Vietnam Journal of MATHEMATICS © Springer-Verlag 1997

The Property $(\hat{\Omega})$ and Holomorphic Functions*

Le Mau Hai

Department of Mathematics, Pedagogic College 1 of Hanoi, Hanoi, Vietnam

Received November 21, 1995

Abstract. It is shown that a nuclear Frechet space E has the property $(\overline{\Omega})$ if and only if every holomorphic function on $\Lambda_1^*(\alpha)$ with values in E^* is of uniform type.

1. Introduction

Let E be a Frechet space with a fundamental system of semi-norms $\|\cdot\|_k$. We say that E has the property

 $\begin{array}{l} (\underline{DN}) \text{ if } \exists p \ \forall q \ \exists s, \ C > 0, \ \varepsilon > 0 \colon \| \cdot \|_q^{1+\varepsilon} \leq C \| \cdot \|_s \ \| \cdot \|_p^{\varepsilon}, \\ (\widetilde{\Omega}) \text{ if } \forall p \ \exists q, \ d > 0 \ \forall k \ \exists C > 0 \\ (\overline{\Omega}) \text{ if } \forall p \ \exists q \ \forall d > 0 \ \forall k \ \exists C > 0 \\ \end{array} \right\} \colon \| \cdot \|_q^{*1+d} \leq C \| \cdot \|_k^* \| \cdot \|_p^{*d}.$

Here, for each subset B of E and $y^* \in E^*$, the strongly dual space of E, we put

$$||y||_{B}^{*} = \sup\{|y(x)|: x \in B\}$$

and, for every p, we write

 $\|\cdot\|_p^* = \|\cdot\|_{U_p}^*$, where $U_p = \{x \in E : \|x\|_p \le 1\}.$

The properties (\underline{DN}) , $(\tilde{\Omega})$, $(\bar{\Omega})$, $(\bar{\Omega})$, and others were introduced and investigated by Vogt in [9, 10]. Recently in [4], Meise and Vogt have proved that if a nuclear Frechet space E has the property $(\tilde{\Omega})$, then every scalar holomorphic function on E is of uniform type. Here, a holomorphic function f from a locally convex space E to a locally convex space F is of uniform type if there exists a continuous seminorm ρ on E such that f can be holomorphically factorized through the canonical map $\omega_{\rho}: E \to E_{\rho}$, where we denote the Banach space associated to ρ by E_{ρ} .

Now let E and F be locally convex spaces and $f: E \to F$ a holomorphic

^{*} This work was supported in part by the National Basic Research Programme in Natural Science, Vietnam.

function. We say that f has Dirichlet representation if there exist $\{u_k\} \subset E^*$, the strongly dual space of E, and $\{y_k\} \subset F$ such that

$$\operatorname{Exp}: f(x) = \sum_{k \ge 1} y_k \exp u_k(x) \quad \text{for} \quad x \in E,$$

where the series is convergent to f in the compact open topology of H(E, F).

In the present paper, we shall prove the following.

Main Theorem. Let E be a nuclear Frechet space. Then the following conditions are equivalent:

- (i) *E* has the property $(\overline{\Omega})$.
- (ii) Every holomorphic function on $\Lambda_1^*(\alpha)$ with values in E^* is of uniform type for every exponent sequence $\alpha = (\alpha_n)$ for which $\Lambda_1(\alpha)$ is nuclear, where

$$\Lambda_1(\alpha) = \left\{ \langle \xi_j \rangle \in \mathbb{C}^N \colon \sum_{j \ge 1} |\xi_j| r^{\alpha_j} < \infty \quad \text{for} \quad 0 \le r < 1 \right\}.$$

(iii) E has the property $(\tilde{\Omega})$ and every holomorphic function f on $\Lambda_1^*(\alpha)$ with values in E^* has Dirichlet representation:

$$(\operatorname{Exp}): f(y) = \sum_{k \ge 1} \xi_k \exp x_k(y)$$

which is absolutely convergent in $H(\Lambda_1^*(\alpha), E^*)$ for every α as in (ii).

(iv) Every holomorphic function f from E to $\Lambda_1(\alpha)$ has Dirichlet representation:

$$(\operatorname{Exp}): f(x) = \sum_{k \ge 1} \xi_k \exp u_k(x)$$

which is absolutely convergent in $H(E, \Lambda_1(\alpha))$ for every α as in (ii).

The proof of the Main Theorem is given in Sec. 2. Moreover, in this section, we prove that, if *E* is a Frechet-Hilbert-Schwartz space with the property (H_u) and *D* is a pseudoconvex neighborhood of $E/|| \cdot ||_{\rho}$ in E_{ρ} , then there exists $\beta \ge \rho$ such that Im $\omega_{\beta\rho} \subseteq D$, where $\omega_{\beta\rho}$ is the canonical map from E_{β} to E_{ρ} .

2. Proof of Main Theorem

(i) implies (ii). Let $f \in H(\Lambda_1^*(\alpha), E^*)$, where α as in (ii). Without loss of generality, we may assume that f(0) = 0. Then f induces a continuous linear map \hat{f} from $H(E^*)$ to $H_0(\Lambda_1^*(\alpha))$, the space of holomorphic functions φ on $\Lambda_1^*(\alpha)$ with $\varphi(0) = 0$, by the formula

$$(\hat{f}\varphi)(y) = \varphi(f(y))$$
 for $\varphi \in H(E^*)$ and $y \in \Lambda_1^*(\alpha)$.

Let D_1 denote the open polydisc in $\Lambda_1^*(\alpha)$ given by

$$D_1 = \{ y = (y_j) \in \Lambda_1^*(\alpha) : \sup |y_j| < 1 \}$$

and let R be the restriction map from $H_0(\Lambda_1^*(\alpha))$ to $H_0(D_1)$. It is known [5] that

$$H(D_1) \cong \Lambda_1(\beta(\alpha))$$

where $\beta(\alpha)$ is the increasing arrangement of the family

$$((\alpha|m)) = \left\{ \sum \alpha_j m_j \colon m \in M \right\}$$

and

$$M = \{m = (m_j) \in N_0^N : m_j = 0 \text{ for almost all } j \in N\}.$$

Now we consider a map $u: E \to H(E^*)$ given by u(t)(g) = g(t). Then the map $R\hat{f}u: E \to H(D_1) \cong \Lambda_1(\beta(\alpha))$ is a continuous linear map. By [9, Satz. 4.2], there exists a neighborhood U of $0 \in E$ such that $B = R\hat{f}u(U)$ is bounded in $H_0(D_1)$. Let $\delta: D_1 \to H_0^*(D_1)$ be the canonical map. Then $\delta^{-1}(B^0)$ is a neighborhood of 0 in D_1 and $\sup\{|f(y)(x)|: x \in U, \delta(y) \in B^0\} = \sup\{|\hat{f}(x)(y)|: x \in U, \delta(y) \in B^0\} \le 1$. Hence, f is bounded at $0 \in D_1$. Similarly, it follows that f is bounded at every point of $\Lambda_1^*(\alpha)$. Write

$$\Lambda_1^*(\alpha) = \bigcup_{n\geq 1} K_n,$$

where $\{K_n\}$ is an exhaustion sequence of compact sets in $\Lambda_1^*(\alpha)$ such that $nK_n \subseteq K_{n+1}$ for $n \ge 1$. Since f is locally bounded for each $n \ge 1$, there exists a neighborhood U_n of $0 \in \Lambda_1^*(\alpha)$ such that $f(K_n + U_n)$ is bounded. Put

$$U = \bigcap_{n \ge 1} \left(K_n + \left(\frac{1}{n}\right) U_{n+1} \right).$$

Then U is a neighborhood of $0 \in \Lambda_1^*(\alpha)$ and

$$f(nU) \subseteq f(nK_n + U_{n+1}) \subseteq f(K_{n+1} + U_{n+1})$$

for $n \ge 1$. This implies that f is of uniform type.

(ii) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear map $T: E \to \Lambda_1(\alpha)$ is of uniform type. Indeed, by the hypothesis $T^*: \Lambda_1^*(\alpha) \to E^*$ is of uniform type and, hence, T is of uniform type.

(ii) implies (iii). Since (ii) implies (i), $E \in (\overline{\Omega})$ and, hence, $E \in (\overline{\Omega})$. Now, given $f \in H(\Lambda_1^*(\alpha), E^*)$, by (ii), there exists a continuous semi-norm ρ on $\Lambda_1^*(\alpha)$ and a holomorphic function g on $(\Lambda_1^*(\alpha))_{\rho}$ with values in E^* such that

 $g\omega_{\rho}=f.$

Choose a continuous semi-norm β on $\Lambda_1^*(\alpha)$ such that $\beta \ge \rho$ and the canonical map T from $(\Lambda_1^*(\alpha))_{\beta}$ into $(\Lambda_1^*(\alpha))_{\rho}$ is in the form

$$T(x) = \sum_{j \ge 1} \lambda_j u_j(x) e_j$$

where

New, jet if be an printer bounded rated of it. We have

Le Mau Hai

$$a = \sum_{j \ge 1} |\lambda_j| < \infty, \quad ||u_j|| \le 1, \quad ||e_j|| \le 1.$$

Consider the Taylor expansion of g at $0 \in (\Lambda_1^*(\alpha))_{\beta}$

$$g(x)=\sum_{n\geq 0}P_ng(x),$$

where

$$P_n g(x) = \frac{1}{2\pi i} \int_{|t|=r} \frac{g(tx)}{t^{n+1}} dt$$

for all $n \ge 0$ and r > 0.

By [3], there exist complex number sequences $\{\xi_k\}$, $\{\alpha_k\}$ such that, for $z \in C$, we can write

$$z = \sum_{k \ge 1} \xi_k \exp \alpha_k z$$

and

$$C_r = \sum_{k \ge 1} |\xi_k| \exp |\alpha_k| r < +\infty$$

for all $r \ge 0$. Formally, we have

$$(gT)(x) = g(Tx)$$

$$= \sum_{n \ge 0} P_n g\left(\sum_{j\ge 1} \lambda_j u_j(x) e_j\right)$$

$$= \sum_{n\ge 0} \sum_{j_1, j_1, \dots, j_n \ge 1} \lambda_{j_1} \lambda_{j_2} \dots \lambda_{j_n} \widehat{P_n g}(e_{j_1}, \dots, e_{j_n}) u_{j_1}(x) \dots u_{j_n}(x)$$

$$= \sum_{n\ge 0} \sum_{j_1, j_1, \dots, j_n \ge 1} \lambda_{j_1} \lambda_{j_2} \dots \lambda_{j_n} \widehat{P_n g}(e_{j_1}, \dots, e_{j_n})$$

$$\times \left(\sum_{k\ge 1} \xi_k \exp \alpha_k u_{j_1}(x) \dots \sum_{k\ge 1} \xi_k \exp \alpha_k u_{j_n}(x)\right)$$

$$= \sum_{n\ge 0} \sum_{\substack{j_1, j_2, \dots, j_n \ge 1 \\ k_1, \dots, k_n \ge 1}} \lambda_{j_1} \lambda_{j_2} \dots \lambda_{j_n} \xi_{k_1} \dots \xi_{k_n}$$

$$\times \widehat{P_n g}(e_{j_1}, \dots, e_{j_n}) \exp [\alpha_{k_1} u_{j_1}(x) + \dots + \alpha_{k_n} u_{j_n}(x)],$$

where $\widehat{P_ng}$ denotes the continuous symmetric *n*-linear map associated to P_ng .

It remains to be checked that the right-hand side is absolutely convergent in $H(\Lambda_1^*(\alpha), E^*)$. For each r > 0, we take $\delta > C_r ea$, where

$$C_r = \sum_{k \ge 1} |\xi_k| \exp r |\alpha_k| < \infty.$$
⁽¹⁾

Now, let B be an arbitrary bounded subset of E. We have

The Property $(\overline{\Omega})$ and Holomorphic Functions

$$\|P_n g(e_{j_1}, \dots, e_{j_n})\|_B^* \le n^n / n! \delta^n \|g\|_{B,\delta}^*,$$
(2)

where

$$||g||_{B,\delta}^* = \sup\{||g(x)||_B^* : ||x|| \le \delta\}.$$

Without loss of generality, by the nuclearity of $\Lambda_1^*(\alpha)$, we may assume that g is bounded on every bounded set in $(\Lambda_1^*(\alpha))_{\rho}$.

From (1) and (2), we have

$$\sum_{n\geq 0} \sum_{\substack{j_{1}, j_{2}, \dots, j_{n}\geq 1\\k_{1}, \dots, k_{n}\geq 1}} |\lambda_{j_{1}}| |\lambda_{j_{2}}| \dots |\lambda_{j_{n}}| |\xi_{k_{1}}| \dots |\xi_{k_{n}}| \|\widehat{P_{n}g}(e_{j_{1}}, \dots, e_{j_{n}})\|_{B}^{*}$$

$$\times \exp[r|\alpha_{k_{1}}| + \dots + r|\alpha_{k_{n}}|]$$

$$\leq \sum_{n\geq 0} C_{r}^{n} a^{n} n^{n} / n! \delta^{n} \|g\|_{B,\delta}^{*} < \infty \quad \text{for } \|x\| \leq r.$$

(iii) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear map T from $\Lambda_1^*(\alpha)$ to E^* is bounded on a neighborhood of $0 \in \Lambda_1^*(\alpha)$. Write T in Dirichlet representation

$$T(y) = \sum_{j=1}^{\infty} \xi_j \exp y(x_j),$$

where $x_j \in \Lambda_1(\alpha)$, $y \in \Lambda_1^*(\alpha)$ and the series is absolutely convergent in $H(\Lambda_1^*(\alpha), E^*)$. Since E is a Frechet space, we can find a semi-norm p on E such that

$$\sum_{j\geq 1} \|\xi_j\|_p^* < +\infty.$$

By the hypothesis, that E has the property $(\tilde{\Omega})$, there exist q and a compact set B in E such that

$$\|\cdot\|_q^{*^{1+d}} \le \|\cdot\|_B^*\|\cdot\|_p^*$$

for some d > 0 [4, Lemma 3.6].

Then, for every $k \ge 1$, we have

$$\sum_{j\geq 1} \|\xi_j\|_q^* \exp\|x_j\|_k \le \sum_{j\geq 1} \|\xi_j\|_B^{*^{(1/1+d)}} \|\xi_j\|_p^{*^{(d/1+d)}} \exp\|x_j\|_k$$
$$\le \sum_{j\geq 1} \|\xi_j\|_B^* \exp(1+d) \|x_j\|_k + \sum_{j\geq 1} \|\xi_j\|_p^* < +\infty.$$

Thus, T continuously maps $\Lambda_1^*(\alpha)$ to E_q^* . Hence, T is bounded on a neighborhood of $0 \in \Lambda_1^*(\alpha)$.

(i) implies (iv) as (i) implies (iii).

(iv) implies (i). By [9, Satz. 4.2], it suffices to show that every continuous linear map $f: E \to \Lambda_1(\alpha)$ is of uniform type. Write f in Dirichlet expansion form

$$(\operatorname{Exp}): f(x) = \sum_{k \ge 1} \xi_k \exp u_k(x),$$

where the series is absolutely convergent in $H(E, \Lambda_1(\alpha))$. Since $\Lambda_1(\alpha)$ has the property (<u>DN</u>), we can find $p \ge 1$ such that

$$\forall q \; \exists s, C, \varepsilon > 0 : \| \cdot \|_q^{1+\varepsilon} \le C \| \cdot \|_s \| \cdot \|_p^{\varepsilon}.$$

Since E is a Frechet space, we can find a semi-norm m on E such that

$$\sum_{k\geq 1} \|\xi_k\|_p \exp\|u_k\|_m^* < \infty.$$
(3)

It remains to be checked that

$$\sum_{k\geq 1} \|\xi_k\|_q \exp \|u_k\|_m^* < \infty \quad \text{for } q \geq p.$$

Given $q \ge p$, choose (for q) s, ε , C > 0 such that the property (<u>DN</u>) is satisfied. Then

$$\begin{split} &\sum_{k\geq 1} \|\xi_k\|_q \exp\frac{\varepsilon}{1+\varepsilon} \|u_k\|_m^* \\ &\leq C^{(1/1+\varepsilon)} \sum_{k\geq 1} \|\xi_k\|_s^{(1/1+\varepsilon)} \|\xi_k\|_p^{(\varepsilon/1+\varepsilon)} \exp\frac{\varepsilon}{1+\varepsilon} \|u_k\|_m^* \\ &\leq C^{(1/1+\varepsilon)} \sum_{k\geq 1} \left(\frac{\|\xi_k\|_s}{1+\varepsilon} + \frac{\varepsilon}{1+\varepsilon} (\|\xi_k\|_p \exp\|u_k\|_m^*) \right) \\ &\leq C^{(1/1+\varepsilon)} \left[\sum_{k\geq 1} \|\xi_k\|_s + \sum_{k\geq 1} \|\xi_k\|_p \exp\|u_k\|_m^* \right] < \infty. \end{split}$$

This deduces from the following. Since the series $\sum_{k\geq 1} \xi_k \exp u_k(x)$ is absolutely convergent in $H(E, \Lambda_1(\alpha))$ and, hence, for s the series $\sum_{k\geq 1} \|\xi_k\|_s \exp|u_k(0)| < \infty$. This shows that $\sum_{k\geq 1} \|\xi_k\|_s < \infty$. Thus, f is bounded on U_m . The theorem is proved.

Proposition. Let E be a Frechet-Hilbert-Schwartz space and let E have the property (H_u) , i.e., every holomorphic function on E is of uniform type. Then, for every continuous semi-norm ρ on E and every pseudoconvex neighborhood D of E/ker ρ in E_{ρ} , there exists a continuous semi-norm β on E with $\beta \ge \rho$ such that $\operatorname{Im} \omega_{\beta\rho} \subset D$, where $\omega_{\beta\rho} : E_{\beta} \to E_{\rho}$ is the canonical map.

Proof. Since the topology of E is defined by Hilbert semi-norms, without loss of generality, we may assume that E_{ρ} is a Hilbert space. Choose a continuous semi-norm α on E such that $\alpha \geq \rho$ and the canonical map from E_{α} to E_{ρ} is compact. Let τ denote the linear metric topology on H(D) generated by the uniform convergence on the sets

The Property (Ω) and Holomorphic Functions

$$K_r = \left\{ \omega_{\alpha\rho}(z); \|z\| \le r, \omega_{\alpha\rho}(z) \in D, \operatorname{dist}(\omega_{\alpha\rho}(z), \partial D) \ge \frac{1}{r} \right\}.$$

Since the canonical map $[H(D), \tau] \rightarrow H(E)$ is continuous and since

 $H(E)_{\text{bor}} \cong \liminf H_b(E_q)$ [4],

where $H(E)_{bor}$ denotes the bornological space associated to H(E) and for each qby $H_b(E_q)$, we denote the Frechet space of holomorphic functions on E_q which are bounded on every bounded set in E_q , we can find a continuous semi-norm β on Esuch that $\beta \ge \alpha$ and $H(D) \subseteq H(E_\beta)$. It remains to be checked that $\operatorname{Im} \omega_{\beta\rho} \subseteq D$. In the converse case, there exists $z \in E_\beta$ such that $\omega_{\beta\rho}(z) \in \partial D$. Choose a sequence $\{z_n\} \subset E/\ker \beta$ which converges to z. Since E_ρ is a separable Hilbert space, we can find $f \in H(D)$ such that

$$\sup |f\omega_{\beta\rho}(z_n)| = \infty.$$

This is impossible because $f \omega_{\beta\rho} \in H(E_{\beta})$.

The proposition is proved.

Remarks. In [6], Ha and Khue have proved that a nuclear Frechet space E has the property (H_u) if and only if every holomorphic function on E can be written in Dirichlet representation.

References

- 1. M. Borgens, R. Meise, and D. Vogt, Entire functions on nuclear sequence spaces, J. reine angew. Math. 322 (1981) 196-220.
- 2. J. F. Colombeau, *Differential Calculus and Holomorphy*, North-Holland Math. Stud., vol. 64, 1982.
- 3. Yu. F. Korobeinik, Representative systems, Uspekhi Nauk 36 (1) (1981) 73-126.
- 4. R. Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear Frechet spaces, *Studia Math.* 83 (1986) 147–166.
- 5. R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, *Studia Math.* 75 (1983) 235-252.
- 6. Nguyen Minh Ha and Nguyen Van Khue, The property (H_u) and $(\tilde{\Omega})$ with the exponential representation of holomorphic functions, *Pub. Matematiques* **38** (1994) 37–49.
- 7. Ph. Noverraz, Pseudoconvexité, Convexité Polynomiale et Domains d'Holomorphic en Dimension Infinie, North-Holland Math. Stud., vol. 3, 1973.
- 8. D. Vogt, Eine Charakterisierung der Potenzreihenräunme von endlichen Typ und ihre Folgerungen, *Manuscripta Math.* 37 (1982) 269–301.
- D. Vogt, Frechetraume, zwischen denen jede stetige lineare Abbildung beschrakt ist, J. reine angew. Math. 345 (1983) 182-200.
- 10. D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreiheuraumes von endlichem Typ, Studia. Math. 71 (1982) 261-270.