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Abstract. Let =/ be a universal Clifford algebra induced by an m-dimensional real linear
space. A linear subspace L of &/ is said to be invertible if every nonzero element of it is
invertible. In this paper, we obtain the necessary and sufficient condition for some subspaces
of o/ to be invertible. A generalized Cauchy-Riemann operator, which linearizes the Laplace
operator is presented.

1. Symbol of Clifford Numbers

Let ¥}, be an m-dimensional (m > 1) real linear space with a basis {ey, ..., en}-
Consider the 2"-dimensional real linear space o/ with a basis

E ={ep,e1,....,eme12,. .., €m_1m;-..,€12 .m}
A product of two elements ey, ep € E is given by

eqep = (—1)fUCB (1Bl p: 4, B {1,2,...,m}, (1)

where

p(4,B) =) p(4,)),

jeB
p(d,j)=Hied: i>j},
AsB = (A\B) U (B\A),
and 4 denotes the number of elements of 4. Clearly,
p(A+ B)+ p(B+ A)+ (A B) = §(4 x B). (2)

Every element a = >_ a4e4 in & is called a Clifford number. The product of two
4
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Clifford numbers a = >_ ayeq, b = Y bpep is defined by
4 B

ab = Z Z asbgeqep.
4 B

It is an easy matter to check that, in this way, &/ becomes a linear, associative,
noncommutative algebra over R. It is called the Clifford algebra over V;,.

It follows from the multiplication rule (1) that ey is the identity element and
that

eej+ee; =0 fori#j, ef:—l (j=12,...,m),

Chiky .. hey = €k €hey « - - €,y l<ki<hk<---< k, <m.
The involution for basic vectors is given by

L (_ l)s(s+l)/2

€4 = & .k, €y ky-

For any a = ZaAeA e, leta= ZaAeA

Setting eo = ¢y and reindexing the vectors {e12,...,m_1m,...,€12..m} in the
basis E, we rewrite

E= {eO: €1,€2,...,€mE€mil, .- ‘)en—l}’

where n = 2™,
3
Let a= Z a;e;. Denote by a(a) an (n x n)-matrix with elements in the set

{tao, tai,..., +a, 1} defined by the formula

n—1
ax = (eg, ey, .. .,en1)a(a)(xo, X1, ..., %n1)7, for all x = ijej ed, (3
j=0

where MT denotes the transpose of the matrix M.

Definition 1. o(a) defined by (3) is called the symbol of a. The set of all symbols of
Clifford numbers is denoted by X(f ).

We therefore obtain a matrix representation of 7. This representation is an iso-

morphism between &/ and X(«/), and a(ey) = I, where [ is the identity (n x n)-

matrix. It is easy to see that X(.o/) & .#, (the algebra of real (n x n)-matrices).
We now find symbols of basic vectors ey € of (0 <k <n—1).

n—1
Let k be fixed, o(ex) = (4;), and x = }_ xje;. Then, by (3) we have
=0

n—1
Z (erej)x; = exx = Z (Ze, ,j) Xj.
j=0

j=0
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Since x is arbitrarily chosen, this implies

n—1
erej — Zei}.,j for all ] € {0, cea B — 1}
i=0
n—1
HCDCC, e = Z iij(e,—éj), i.e.,
i=0
1, if ey = eiéj,
}-ij = { —1, if e — —eiéj, (4)
0, otherwise.

Lemma 1. o(ab) = o(a)o(b) and a(a + b) = o(a) + o(b) for all a,b € .
Proof. By Definition 1, we have
(ab)x = (eg, e1, . . ., en-1)0(a@b)(x0, X1, . ..., Xn-1)T.

On the other hand,

(ab)x = a(bx) = (e07 €1,..., en—l)a(a)(nO’ "17 ey ﬂn—l)T>
where
(rlOa /S TRERR "n—l)T = 0-<b)(x0: Xly-ens xn—l)T-
Hence,
(eo,e1, - -, en_1)0(@b)(x0, X1, . . ., Xn-1)"
= (e(), el: == oA, en_l)a(a)a(b)(xo, xl: O ) xn-—l)T)

which gives a(ab) = o(a)o(b). The second relation is checked in the same way. W

Corollary 1. Every one-sided, invertible Clifford number is invertible.

Proof. Let a e o be left invertible and let a®) be its left inverse, i.e., aa® = ey.
Then

I = o(eg) = o(aaV) = o(a)o(a").
Hence, d(a)o(a’)) = I and this follows that 6(a®))a(a) = I, which gives
aa® = aVg = €. [ |

Lemma 2. (See [1]) (a(a))T = o(a).

Proof. Write a(ex) = (a), o(&x) = (). From (4), we find

1, if e = e,-éj, 1, if ey = Ejéi,
oj=¢ -1, ifex=—ee, and 6= -1, if & = —ejé;,

0, otherwise 0, otherwise.
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By (2), we have egeg = épé4 for ey, ep € E. Hence,

1, if e = e,-éj,
0y = -1, ife = —e;€j,
0, otherwise,

which gives o(ex)” = 6(&).

Then, for any number a = ) arex € &, we get
k=0

n—

n—1 T n—1 1
ot = (Taoten) =S alote)” =Y @ =o@.
k=0 k=0

k=0

2. Invertibility of Subspaces in o/

1/2
For every Clifford number a = Y a4e4, we write |a| = (Z aﬁ) .
A Y

Definition 2. A linear subspace X of < is said to be right invertible (left invertible,
invertible) if every nonzero element in X is right invertible (left invertible, invertible).

Corollary 1 shows that, in any Clifford algebra, every one-sided, invertible
subspace is invertible. Therefore, in the sequel, we shall only deal with invertible
subspaces. m

It is well known that (see [1]), for Clifford numbers of the form a = }_ aje; # 0,
a’l= d/|a|2. Hence, L(eo, - - - ,em)déflin{eo, ...,€m} is invertible. =8

Let {em+1,ems2,---,€mss} be s distinct basic elements of o, where en i« ¢
{eo,...,em} forall ke {1,...,s}. Define

Lieg, ..., emys) =lin{ey, ..., emis}. (5)

Theorem 1. L{e, . .., emss) (s > 0) is invertible if and only if the following condi-
tions simultaneously hold:
(i) m = 2(mod4),
(i) s=1,
(iil) em+1 = €12..m-

Proof. Sufficiency.

m
Let a = Y axex + %em+1, where epi1 = €12..m. Then
k=0

m m m

= = = = +1)/2 =

A= @+ temr = Y @@ +o(— 1" ey = i@ — vemi.
1=0 =0 =0
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Hence, by (2), one gets

m m
aa = (3 avee + ot ) (Y- aer - oo
1=0

k=0
m
= Z aleo + E aray(exé; + eéx)

k=0 ksl

m m
— 2

+ 0D Wemi18— XY Akl — X emitlmit

=0 k=0

m
2
= Z ajep + 0agemy1€0 — Aag€oem1
k=0

m
_ Z txak(em+]€k + ekem+1) - (x2(_1)m+p({1,2,...,m},{1,2,...,m})e0
k=1
m m
o a,%eo - az(—l)m('"“)/zeo - Z oay
k=0 k=1

x ((=1)(— l)p({1,2»---,M}yk) +(=1)(~ 1)P(k,{l,2»~-~,'n}))e{l’m,m}\{k}

m
— Z aak((_l)l’({lvzv"'vm}rk) + (_ 1)m_p({l'zw"n}'k)_l)e{l,...,m}\{k}
k=1

m m
+(Sad+a)a= (Yot +o)o =
k=0 k=0

Similarly, we find @a = |a|’eo. Hence, if a # 0, there exists a~! = a/ |af?.
Necessity. Suppose s > 1. Without loss of generality, one can assume e,,,1 = e4
withl <fd=qg<m.
Let ¢ = 0(mod 4) or ¢ = 3(mod 4). Choosing a = ey + ¢4 and b = ¢y — ¢4, we
find

ab = ey +eq—eq—eqeq =€y — (—l)q(q+1)/280 =ey—ey=0.

Hence, the nonzero numbers a and b are not invertible.
. Let g=1(mod4) and ieAn{l,...,m}. Choosing a=e;+e, (#0) and
b=e —e4 (£0), by (2), we find
ab = (e; + e4)(ei — e4) = eie; + eqe; — €ieq — eqe4
= —eo + (= 1)(=1)P%) — (~1)(=1)FD)e\ gy — (-1)70 /2,
= —eo + (1)) — (=177 N\ +e9 = 0.
Hence, a and b are not invertible.

Finally, we deal with the case ¢ = 2(mod 4). Since g < m, there is at least one
je{l,...,m}\A4 Choosing a=ej+e4 and b=e; —e,, by (2), we have the
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following equalities:
ab = (ej + eq)(e; — eq) = €jej + eqe; — ejeq — eqey
= —ep + ((—1)PU4) (—l)pU’A))eAU{,-} — (=1)2atD/2,
= —ep+ ((_l)p(AJ) + (_l)q—p(AJ)H)eAu{j} +ep=0.

Therefore, for s > 1, there are noninvertible numbers in L{ey, ..., enis)\{0}, i.e.,
L(ey, ..., emnss) is not invertible.

Consider now the case s = 1. Let ey1 = ep and §B = g > 1. There are three
distinct cases to deal with: ¢ = 0(mod4) or ¢ = 3(mod4), ¢ = 1(mod4), and
q = 2(mod 4).

If g = 0(mod 4) or ¢ = 3(mod 4), then a = ey + ep % 0 is not invertible. Indeed,
in this case, a(eg — eg) = ep — egep = 0 with ey — ep # 0.

If g = 1(mod4) and ¢ = e; + eg (i € B), then c(e; — eg) = 0, i.e., c is not inver-
tible.

Finally, consider the case ¢ = 2(mod 4). If g < m, then thereisj e {1,...,m}\B.
It is easy to check that bd = 0 for b = ¢; + ep and d = ¢; — e, i.¢., b and d are not
invertible. Thus, ¢ = m and e, ; = e12 . m. The proof is complete. [ ]

Corollary 2. Every quaternion (of = lin{ey, e, ez, e12}) is invertible.

Proof. Indeed, every quaternion is a Clifford algebra induced by a 2-dimensional
real linear space with a certain basis {e;, e;}. Hence, m = 2 = 2(mod 4).

3. Remarks on Monogenic Functions

Let m = 4p + 2 (p € N). Consider the differential operator

m+1
Di—= Ze,-axi, where e,.1 =¢€12 _m (6)
i=0

and the conjugate operator of D

m+1

D=>" &by, (7)
i=0

Actions of D and D on functions from the left and from the right are governed by
the rules (see [1])

Df = E eieq0x fu, fD= E eqei0x, f4
i4 iA
and

Df = @eads fa, SfD=  estids f1
iA i,A

for all f(x) = > eq f4(x). Here, the functions f4(x) are real-valued.
4
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Lemma 3. DD = DD = A,,2e, where A, denotes the Laplacian in R™*2,

Proof. Since epy1 =e13..m and m=4p+2 (p e N), we find &, = —em+1. For
every i € {1,...,m}, we have

€i8mi1 Tt mi1€i = —€ilmi] — Emy1€;

~ (=)= DPEEmD ()P ey g

=((-D"'+ (—l)m_i)e{l,z,...,m}\{i} =0,

because (i — 1) + (m — i) =m — 1 is odd.
Therefore,

m m
DD = (Z eiax,- + el ...max,,,+1) (Z éjaxj + él ..,maxm+1>
i=0 j=0

m m 02
= Z eiéjax,-ax,- + Z (eiél .mT el ...me_i)ax,-ax,,.+1 + e ...me_l ma—z'
i, j=0 =0 Xm+1

m 62 62
= Gt e —5— = Ami26€0.
;elet axlz 1..m€l..m ax,Z,H_l m+2€0
Similarly, one can check the equality DD = A,,,e,.
Lemma 3 permits us to introduce the so-called left (right) monogenic function
in a certain open domain Q = R™*2 as for the case Q = R* (k < m + 1)in[1, 2].
|

Definition 3. 4 function f € €' (Q; o) is said to be left (right) monogenic in Q if
and only if Df =0 (fD = 0) in Q.

Following all the procedures for monogenic functions as in [1], we can obtain
the main function theoretic results as Cauchy’s integral formula, Morera’s Theo-
rem, Taylor expansion theorems, and Laurent series for pointwise singularities,
etc.

Remark. Thus, for the case m =4p + 2 (p € N), the theory of monogenic func-
tions can be extended to R™+2, If p = 0, we get regular functions of a quaternionic
variable (see [3-7]) as a particular case of monogenic functions in Clifford analysis.
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