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Abstract. It is shown that a nuclear Frechet space E has the property (Q) if and only if every
holomorphic function on A («) with values in E* is of uniform type.

1. Introduction

Let E be a Frechet space with a fundamental system of semi-norms || - ||,. We say
that E has the property

(DN)if3p ¥g 35, C > 0,&> 0: || |, < Cll - II, I - I,
Q) ifv EI,d>0Vk3C'>0 * * "
(Q)if vp 3¢ } 112 < - T - 1

(Q) if ¥p 3g ¥d >0 VK IC >0 q

Here, for each subset B of E and y* € E*, the strongly dual space of E, we put

lylls = sup{|¥(x)|: x € B}

and, for every p, we write

-, =1y, where U,={xekE:|x|, <1}.

The properties (DN), (©), (Q), and others were introduced and investigated by
Vogt in [9, 10]. Recently in [4], Meise and Vogt have proved that if a nuclear
Frechet space E has the property (Q), then every scalar holomorphic function on
E is of uniform type. Here, a holomorphic function f from a locally convex space
E to a locally convex space F is of uniform type if there exists a continuous semi-
norm p on E such that f can be holomorphically factorized through the canonical
map w, : E — E,, where we denote the Banach space associated to p by E,.

Now let E and F be locally convex spaces and f: E — F a holomorphic
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function. We say that f has Dirichlet representation if there exist {u;} = E*, the
strongly dual space of E, and {yx} = F such that

Exp : f(x) Zyk expur(x) for xekE,
k=1
where the series is convergent to f in the compact open topology of H(E, F).
In the present paper, we shall prove the following.

Main Theorem, Let E be a nuclear Frechet space. Then the following conditions are
equivalent:
(i) E has the property (Q)
(ii) Every holomorphic function on X(x) with values in E* is of uniform type for
every exponent sequence o. = (o) for which Aq(a) is nuclear, where

Aqo) = {(fj) el Z|éj|r“f <o for 0<r< 1}.

jz1
(iii) E has the property (Q) and every holomorphic function f on A (a) with values
in E* has Dirichlet representation:

(Exp) : Z Sk exp xi(y
k=1

which is absolutely convergent in H(A(x), E*) for every a as in (ii).
(iv) Every holomorphic function f from E to A\(a) has Dirichlet representation:

(Exp) : f(x) =Y _ & expur(x
k=1

which is absolutely convergent in H(E, A1(a)) for every o as in (ii).
The proof of the Main Theorem is given in Sec. 2. Moreover, in this section,
we prove that, if E is a Frechet—Hilbert—Schwartz space with the property (H,)

and D is a pseudoconvex neighborhood of E/|| - ||, in E,, then there exists § > p
such that Im wg, = D, where wg, is the canonical map from Ej to E,.

2. Proof of Main Theorem

(i) implies (ii). Let f € H(A'\(«), E*), where a as in (ii). Without loss of generality,
we may assume that f(0) = 0. Then f induces a continuous linear map f from
H(E*) to Hy(A(a)), the space of holomorphic functions ¢ on A’ () with ¢(0) = 0,
by the formula

(fo)») = o( f() for geH(E) and yeAj(a).

Let D denote the open polydisc in A’ () given by
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Dy = {y = (yj) € Aj(«) : sup|y;| < 1}
and let R be the restriction map from Hy(A(«)) to Hy(D;). It is known [5] that

H(Dy) = A(B(w)),

where f(a) is the increasing arrangement of the family

(o)) = {3 agmy: m e b}

and
M={m=(m)eNy:m=0 foralmostall je N}.

Now we consider a map u : E — H(E™) given by u(#)(g) = g(¢). Then the map
Rf u:E— H(D;) = A(B(x)) is a continuous linear map By [9, Satz. 4.2], there
exists a neighborhood U of 0 € E such that B = Rf u(U) 1s bounded in Hy(Dy).
Let 6: D1 — Hj (D1) be the canonical map. Then 6~ (BO) is a neighborhood of 0
in D; andsup{|f ()] er& ) € B} = sup{| f(x)(»)| : x e U, 8(y) € B} =
sup{|6(y)(f(x))| : x e U,8(y) € BO} < 1. Hence, f'is bounded at0 e D;. Slmllarly,
it follows that fis bounded at every point of A (a). Write

= U Kn:
n=1
where {K,} is an exhaustion sequence of compact sets in A’(«) such that nK, =
K, for n > 1. Since f is locally bounded for each n > 1, there exists a neighbor-
hood U, of 0 € A(«) such that f(K, + U,) is bounded. Put

!

Then U is a neighborhood of 0 € A (a) and

f(nU)  f(nK, + Upy1) € f(Knp1 + Untr)

for n > 1. This implies that f is of uniform type.

(i1) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear
map T : E — A;(a) is of uniform type. Indeed, by the hypothesis 7* : A (x) — E*
is of uniform type and, hence, T is of uniform type.

(i) implies (iii). Since (ii) implies (i), E € (Q) and, hence, E e (Q). Now, given
f € H(A}(a), E*), by (ii), there exists a continuous semi-norm p on Aj(a) and a
holomorphic function g on (A}(a)) , With values in E* such that

gwp =f.

Choose a continuous semi-norm f on Aj(«) such that § > p and the canonical
map T from (A’(a)) into (Aj(«)), is in the form

)= leuj(x)ej,
j=z1
where
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a=) Wi<w, lyl<t, lel<t.
izl

Consider the Taylor expansion of g at 0 € (A}(«))g
g(x) = Pg(x),

n=0

where

1 g(1x)
P,g(x) = ﬁJm:r ] dt

foralln > 0and r > 0.
By [3], there exist complex number sequences {&x}, {ox} such that, for ze C,
we can write

Za— Z Epexp oz
k=1
and
Cr =) |&|explarlr < +oo
k=1
for all > 0.
Formally, we have

(9T )(x) = g(Tx)

=> Ry (Z ij"j(x)ej>

n=0 jz1

=N Y iy APl (x) g (0)

n20 ji, 1,y jn21

=3 Y Ly A,Bgle, . .oe,)

n20 i, j1yesja21

X (Z & exp ogu (x) . .. Z & exp ockujn(x)>

k>1 kx1

S e R T e )

n>0 Jj1janin21
K wden 21

X Blg<ej17 ey ejn) €Xp [“klujl (x) +---+ aknujn(x)])
where Ig,,\g denotes the continuous symmetric #-linear map associated to B,g.

It remains to be checked that the right-hand side is absolutely convergent in
H(A(a), E*). For each r > 0, we take & > C, ea, where

C = Z |€x| exp rlog] < o0. (1)
k>1

Now, let B be an arbitrary bounded subset of E. We have
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[Bgless - - €l < n"[nl6"|1gllp 5, (2)

where

lgliz,s = sup{llgx)li3 : IIx[| <4}.

Without loss of generality, by the nuclearity of A’(x), we may assume that g is
bounded on every bounded set in (A () R
From (1) and (2), we have

> > gl 1Al - - Ll | Bgless - €3
n>0 iy javin2t
kyyokn 21

x exp [rlok, | + - . + Flok, |]
< Y Cra"n[ntd"||gllps < 0 for |Ix]| < 7.
n>0

(iii) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear
map T from A(x) to E* is bounded on a neighborhood of 0 € A («). Write T in
Dirichlet representation

=) &expylx),
=1

where x; € Aj(a), y € Aj(x) and the series is absolutely convergent in H(AJ(«), E).
Since E is a Frechet space, we can find a semi-norm p on E such that

Yo lgl; < +eo.

j=1
By the hypothesis, that E has the property (Q (), there exist ¢ and a compact set
B in E such that

I+d d
el < I 0

for some d > 0 [4, Lemma 3.6].
Then, for every k > 1, we have

#(1/1+d) «(d/1+d)
Zué,nqexpux,nk Y&l Nl expllxl
jz1 j=1

< S lpexp(t + xlle + Y 1, < +oo.

j=1 j=1

Thus, T continuously maps Aj(a) to Ej. Hence, T is bounded on a neighbor-
hood of 0 e A (o).

(i) implies (iv) as (i) implies (iii).

(iv) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear
map f : E — Aj(«) is of uniform type. Write f in Dirichlet expansion form
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(Exp) : Z S €Xp ui(x
k=1

where the series is absolutely convergent in H(E, Aj(a)). Since Ai(x) has the
property (DN), we can find p > 1 such that
1
Vg 3s,Coe>0: |- [,7 < Cll- [l - ;-
Since E is a Frechet space, we can find a semi-norm m on E such that
> gl exp lluelly, < oo. 3)
k=1
It remains to be checked that
> lIkll, exp[uelly, < oo for g > p.
k>1

Given g > p, choose (for g) s, &, C > 0 such that the property (DN) is satisfied.
Then

3 11l exp el

k>1
< CUO SN NGNS exp i el
k>1
c(1/1+) Z M + * ))
mi\lte

< OISl + 3 Kl exp el ] < o

k=1 k>1

This deduces from the following. Since the series Z & expug(x) is absolutely

k>
convergent in H(E, Aj(a)) and, hence, for s the series E | €]l explux(0)] < co.
This shows that E 1€kl < oo. Thus, f is bounded on Um The theorem is proved.

Proposition. Let E be a Frechet—Hilbert—Schwartz space and let E have the prop-
erty (H,), i.e. , every holomorphic function on E is of uniform type. Then, for every
continuous semi-norm p on E and every pseudoconvex neighborhood D of E [ker p in
E,, there exists a continuous semi-norm B on E with B > p such that Im wg, < D,
where wg, : Eg — E, is the canonical map.

Proof. Since the topology of E is defined by Hilbert semi-norms, without loss of
generality, we may assume that E, is a Hilbert space. Choose a continuous semi-
norm o on E such that « > p and the canonical map from E, to E, is compact. Let
t denote the linear metric topology on H(D) generated by the uniform convergence
on the sets
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K, = {cow,(z); llz|| < 7, way(2) € D, dist(wy,(z), dD) > %}

Since the canonical map [H(D), 1} — H(E) is continuous and since
H(E)yo, = limind Hy(E;) [4],

where H(E)y,, denotes the bornological space associated to H(E) and for each g
by Hy(E,), we denote the Frechet space of holomorphic functions on E, which are
bounded on every bounded set in E,, we can find a continuous semi-norm § on E
such that 8 > « and H(D) = H(Ep). It remains to be checked that Imwg, < D. In
the converse case, there exists z € Eg such that wg,(z) € dD. Choose a sequence
{2zs} = E/ker B which converges to z. Since E, is a separable Hilbert space, we can
find f € H(D) such that

sup| fwgy(zn)| = 0.

This is impossible because fwg, € H(Ep).
The proposition is proved. |

Remarks. In [6], Ha and Khue have proved that a nuclear Frechet space E has the
property (H,) if and only if every holomorphic function on E can be written in
Dirichlet representation.
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