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Abstract. A module is called extending if every submodule is essential in a direct sum-
mand. More generally, the extending property can be restricted to certain classes of sub-
modules, e.g. uniform submodules, semisimple submodules. In this paper, we consider the
extending property for the class of (essentially) finitely generated submodules. We study
properties of this type of modules, decompositions and the relationship to finitely presented
modules.

1. Preliminaries

Throughout this paper, R will denote an associative ring with unit and R-Mod the
category of unital left R-modules. Morphism of left modules are written on the
right.

For an R-module M, o[M] denotes the full subcategory of R-Mod whose
objects are submodules of M-generated modules.

A module M is said to have finite uniform dimension if M does not contain an
infinite direct sum of nonzero submodules. A submodule K of M is called essential
in M if K n L # 0 for every nonzero submodule L of M. In this case, M is called
an essential extension of K. A submodule C of M is closed in M if and only if C is
the only essential extension of C in M.

A module M is called extending provided every closed submodule of M is a
direct summand of M, or equivalently, every submodule of M is essential in a
direct summand of M. M is called uniform-extending if every uniform submodule
is essential in a direct summand of M.

Now we introduce some new notions which generalize the concept of extend-
ing modules.

Recall that a module which has a finitely generated essential submodule is said
to be essentially finitely generated (essentially finite for short). In particular, this
includes all finitely generated modules.
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Definition 1. 4 module M is called ef-extending if every closed essentially finite
submodule is a direct summand of M. :

Definition 2. 4 module M is called f-extending if every finitely generated submodule
of M is essential in a direct summand of M.

Trivially, every extending module is ef-extending (f-extending). Moreover,
every module whose finitely generated submodules are direct summands is ef-
extending. In particular, every projective module over a von Neumann regular
ring R is ef-extending. Hence, the obvious implications

extending = ef-extending = f-extending = uniform extending

are not reversible.

The converse implications hold for modules with finite uniform dimension
since for such modules uniform-extending implies extending (see [5, 7.8]).

A ring R is left PF (pseudo-Frobenius) provided R is an injective cogenerator in
R-Mod. Equivalently, R is a semiperfect left self-injective ring with essential socle.

A module M is continuous if M is extending and direct-injective, i.e., every
submodule of M that is isomorphic to a direct summand of M is itself a direct
summand of M.

In [2], a module M is called finitely continuous (for short J-continuous) if M
is f-extending and direct-injective.

In [4], Dischinger and Miiller construct a local left PF-ring R which is not right
PF. By [2, Theorem 1.5], the ring Ma(R) of 2 x 2 matrices over R is not right
continuous. Therefore, not all left PF-rings are two-sided continuous. However.
left PF-rings are (left and) right f-continuous (see [11, Propositions 3.11 and 3. 12]).

General background material can be found in Anderson and Fuller [1], Dung
et al. [5], and Wisbauer [13].

2. Decompositions of ef-Extending Modules

We begin with some elementary observations.
Lemma 2.1. Any closed submodule of an ef-extending module is also an ef-extending
module.

Proof. Suppose N is a closed submodule of M and M is ef-extending. Let X be a
closed essentially finite submodule in N. Since N is a closed submodule in M. , 80
by [5, 1.10], X is a closed submodule in M. Since M is an ef-extending module, X
is a direct summand of M and hence in N. |

Now we consider the properties of decompositions of an ef-extending module.

Lemma 2.2. An indecomposable module is f-extending ( ef-extending, extending) if
and only if it is uniform.

Proof. Let M be an indecomposable f-extending module. For every xe M, x # 0,
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Rx is essential in a direct summand 4 of M. Thus, 4 = M and then Rx is essential
in M. Hence, M is uniform.
The other implications are obvious. |

Recall that a direct sum of submodules of M, N = (—D A N2 = M, issaid to be a
local direct summand of M if @ Ny is a direct summand of M for every finite
subset 4 < A.

Corollary 2.3. Let M be an ef-extending R-module. Assume that

(a) every local direct summand of M is a direct summand or

(b) Endgr(M) does not contain an infinite set of orthogonal idempotents.
Then M is a direct sum of uniform modules.

Proof. In case (a), by [8, Theorem 2.17], and in case (b), by [5, 10.4}, M is a direct
sum of indecomposable modules. By Lemmas 2.1 and 2.2, M is a direct sum of
uniform modules (in particular, in case (b), M is a finite direct sum of uniform
modules). ]

A module L € 6[M] is called M-singular if L ~ N /K for some N € ¢[M] and
K is an essential submodule of N. As is well known, every module L € ¢[M] con-
tains a largest M-singular submodule which we denote by Zy (N). If Zy(N) =0,
N is called nonsingular in 6[M|] or non-M-singular. Note that, if M is non-M-
singular, then every submodule of M has a unique maximal essential extension (see
[10] for more details).

Proposition 2.4. Let M be a module such that every submodule of M has a unique
maximal essential extension. Then M is ef-extending if and only if M is f-extending.

Proof. Let M be an f-extending module. Let L be a maximal essential extension of
a finitely generated submodule K. Then KX is essential in a direct summand H of
M. By assumption, H = L. From this, L is a direct summand of M. Hence, M is
ef-extending. ]

For any m € M, we denote
I(m) = {r e Rlrm = 0}.
The following observation is fundamental.

Proposition 2.5. Let M be an ef-extending R-module. If R satisfies ACC on left
ideals of the form I(m),m € M, then M contains a maximal local direct summand
N = @,_; Ni. with N; uniform for each i € I.

Proof. Since R satisfies ACC on left ideals of the form I(m), m € M, we can choose
a nonzero element m € M such that /(m) is maximal in {/(x)|0 # x € M}. By the
ef-extending property of M, there exists a direct summand K of M such that Rm is
essential in K. Suppose K is decomposable. Then there exist nonzero submodules
K; and K; of K such that K = K7 @ K>. So we write m = m; + m, for some
my € Ky, my € Kp. If m; =0, then m = m; € K, and Rmn K; = 0 giving K; = 0,
a contradiction. Thus, m; # 0. It is easy to see that /(m) < I(m;). Hence, by the
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maximality of m, I(m) = I(m;). Similarly, m> # 0 and /(m) = /(m,). Because
m; # 0 and Rm is essential in K, there exist ry, r» € R such that

0#rim =rm=nr{m +m) =rm +rnm.

From this, rom; = 0, and hence r, € [(m3)}\I(m), a contradiction. So X is inde-
composable.

By Lemma 2.1, K is ef-extending and by Lemma 2.2, K is uniform. It follows
that any direct summand of M contains a uniform direct summand.

By Zorn’s lemma, M contains a maximal local direct summand N =
where N; is a uniform submodule of M for each i e 1.

rer Nis
u
Corollary 2.6. Let M be an ef-extending R-module. If R satisfies ACC on left ideals

of the form I(m), m e M, and every maximal local direct summand is essentially
finite, then M is a finite direct sum of uniform modules. Consequently, M is extending.

Proof. By Proposition 2.5, M contains a maximal local direct summand N =
@,c; Ni. By [5, 8.1(1)], N is closed in M. Hence, N is a direct summand of M,
say

M=N®N,

for some submodule N’ of M. If N’ # 0, then by the same argument as in the
proof of Proposition 2.5, N' = U @ U’ for some submodule U, U’, with U uni-
form. Then N @ U is a local direct summand, contradicting the maximality of N.
Then N' =0 and M = @,_, N; is a direct sum of uniform submodules of M. By
assumption, M contains an essential finitely generated submodule V. It follows
that there exists a finite subset J of I such that ¥V = (P ; N;. Since V is essential in
M, M = P, N;, proving our claim. [ |

We also have some kind of decomposition of an ef-extending module.

Proposition 2.7. Let M be an ef-extending R-module which is projective in o[M].
Then M = @i o7 M, where each M, is essentially finite.

Proof. By Kaplansky’s theorem (e.g. [13, 8.10]), the module M is a direct sum of
countably generated submodules. Thus, without loss of generality, we may assume
that M is countably generated, i.e., there exists a countable set of elements
mi, my, ms, ... in M such that

M = iflRm,- ¥

By hypothesis, there exist submodules M;, Ny of M such that M = M; @ N,
and Rm; is essential in M7. Then my = rm; + ny. Suppose that ny # 0. By Lemma
2.1, N is again an ef-extending module, hence, there exists a direct summand M
of N7 which contains Rn, as an essential submodule; moreover,

Rm;+Rmy = M| ® M,.

Continuing in this manner we obtain a direct sum M; @ M, @ --- of sub-
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modules in the modules M such that
Rmi+Rmy+ - -+Rmpy S Mi @M, ® --- ® My,

for all k € N. It follows that M = (P, _\ M..
Moreover, by construction, each submodule M; is essentially finite.

Corollary 2.8. Let M be an ef-extending R-module which is projective in o|m] and
non-M -singular. Then M is a sum of finitely generated modules.

Proof. By Proposition 2.7, M is a direct sum of essentially finite ef-extending
modules. Since a non-N-singular module N which is projective in ¢|N] and has an
essentially finite submodule is finitely generated (see [5, 4.7]), hence the desired
proof follows. u

A module M is called n-injective if for any L), L, € M with L; n L, = 0, there
exist submodules M, M, of M suchthat M = M @ My and L; =« M; (i =1, 2).

Now we have a characterization of an ef-extending module via a property that
is close to the property of a n-injective module.

Theorem 2.9. For an R-module M, the following conditions are equivalent:

(@) For any Ly, Ly c M with Ly n Ly, =0 and L, essentially finite, there exist
submodules My, M, of M such that M = My @ M,, L is essential in M, and
L, c M),

(b) M is an ef-extending module and whenever M = My @ M, with M, essentially
finite, then M is M;-injective.

Proof. (a) = (b). First, we prove that M is an ef-extending module. Let 4 be a
closed essentially finite submodule in M and L; a complement of 4 in M; then, by
assumption (a), there exist submodules M, M, of M such that 4 is essential in
My, Ly =« M) and M = My @ M>. It follows that L, = M>and A = M;.So Aisa
direct summand of M. Hence, M is an ef-extending module.

Let M = M|, @ M, with M, essentially finite and N a submodule of M such
that N n M = 0. Then by assumption (a), there exist submodules M’ and M] of
M such that

M=M @M,
and N < M', M| = M. Hence, by the Modular Law,
M =M nM=M n(M @M)=M & (M nM)
and
M=MoMOMnM)=M & (M nM)®M,.

By [5, 7.5], M, is M>-injective.

(b) = (a). Let L; be essentially finite with a finitely generated essential sub-
module B and L, = M such that L; n L, = 0. We take the complement C of B in
M. This is to say that L; n C = 0. Then by Zorn’s lemma, there exists maximal
submodule D = M such that D n C = 0 and D > B. Moreover, B is essential in D.
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So D is a closed essentially finite submodule of M. Since M is ef-extending, D is a
direct summand of M, say

M=DQ®F.

Since L, is also essential in D, D n L, = 0. By (b), D is F-injective. Hence, by
[5, 7.5], there exists a submodule P’ of M such that M = D@ P’ and L, = P’. So
(a) follows. |

3. Finitely X-F-(ef)-Extending Modules

For any R-module M, denote by Add M (add M, resp.) the full subcategory of
a[M] whose objects are direct summands of (finite) coproducts of copies of M.
Of course, Add R is just the class of all projective R-modules and it does not
contain (R)-singular modules. It is clear that if M is projective in o[M], or M
has no M-singular submodule, then Add M contains no M-singular modules (see
{3, Lemma 1.10]).

An R-module M is said to be direct-projective if, for every direct summand X
of M, every epimorphism M — X splits. M is 2-direct-projective if any coproduct
of copies of M is direct-projective. Of course, if M is projective in ¢[M|, then it is
Z-direct-projective.

A module N is called finitely presented in M if it is finitely generated and in
every exact sequence

0—-K—L—>N-—->90

in g[M], with L finitely generated, K is also finitely generated.
If M = R, then the class of all finitely presented modules is the class of all
modules of the form R"/H where H — R” finitely generated in [13,2.5].

Definition. We call an R-module M (finitely) Z-f-extending if any (finite) coprod-
uct of copies of M is f-extending.

M is called (finitely) X-ef-extending if any (finite) coproduct of copies of M is
ef-extending.

Recall the following results about regular rings and left and right hereditary
serial Artinian rings. '

Proposition 3.1. For a ring R, the following conditions are equivalent.
(a) R is von Neumann regular and
(b) every finitely presented left (and right) R-module is projective.

Proof. See [13, 37.6]. |
Proposition 3.2. For a ring R, the following conditions are equivalent:

(@) R is a left (and right) hereditary serial Artinian ring and
(b) R is fight nonsingular and every nonsingular left R-module is projective.
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Proof. See [7, Theorem 5.23]. |

Now we consider properties of finitely X-f-extending which are related to
Propositions 3.1 and 3.2.

Lemma 3.3. Let M be ef-extending (f-extending) and K an essentially finite (a
finitely generated, resp.) submodule of M such that M/K is non-M-singular. Then K
is a direct summand of M.

Proof. Since M is f-extending, there exists an essential extension X of K which is a
direct summand of M, say

M=K®V.
From this
M/K~(K/K)@V.

Since M /K is non-M-singular, it follows that K = K and then X is a direct sum-
mand of M.
The proof for ef-extending is similar. [ |

Corollary 3.4. If R is a left finitely T-f-extending ring, then every finitely presented
nonsingular left R-module is projective.

Theorem 3.5. Let M be a module. We consider the following conditions:

(@) M is finitely ef-extending,

(b) every module M, (a) (b) (c), and

(c) every factor of M" by any closed essentially finite submodule of M" is in
Add M.

Then for every module M, (a) <> (b) & (c).
If M is Z-direct projective, then (c) = (a).

Proof. (a)<« (b). By Lemma 3.1, any direct summand of an ef-extending module
is also ef-extending.

(@) = (c). Let H be a finitely generated submodule of M" and H any maximal
essential extension of H. Then H is a direct summand of M", say M" = H @ K. It
is easy to see that M"/H ~ K is in add M.

() =(a). Let M be Z-direct projective. Assume (c). Let H be a finitely gen-
erated submodule of M” and H any maximal essential extension of H. Then by
(c), M"/H is in Add M. Since M is I-direct projective, H is a direct summand of
M?". Tt follows that M™ is ef-extending.

For the f-extending property, we obtain the following:

Theorem 3.6. Let M be an R-module. We consider the following conditions:
(a) M is X-f-extending,
(b) M is finitely T-f-extending,
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(c) every factor of M™ by some closed essentially finite submodule of M" is in
Add M,

(d) every factor of M™ by a finitely generated submodule is a direct sum of a module
in Add M and an M-singular module,

(e) every non-M-singular factor of M" by any finitely generated submodule is in
Add M.

Then we have the following implications:

(1) For every module M, (a) < (b) = (c), (d) = (¢).

(2) If M is X-direct projective, then (c) = (a), (c) = (d).

Proof- (a) = (b) is trivial.

(b) = (a). Let H be a finitely generated submodule of M (A), where A any
mdex set. Then there exists # € N such that H <« M". By (b), H is essential in a
direct summand H of M". It is easy to see that H is also a direct summand of
M®). So (a) follows.

The other implications are proved similarly to Theorem 3.5. |

Corollary 3.7.
(1) For a ring R, the following conditions are equivalent:
(a) R is left finitely T-ef-extending;
(b) every finitely generated projective is left R-module ef-extending;
(c) every factor of R® by any closed essentially finite submodule of R" is
projective.
(2) For a ring R, the following conditions are equivalent:
(@') R is left Z-f-extending;
(b') R is left finitely X-f-extending;
(c') every factor of R" by some closed essentially finite submodule of R is
projective.
(3) If R is nonsingular, then all conditions in (1) and (2) are equivalent.
(4) One of the above conditions in (1) and (2) = (d) = () are as follows:
(d') every finitely presented left R-module is a direct sum of a projective module
and a singular module;
(¢') every nonsingular finitely presented left R-module is projective.
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