules is quasi-continuous.

Proof. (i) \Rightarrow (iv) \Rightarrow (iii). Clear.

(iii) \Rightarrow (ii). By the proof of Proposition 2 (ii) \Rightarrow (i).

(ii) \Rightarrow (i). Suppose every quasi-continuous *R*-module is injective. Then *R* is a right *QI*-ring and hence is right Noetherian. By [11, Theorem 4.4], $E(R_R) = \bigoplus_{i \in I} E_i$, where E_i is indecomposable injective for each $i \in I$. Let $i \in I$. Let $0 \neq u \in E_i$. Then uR is uniform, whence quasi-continuous. By hypothesis, uR is injective. Hence, uR is a direct summand of E_i and we have $E_i = uR$. Thus E_i is simple. It follows that $E(R_R)$ is semisimple and hence so too is R_R .

It is not the case that every right QI-ring is semiprime Artinian (see for example, [4, 19.49]).

3. Direct Sums of Injectives

A ring R is right Noetherian if and only if the direct sum of every (countable) collection of injective right R-modules is quasi-continuous. First, suppose that the direct sum of every countable collection of injective right R-modules is quasi-continuous. Let $E_i(i \in I)$ be any countable collection of injective R-modules. Then $(\bigoplus_I E_i) \bigoplus E(R_R)$ is quasi-continuous and hence, by [7, Proposition 2.10], $\bigoplus_I E_i$ is an injective R-module. By [11, Theorem 4.1], R is right Noetherian. The converse also clearly follows from [11, Theorem 4.1].

We shall show that a right nonsingular ring R is right Noetherian if and only if every direct sum of injective right R-modules is CS.

Lemma 4. Let R be a ring with right socle S.

(i) If the direct sum of every countable collection of injective hulls of singular simple right R-modules is injective, then R/S is right Noetherian.

(ii) If R/S is right Noetherian, then every direct sum of singular injective right R-modules is injective.

Proof. (i) By a result of Goodearl [5, Proposition 3.6], it is sufficient to prove that the *R*-module R/E is Noetherian for any essential right ideal *E* of *R*. This is done by adapting the proof of [11, Theorem 4.1].

(ii) By [9, Corollary 11].

Lemma 5. Let R be a right nonsingular ring right socle S such that the direct sum of

every countable collection of injective right R-modules is CS. Then the right R/S is right Noetherian.

Proof. Let S_i $(i \in I)$ be singular simple right *R*-modules. Let $E = E(S_1) \oplus E(S_2) \oplus E(S_3) \oplus \cdots$ and let $M = E(R_R) \oplus E$. By hypothesis, M is a CS-module. By [6, Theorem 1], because $E(R_R)$ is nonsingular and $E = Z_2(M)$, we deduce that E is $E(R_R)$ -injective. Hence, E is an injective *R*-module. By Lemma 4, R/S is right Noetherian.

Recall that a ring R has finite right uniform dimension if it contains no infinite direct sums of nonzero right ideals.

Corollary 6. A right nonsingular ring R is right Noetherian if and only if R has finite right uniform dimension and the direct sum of every (countable) collection of indecomposable injective right R-modules is CS.

Proof. By Lemma 5.

Let R be a right nonsingular ring and let Q denote the maximal right quotient ring of R. Recall that Q is a von Neumann regular right self-injective ring, R is a subring of Q, and the right R-module Q is the injective hull of the right R-module R. Let X be a right Q-module such that as a right R-module, X is nonsingular and CS. Let Y be any submodule of X_Q . There exist submodules Z, Z' of X_R such that $X = Z \oplus Z'$ and Y is essential in Z. Since X_R is nonsingular, it is easy to check that $X = (ZQ) \oplus (Z'Q)$. Moreover, Z is essential in $(ZQ)_R$ so that Y is essential in $(ZQ)_R$. But this implies that Y is essential in $(ZQ)_Q$. It follows that the Q-module X is CS.

We have proved the following.

Lemma 7. Let R be a right nonsingular ring with maximal right quotient ring Q. Let X be a right Q-module such that the right R-module X is nonsingular CS. Then the right Q-module X is CS.

Corollary 8. Let R be a right nonsingular ring with maximal right quotient ring Q. Then R has finite right uniform dimension if and only if the right R-module $Q^{(I)}$ is CS for any index set I.

Proof. Suppose that R has finite right uniform dimension. Clearly, Q is a nonsingular right R-module. Let A be a right ideal of R and let $\varphi : A \to Q^{(I)}$ be a holomorphism. There exists a finitely generated right ideal B of R such that B is an essential submodule of A_R . There exists a finite subset J of I such that $\varphi(B) \subseteq Q^{(J)}$. Since Q_R is nonsingular, it follows that $\varphi(A) \subseteq Q^{(J)}$ also. But $Q^{(J)}$ is injective, so that there exists $q \in Q^{(J)} \subseteq Q^{(I)}$ with $\varphi(a) = qa$ for all a in A. Thus, $Q^{(I)}$ is injective and hence CS. Conversely, if the right R-module $Q^{(I)}$ is CS for any index set I, then the right Q-module $Q^{(I)}$ is CS (Lemma 7). Thus, Q is right Artinian by [8, Theorem II] (or see [3, 11.13]). It follows that R has finite right uniform dimension. Combining Lemma 5 and Corollary 8 we have at once:

Theorem 9. A right nonsingular ring R is right Noetherian if and only if the direct sum of every collection of injective right R-modules is CS.

4. Direct Sums of CS-Modules

In this section, our concern is with rings R having the property that any direct sum of CS-modules is CS. It turns out that if the direct sum of any two CS-modules is CS, then in many cases the direct sum of any collection of CS-modules is CS. Recall that any uniform module is CS. Note that if R is any ring, then the following statements are equivalent:

(i) the direct sum of any two uniform right *R*-modules is *CS*;

(ii) the direct sum of any collection of uniform right *R*-modules is CS (see [3, 13.1]).

A ring R is a right V-ring if every simple right R-module is injective. It is well known that a commutative ring R is a V-ring if and only if R is von Neumann regular. A ring R is called right semi-Artinian if every nonzero right R-module has nonzero socle. For examples of such rings, see [2].

Proposition 10. Let R be a ring which is either (a) a commutative von Neumann regular ring or (b) a right semi-Artinian, right V-ring. Then every uniform right R-module is simple and every direct sum of uniform right R-modules is CS.

Proof. First, suppose that R is a commutative von Neumann regular ring. Let U be a uniform R-module. Let $0 \neq u \in U$. Let $r \in R$ with $ur \neq 0$. Then rR = eR for some idempotent e in R. Also, $0 \neq urR = ueR \subseteq Ue$. Now $U = Ue \oplus U(1-e)$ gives U(1-e) = 0 and hence u(1-e) = 0. Thus, $u = ue \in urR$. It follows that uR is simple and hence injective. Thus, U = uR. Hence, U is simple.

Now suppose that R is a right semi-artinian right V-ring. Let U be any uniform right R-module. Then U contains a simple submodule S and S is injective, so that U = S.

Thus in either case uniform modules are simple and clearly direct sums of uniform modules are CS, because semisimple modules are CS.

Lemma 11. Let R be any ring, M a semisimple right R-module, and M_2 a right R-module with zero socle such that $M = M_1 \oplus M_2$ is a CS-module. Then M_1 is M_2 -injective.

Proof. Clearly, $M_1 = \text{Soc}(M)$. Let N be any submodule of M_2 and let $\varphi : N \to M_1$ be a homomorphism. Let $L = \{x - \varphi(x) : x \in N\}$. Then L is a submodule of M and $L \cap M_1 = 0$. There exist submodules K, K' of M such that $M = K \oplus K'$ and L is an essential submodule of K. Note that $\text{Soc}(K) = K \cap M_1 = 0$, so that $M_1 = \text{Soc}(M) \subseteq K'$. Thus, $K' = M_1 \oplus (K' \cap M_2)$ and $M = K \oplus M_1 \oplus (K' \cap M_2)$. Let $\pi : M \to M_1$ denote the projection with kernel $K \oplus (K' \cap M_2)$. Let θ denote the restriction of φ to M_2 . Then $\theta : M_2 \to M_1$ and $\theta(x) = \varphi(x)$ for all x in N. It follows that M_1 is M_2 -injective. **Lemma 12.** Let R be a ring such that the direct sum of any two CS right R-module is CS. Then R is right semi-Artinian.

Proof. Suppose first that R has zero right socle. Let X be any semisimple right R-module and let $E = E(R_R)$. By hypothesis, $M = X \oplus E$ is CS and hence, by Lemma 11, X is E-injective. It follows that every semisimple right R-module is injective. By [11, Theorem 4.1], R is right Noetherian. Now [3, 13.3] gives that every right R-module is CS and [3, 13.5] gives R right Artinian.

In general, let $0 = S_0(R) \subseteq S_1(R) \subseteq \cdots \subseteq S_\alpha(R) \subseteq S_{\alpha+1}(R) \subseteq \cdots$ denote the right Loewy series of R, i.e., for each ordinal $\alpha > 0$, $S_{\alpha+1}(R)/S_\alpha(R)$ is the right socle of the ring $R/S_\alpha(R)$ and $S_\alpha(R) = U_{0<\beta<\alpha}S_\beta(R)$ if α is a limit ordinal. There exists an ordinal $\rho > 0$ such that $S_\rho(R) = S_{\rho+1}(R)$, i.e., the ring $R/S_\rho(R)$ has zero right socle. By the above argument, $R/S_\rho(R)$ is right Artinian and hence $S_\rho(R) = R$. It follows that R is semi-Artinian (see, for example, [2, Proposition 1]).

Theorem 13. The following statements are equivalent for a ring R with Jacobson radical J.

(i) *R* has finite right uniform dimension and the direct sum of any two uniform right *R*-modules is CS.

(ii) R has finite left uniform dimension and the direct sum of any two uniform left R-modules is CS.

(iii) R has finitely generated right socle and the direct sum of any two CS right R-modules is CS.

(iv) R has finitely generated left socle and the direct sum of any two CS left R-modules is CS.

(v) Every right R-module is CS.

(vi) Every left R-module is CS.

(vii) R is (right and left) Artinian serial and $J^2 = 0$.

Proof. (v) \Leftrightarrow (vi) \Leftrightarrow (vii). By [3, 13.5].

 $(v) \Rightarrow (i)$. Clear.

(i) \Rightarrow (v). There exist a positive integer *n* and indecomposable injective right *R*-modules E_i (1 < i < n) such that $E(R_R) = E_1 \oplus \cdots \oplus E_n$. By [3, 13.1] E_i is Artinian for each *i* and hence *R* is right Artinian. Clearly, every cyclic right *R*-module has finite uniform dimension. By [3, 13.3], every right *R*-module is *CS*.

(ii) \Leftrightarrow (v). As for (i) \Leftrightarrow (v).

 $(v) \Rightarrow (iii)$. Clear.

(iii) \Rightarrow (i). By Lemma 12.

 $(iv) \Leftrightarrow (v)$. Similar to $(iii) \Leftrightarrow (v)$.

Two questions spring to mind at this point. First of all, if R is a ring such that the direct sum of any two CS-modules is CS, then is any direct sum of CS-modules CS? Related to this, we also ask: if R is a ring such that the direct sum of any two CS-modules is CS, is any R-module CS?

Finally, we give an example of a commutative ring for which the direct sum of every collection of uniform modules is CS but not every direct sum of CS-modules is CS.

Example. Let R denote the group algebra K[G] where K is a field of characteristic O and G is the direct product of an infinite family of cyclic groups. Then

- (i) R is a commutative von Neumann regular ring (and hence is nonsingular).
- (ii) R has zero socle (and hence R is not semi-Artinian).
- (iii) Every direct sum of uniform *R*-modules is CS.
- (iv) There exist CS *R*-modules X and Y such that $X \oplus Y$ is not CS.

Proof. (i) by [10, Theorem 3.1.5].

(ii) Suppose R has nonzero socle. Let U be a minimal ideal. Let $0 \neq u \in U$. Then there exist a finite subgroup G_1 and a nontrivial subgroup G_2 with $G = G_1 \times G_2$ and $u \in K[G_1]$. Let $1 \neq g \in G_2$. Then $u(1-g) \neq 0$ and hence, u = u(1-g)r for some $r \in R$. Suppose g has order n. Then $u(1+g+\cdots+g^{n-1}) = 0$ and hence, $u + ug + \cdots + ug^{n-1} = 0$. It follows that u = 0, a contradiction.

- (iii) By Proposition 10.
- (iv) By (ii) and Lemma 12.

Acknowledgement. This work was made possible by TUBITAK Grank number TBAG-1200 and was carried out during visits of the second author to Hacettepe University in September 1993 and April 1994. The authors wish to thank both organisations for their support.

References

- 1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, 1974.
- Nguyen Viet Dung and P. F. Smith, On semi-Artinian V-modules, J. Pure Appl. Algebra 82 (1992) 27–37.
- 3. Nguyen Viet Dung, Dinh Van Huynh, P. F. Smith, and R. Wisbauer, *Extending Modules*, Longman, Harlow, 1994.
- 4. C. Faith, Algebra II Ring Theory, Springer-Verlag, Berlin, 1976.
- 5. K. R. Goodeal, Singular torsion and the splitting properties, Amer. Math. Soc. Memoirs 124 (1972).
- M. A. Kamal and B. J. Muller, Extending modules over commutative domains, Osaka J. Math. 25 (1988) 531-538.
 - 7. S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules, London Math.* Soc. Lecture Notes 147, Cambridge University Press, Cambridge, 1990.
 - K. Oshiro, Lifting modules, extending modules and their application to QF-rings, Hokkaido Math. J. 13 (1984) 310-338.
 - 9. S. S. Page and Y. Zhou, When direct sums of singular injectives are injective, *Ring Theory*, World Scientific, Singapore, 1993, pp. 276-286.
- 10. D. S. Passman, The Algebraic Structure of Group Rings, Wiley, New York, 1977.
- 11. D. W. Sharpe and P. Vamos, *Injective Modules, Cambridge Tracts in Mathematics* 62, Cambridge University Press, Cambridge, 1972.