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Abstract. In this paper, we consider the Lyapunov spectrum ofperturbed random difference
systems of the form

x(n-r l) : A(n)x(n) + ((n),

x ( 0 )  :  ; s .  e  R d ,  n : 0 , 1 , 2 , . . . ,

where A : (A(n))n>o is an ergodic stationary matrix-valued sequence and ((n) is a random
perturbation. It is well known by the famous multiplicative ergodic theorem due to Oseledec
and Millionshchikov [3, 4, 5] that the Lyapunov spectrum of the unperturbed system cor-
responding to ( l ) ,  i .e . ,  x(n+l ) :A(n)x(n)  consists  of  r  real  numbers )q<)z<. . .  <)r , ,
r < d. A wide class of random noise ((n) will be characterized so that this perturbed system
has the unique Lyapunov exponent ,t : max(0, 1,).

1. Inffoduction

In this paper, we are concerned with the Lyapunov spectrum (i.e., the set of the
Lyapunov exponents of all solutions) of an ergodic stationary difference system
perturbed by a general random noise ofthe form

x(n * l) : A(n)x(n) + ((n),

x ( 0 )  :  x s e R d , n : 0 , 1 , 2 , . . . .  
( 1 )

A continuous time version of this model has been investigated in [2], where we
have proved that all solutions of an ergodic stationary differential system per-
turbed by Gaussian white noise have a unique Lyapunov exponent ). : max(O,1a),
where ).4 denotes the top exponent of the corresponding unperturbed system.
Unlike in [2] the random noise is now not necessarily Gaussian. An assertion
similar to that in [2] remains true for the discrete model (1) under a fairly general
noise ((n) as we will see in the present paper.

It is necessary to emphasize that some steps of the proof in [2] now must be
changed. Indeed, since the noise is now not assumed to be Gaussian, the law of the
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iterated logarithm applied to the Wiener process in [2] is no longer used and some
conditional distributions cannot be explicitly computed. However, the diagonali-
zation technique applied to the homogenous system

x(n + 1) : A(n)x(n), 
e\

x ( 0 )  :  x s  e  R d ,  n  :  0 , 1 , 2 , ' . .

by using a discrete version of Floquet-type representation of Wihstutz for the
fundamental solution matrix of (2) (cf. [, 7]) is still available.

2. The Results

As usual, the Lyapunov exponent of a sequence of d-dimensional random vari-
ables (4(n)),rs is defined as

I
'ttrlJ : lils;P :logl4 fu)1,

where | 'l means the Euclidean norm in Rd. Thus, 1[a] is in general a random
variable.

Let us consider the perturbed difference system (1) and suppose that the system
matrix l(n) satisfies the following condition:

(i) A:(A(n)),>o is an ergodic stationary Gl(d,R)-valued sequence defined on
some probability space (Q, g, P) such that

nlog+lz.-t (0)l < oo, El,a(O)l < oo.

Then note that Oseledec's integrability condition Elog+lAtt(0)l < m is satisfied.
Therefore, the deep multiplicative ergodic theorem of Oseledec and Million-
shchikov [3, 4, 5] tells us that there are r (1 < r < d) real numbers

)'t < 1z
such that

R d : E r @ E z @ " ' @ E ,

and the exact Lyapunov exponent of the solutions of (2) startingin Ei is,[;, i.e.,

tm 1togl " ( r  ,xd l :  t t
n1@ n

uniformly for all xe e Ei, lxsl : l; i : 1,2, . . ., r. It should be noted that r, )';, and
Ei &rE, in general, random, i.e., r : r(a), )'; : )'{a), and Ei : Ei(a), co e O.

By a discrete version of the Floquet type theorem of Wihstutz (cf. [1, 7]) we
know that Eq. (2) has a fundamental solution matrix of the form
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with A : diag(h, 12,..., ).a), where h < Az
spectnrm of (2) and (S(z))r>o is a sequence of nonsingular random d x d-matrices
having the columns Sp(n),  k:1,2,. . . ,d,  with lS;.(n) l  :1 for any n>0 and
k : 1 , 2 , . . . , d .

We now characteize a class of random noises ((n) so that the perturbed system
(l) has the one-point Lyapunov spectrum (see theorem below).

For (1), besides condition (i) on the matrix A(n), we assume further that the
random perturbation ((n) satisfies the following conditions:
(ii) (((n)),rs is a sequence of d-dimensional independent random variables with

El((")12 < oo for Lrry n > 0 and (((n)),rs is independent of (A(n)),>0.
(iii) The second order moment of ((n ) increases not very fast in the sense that

limsuP'116g El((n)12 <0. (4)
n--- lx

(iv) For any s > 0 we have

i", l*,r,t ) exp(-en)) : c6 (5)
n:0

which means that the noise ((n) is not too weak.
(v) There exists a number ns ) 0 such that the distribution function of (a, ((n6))

is continuous for any 0 * a eRd, where (., . ) denotes the scalar product
in Rd.

Some examples given at the end of this work show that conditions (ii)-(v) on
the noise ((n) in (1) are also necessary for the validity of the following.

Theorem. If conditions (1)-(v) are satisfied, then the Lyapunou spectrum of the per-
turbed system (l) consists of only one element, namely, the number )": max(O,Li,
where A6 is the top exponent of the unperturbed part (2).

Proof. Using the random transformation

x(n) :  S(n)Y(n) ,  (6)

where S(n) is given in (3), the system (1) becomes

y(n+l)  -exp(QfuD +S-r(n + r)E@),

y ( o )  : s - I ( o ) x o  o e R d ,  
Q )

where Q@) : diag(Q{n), Qz(n), . . ., Qa(n)) : n + o(n -f l) - o(n). If we denote

+-.Tp(n) :  \e rU) ,

then

t43

l i ^Tk (n )  :  Ao  a . s .  ( k  :  1 ,2 , . . . , d )
n+@ n

(8)
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(cf. [1, Remark 4.6]). It is easy to check that the solution of (7) is given

where,S;l(n)is the k-th row vector of the inverse matrix,S-t1n; 1k:

Lemma l. There exist the following limits

f n
yiln + 1) : exp(zr(n)) lyr(O) + !exp(-r;(t)Xstl(t + l), ((t

L r:0

detS(n) : detY(n) *r(-"2^,

by

.l
) 1 ,  ( 9 )
I

, 2 r  " ' r d ) '

)

I

f im l loelsr(  n) l :0,
n4@ n

1

|g i tog lSk ' (n ) l  
:  0 ,  k  :  r ,2 ,  " ' ,d '

Proof. Of course, only (11) has to be proved because lSL(n)l:
lSl.(r)l : I and (S7.(n),stl(r?)) : 1 that lstt(r)l > 1. Hence,

[minf l loclstt(r)l > o.

(10)

( 1 1 )

l. It follows from

(r2)

(13 )

(14)

By (3), we have

+ r(r))

Taking into account

1 d'  \ - .
,l im 

:loeldetY(n)l : 
1^, 

a.s.

(cf. [2]), we obtain,t[detS]:0 a.s. By definition, ,S-1(r) : (S;;(n)/detS(n)), where
S,7(n) is the algebraic complement of the element sii(n) of the matrix S(n), we get

rigs;nlroels;l(n)l < o a.s.

Thus, (11) is proved by (12) and (14). I

Corollary. The random transformation (6) leaues the LyapunoD spectrum of the sys-
tem (1) inuariant, or in other words, the systems (l) and (7) haue the same Lyapunoo
spectrum.

Lemma 2. Under the conditions aboue. we haue

1 [ x ( . , x 0 ) ] ) 0  a . s . (1s)

for any xs e Rd , where x( . , xs) denotes the solution of the Cauchy problem (l).

Proof. Suppose there exists an x6 e Rd such that p(illx(. , xo)l ( 0) > 0. Hence,
thereisa d > 0 suchthat,  i f  B::  {roeQ: l lx( .  ,xo) lS -  36},  thenP(B) > 0.
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By the definition of the Lyapunov exponent, for any @ e B, we have

)glr{",xs)lexp(2dn) 
: 0. (16)

Multiplying both sides of (l) by exp(6n), we get

exp(6n)x(n+1): A(n)exp(6n)x(n)+exp(6n)((n). (17)

Since (,4(n )),rs is an ergodic stationary sequence and Ell(0)l < o (see (i)), we have

)4e(")exp(6n)x(n) 
:,1!g A(n)exp(-6n)exp(26n)x(n) : 0 (18)

f o r a n y o e B .
From (16), (17), and (18), it follows that

jll[ exp(an;((n): o (1e)

for any a e B. By condition (iv), we have

f r1e*p1ar)l((n)l > l) :.o.
n:0

Using the Borel-Cantelli lemma, we obtain

l imsjrpexp(dn)l((n) l  > I  a.s.

This contradicts (19). Lemma 2 is proved. I

By the corollary of Lemma l, it suffices to prove that the Lyapunov spectrum
of (7) contains a unique number ,1. : max(0, )"). Lernma 2 said that lly(. ,ydl:
,Ux(. ,xs)]  )0 a.s.  for any loeRd, where y(. ,y6) denotes the solut ion of the
Cauchy problem (7). Let us consider the following two cases (a) and (b).
(a) Thereis anindex |  <k < dsuch that) .*  < 0. Foreachgivene > 0, weput

b", : D,exp(r( -,tr + e)).
,--0

It is easy to see that bi" I * as n --+ oo and

. lim !rrsb',: -l* r e. (20)'  
n + 6 n  

-  
"

By the assumption (iii), there exists a constant M > 0 such that

E l ( ( " ) 1 2  < M . e x p ( e n l 4 ) , n : 0 , 1 , . . .  ( 2 1 )

Hence, by using the Chebyshev inequality and Borel-Cantelli lemma, we get

j$ exr(-enl$l((n)l:0 a.s. (22)

On the other hand, Lemma I implies that

j$ .*p1-rnla) lS;t(n+ l) l  :0 a.s.  (23)

t45
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From (22) and (23), by the Cauchy-Schwarz-Bunyakovskii inequality, we
conclude that

j$ exn(-en lz)(S;t(n + l), ((n)) : I a.s. (24)

From (8) it follows that

- -  /  _ .  / -  t \  \
l im exp(-Zp(n)+ (,tr -t)n) :0 a.s. (25)

It follows from (24), (25), and the Toeplitz theorem 16, p. 377lthat

t 
i.*n,-re(t)Xs;r(t+ 1), ((t))

b", zr=o

: -l $ ^-.-rr^ I \-.\  ̂,,--  
4L,=0"*r((e- 

k) i )  exp(-zp( i  )  + Q+ - el2) i )

x exp(-dl2)(s;t(, + 1), ((r)) -- 0

as n ---+ oo. Therefore, by (8), (9), and (20), we get

1
llyrl : lim sup; loglyr@ + l)l

1 l
< lim-suni Tp(n) + limsup;logbi

1 - a
+ lim s;n tog 

b.lyk0) + ! exp(- ze(t)Xstt (t + I ), ((t) )l

t l
< l im :Tr@) + l im : logb,, :  h _ ) .p* e: e.

n+6 n nacn n

This means llyrl<0 a.s. Thus, if ).a <0, then llyrl < 0 a.s. for any
k : 1,2,...,d, so,t[y] - max& )lyrl <0. Lemma 2 said that llyl :,1[x] > 0,
hence, lly]:0 : max(0, 1a).

(b) Thereexists anindex I <k < dsuch thath > 0. Basedon (4), itis easyto see
that

iopt-,r,u nl3)El((n)l < a,
n:0

co

\ exp(-u.pn | 3) Dl((n)l < a.
n:0

Hence, by the Two-Series Theorem of Kolmogorov [6, p. 373], we conclude
that

\ -  , ^ \ r r l  \ l

) exp\-/.1,n1 5)l<\n)l < @ a.s.
n:o

(26)
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It follows from (8), (11), and (26) that

"( i*ot- 
r1,fu))(s|t@+ l) ,  ((n)) '  oo) :  ' '

\ Lo  /
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In the sequel we need the following.

Lemma 3. Suppose fA : o(A(n)), n:0,1, . . . is the algebra generated by the uari-
a b l e s  A ( n )  ( n : 0 , 1 , . . . )  a n d
(a) (S(n))">o is a sequence of d-dimensional random uectors independent of the

sequence ((("))"r0 such that S(n) + 0 a.s. for each n and there exists an e> 0
such that

/ 2  \
Pl LexP(enl2)ls(n)l < .o ) 

: l. (27)
\ n : 0  /

$) fhe sequence (((n)),>o satisfies conditions (ii), (iii) and (v) abooe.
Then the random uariable

q(a) :s(o) + i <na + D, (@))
n:0

is defined almost euerywhere and it has a continuous distribution function.

Proof. By the assumption (a) and (22),it is easy to check that the series (28) con-
verges almost surely, i.e., 4 is defined a.s. Using Bayes'formula, we have

t
P (4  <  x )  :  I  P (q  <  x l g (0 )  :  ao ,g ( l )  :  d l , . . . ) .P (g (Q)  e  dus ,g ( l )  e  dq , . . . ) .

J O

Hence,

P(y t  <  x ) :  f  F^ ,o , ,  (x ) .P(g(0)  edus ,g( l )  eda1, . . . ) ,
Jc)

where

Foo,,r, ..(r) .: P(r1 < xlg(O) : ao, g0) : 41, . . . )

: t(* * i (o,*,, ((n)> < *),

because (s(n))"ro is independent of (((n))"rs (see (a)).
On the other hand, taking into account that (((n))"rs is the sequence of inde-

pendent random variables (see (ii)) and the distribution function of (a,o*1, ((ns))
is continuous, we can use the property of the convolution operator to conclude
that the function F^,n,,..(x) is continuous in x for any (a0,ar,...). From this,
applyng the theorem of Lebesgue, we see that the mapping x ---+ P (4 < x) is
continuous. Lemma 3 is proved.
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Applying Lemma 3 for g(0) - )ts and g(n):exp(-Tp(n-l)).511(n), n:
1,2,.  .  . ,  we obtain

/ @ \

P ( n +! exp(- r7.(n))(s;'(n + r), ((n)) + 0 | : 1.
\ z : o /

This equality and (9) imply

1
trly*l : lim sup: loglyiln + l)l

n+6 n

l l t n l: -lill )ro@) + -lim ltogl/(O) + ! exp(-rl.(i )Xstt(t + l), ((t))l
n+@n n+6n I  i=o  I

: 7 * * 0 : 7 *  a ' s '

Hence, llyl: max1, ),lypl - ]d : max(0, 27).
Thus our theorem is proved in both cases (a) and (b). I

3. Examples and Remarks

First, let us give two examples of noise sequence ((n) satisfying the conditions (ii)-
(v) stated in Sec. 2.

Example 1.^ Suppose (((n))">o is a sequence of i.i.d. random variables such
that El((0)l'< oo, independent of (A(n)),>0, and for any al0, the distribution
function of the variable (oc,((0)) is continuous (for example, ((0) : ((r(0),(z(0),
. . . ,Q(0)),where (1(0),  (z(0), . . . , (a(0) aren independentrandomvariableshaving
the continuous distribution function). Such a noise then clearly fulfills all the con-
ditions (ii)-(v).

Example 2. We consider a sequence of independent random variables ((n) -
N(0,G;, n:0,1,. . . which is independent of the sequence (A(n))rr_g, where Gn is
a positive definite d x d-matrix. Denote Mn: tr(G) and the least eigenvalue of
Gn by m, and suppose

l l
ti ls;nitog Mn - 0,liminf :logm": 0- (29)

This noise sequence satisfies all the conditions (ii)-(v).

Indeed, all the conditions except (iv) are obviously satisfied and only (iv) must
be checked. To do this, let us first note that (29) implies

tm l tog Mn: l iml log*n: o.
n - a n  n + @ n

(30)
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By (30), for each e > 0, there is a constant C > 0 such that

(31 )

for all n > 0. Using (31), we get the estimation

p(l((n)l> exp(-en)) :l(2n)d det(G,)1-r/z [ "^p(-xrG;txl2)dxJ lxl>exp(-en)

: (2n)-dtz [ . xp(-lylzlz) dy
J yr G,y>exp(-2en)

I

> efl-a/z 1 exp(_lylzl2) dy
J lyl'>exp(-2en) /m^

> en1-aP I exp(-lylz12)dy.
Jlvl ' rc

Thus, the series (5) is divergent, i.e., assumption (iv) is satisfied.
It is interesting to remark that if one of conditions (iii)-(v) on the noise ((n) is

not satisfied, then the assertion of our theorem is no longer valid as shown by the
following counterexamples.

Take d:1, A:1, and ((n) - N(O,e"). Then assumption (ii i) is not satisfied
and, in this case, x(n) : x(n - l) + ((n - 1). Hence, for all solutions x(n),

l .  
1 . , , , ,  I

im sup: loglx(") l  :  
i  

# )q :0 a.s. ,

i.e., the assertion of our theorem is not valid in this case.
If we take d : l, A : ll2, and ((n) - N(0, e-h\, then condition (iv) is not sat-

isfied. The Lyapunov spectrum of the unperturbed system x(n + l) : A(n)x(n) is

{-ln2i. It is easy to check that the perturbed system x(n-ll): A(n)x(n)+ ((n)
has the Lyapunov spectrum flnz\ too. Thus, in this case, the assertion of our
theorem is not true.

F i n a l l y ,  i f  d : 1 ,  A n : 2 ,  a n d  P { ( ( n ) - 1 } : l - ( 1 1 2 " ) ;  P { ( ( n ) - - 1 } :
Ol2'), then of course condition (v) is violated and the Lyapunov exponent of
solutions of system x(n * 1) : A(n)x(n) equals to ln2 for any x(0) + 0. On the
other hand, from

P{( (1 )  :  r ,1 (2) : : O C ) 0 ,

it follows that the Lyapunov exponent of solutions of system x(n + l) :
A(n)x(n) + ((n)withx(0) : -l equals to 0 with a probability >4.

It is noted that condition (v) is not necessarily one. For example,lf d:1,
A(n):2, and. P{((n) -  l } :  P{1@) - - l i :Qlz),  then i t  is easy to show that
our conclusion is still true.
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