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Abstract. In this paper, an embedding theorem of a ?-regular semigroup is given in terms of
aG-partial band and a regular *-semigroup.

1. Introduction

Yamada and Sen introduced the concept of ?-regalaity [6] in a regular semigroup
as a generalization ofboth the concept of"orthodox" and the concept of"(special)
involution" [5]. In the areaof 7-regular semigroups, which showed some popularity
almost from its beginning, there is a large body of the semigroup literature. In the
previous paper for T-regiar semigroups, such as l6-L21, we have seen that the 6-
set of a T-regiar semigroup plays an important part in studies on 7-regular
semigroups. In [0], Zheng introduced the concept of G-partial bands and gave an
analog of the Hall semigroup of a band. In [9, 11], the author discussed further the
properties of G-partial bands. In this paper, an embedding theorem of a T-regalar
semigroup is given in terms of a G-partial band and a regular *-semigroup. Unless
otherwise defined, our notation will be that of [1, 2].

2. Preliminary Resulb and Definitions

Let S be a regular semigroup and Es the set of idempotents of S. Let P = Es.
Then (S, P) is called a T-regular semigroup if it satisfies the following:
(l) P2 c Es,
(2) for arry q e P, qPq = P,
(3) for any a e S, there exists a+ e V(a) such that aPra+ c P and a+Pra c P

er : P u {l} and Z(a) denotes the set of all inverses of a).
Hereafter, (,S, P) will be denoted by S(P). A subset P of Es satisfying (1)-(3) is

called a C-set of S. In (3), a+ is called a ?-inuerse of a and Vs(a) denotes the set of
all T-inuerses of a. The class of 7-regvlar semigroups thus includes both the class
of orthodox semigroups and the class of regular *-semigroups, which has been first
shown in [6, 8], and the terminology "regular *-semigroup" has appeared in [3, 4].
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Let S1(P1) and S2(P)be 7-regiar semigroups. A homomorphism / of S1(P1)
into S2(P2) is called a 7-homomorphism 1f P1f : prnsr (Pr ),f. A Z-homomorphism
/: S1(P1) ---+ S2(P) is called a T-isomorphism if, / is bijective, in such a case,
denoted by Sr(Pr) "= Sr(pr). The kernel of a Z-homomorphism / of S;(P1) into
S2p) means the congruence ker/ on Sr(Pt) induced by f,that is, (r,y) e ker/ if
and only if xf : y7.

Let E be a partial groupoid. We shall use notation lef if the product e/ of
e, f e E is defined in .8. A partial groupoid E is called a partial band if it satisfies
the following axioms:
(l) Let e,f,g e E,1ef,1fg.lf oneof (ef )g ande(fg) isdefinedin,E, so arebothof

them, and (ef)S: e(fg), denotedby efS.
(2) for any e e E, ee : e.

Let E be apartial band, P c E. E(P) is called a g-partial band, if it satisfies
the following:
(Pl)  for any q,p e P, lqp;
(P2)  fo r  any  Q,peP,  lqpq,  and qpqeP.  For  any  Qr , . . . ,Qn,  eeP,

qr(.  . .  (q"-r@neQ)4n-t) .  . '  )gr is denoted by qt. '  .  Sne7n - .  .  Qt l
(P3) for any q,x)e e P, (qxq)e(qxq): qxqeqxq.

A partial band (P, . ) is called a G-partial band 1f there exists a 7-parlial band
(E(P), o ) such that the restriction of o to P is right. For example, if ^S(P) is a g-
regular semigroup, then E(P) is a T-partial band, and the C-set P is a G-partial
band, where E: Es, and any band is aG-partialband.

Let Pl and P2 be two G-partial bands. A partial isomorphism 0 from P1 onto
P2 is called a strong isomorphism, if, for any x,y e P1, @yx.)0: (x0)(y0)(x0).lf
there exists a strong isomorphism 0: P1 -- P2 such that 0-': P2--+ P1 is also a
strong isomorphism, then P1 and P2 are said to be isomorphic and are denoted by
P1 ! P2.

We may find the notation above from [10].
Now let P be a %-partial band. If p e P, then pPp: {1tep: e e P}, which is

denoted by (p). Let 4l/: {(q,p) e P x P, (q)}.If (q,p)ealt, then I10,, denotes
the set of all strong isomorphisms from (4) onto (p) such that the inverse map-
pings are strong isomorphisms from (p) onto (a).

If (q,p) e % and 0 e Hqp, we define il e 9{(Pl9) (the semigroup of partial
mappings of set Pl 9) and 0, e gf @l $ by the formulae

Define

Lr01 : Lrg, Rr9r: Rfr, (x e (q)).

Hp :  {bcT6 ) "00 ;L ) :0  e  Hq ,p , (q ,p )  e%} ,

where poe{(Pl9) (the semigroup of all transformations on Pl9) and
).0 e {(Pl4) are defined by

LrPq : Lqtq, Rrlp : Rprp, (x e P).
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Lemma 1. [0, Result 1] Hp is a subsemigroup of /-(Plg) x {.(Pl4), and Hp is
T-regular, with the C-set P*: {bn,).q): qe P} isomorphic to P, where the map-
ping u: P* ---+ P defined by (pq, )q)u: q is a strong isomorphism.

We use the terminology 7-congruence for a usual congruence p on a ?-regalar
semigroup S(P). If a 7-congruence p on S(P) satisfies the following:

for any q e P and a e S, qpa implies qpa+ for all a+ e Vp(a),

then p is called a strong /-congruence [8].

Lemma 2. [8, Theorem 4.6] Let S(P) be a 7-regular semigroup. Then the transitiue
closure y* of the relation y defined by

y : {(q,6) e S x S: Vp(a) ̂ Vp(b) + O}

is the least strong ?-congruence on S(P).

Let S(P) be a T-regtlar semigroup. We define, for each a e S, po e {(Pl9),
and ).o e 9-@le)

Lrpo: Lo*ro, Rr)'o : Roro* (x e P),

where a+ is an arbitrary T-inverse of a.

Lemma 3. [11, Theorem 4.1] Let S(P) be a ?-regular semigroup and ( the mapping

from S(P) into {(Pl9)x {.(Pl%) defined by a(:(po,1). Then ( is a homo-
morphism whose kernel is the maximum idempotent-separating congruence p on S(P).

Lemma 4. l7 , Lemma III. I .21 Let S(P) be a ?-regular semigroup and y, p the least
strong ?-congruence on S(P) and an i.dempotent-separating congruence on S(P),
respectiuely. Theny oP: ls.

Lemma 5. [7, Proposition II.2.l(l)] Let S(P) be a 7-regular semigroup and y the
least strong 7-congruence on S(P). Then, for any e e Es, ela, a e S(P) implies
a e E s .

3. Embedding Theorem

Let P be a 6-parnal band and 7 a regular *-semigroup with the set of projec-
tions Pr. Let y1 be the minimum strong Z-congruence on Hp. Then Ilp/y1 is a
regular *-semigroup with the set of projections P*iy1 : {(P,A)yrt q eP}. Let
Y: 7 ---+ Hplyl be a Z-homomorphism whose range contains all projections of
Hplyr We denote the spined product

,S: {(x, t) e Hp x T: xy!: lY}

of Hp and with respect to Hply1, yl and Y by %(P,T,Y).

l s3
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Theorem 1..
(1) S: 9(P,T,Y) is a 7-regular semigroup hauing {(@o,lq),p)ep* xp1;

(Pn,lq)lt:PY) as its C-set.
(2) If Y is an idempotent-sepqrating T-homomorphism, then the C-set of S is

isomorphic to P.
(3) If y is the minimum strong T-congruence on S, then Sly 

s= 
7.

regular.
Let

P:  { (@q, ) .n ) ,p )  e  P*  x  P1:  kn , ln )y r :pY} .

Then P = ,Es. We easily deduce that 
-f 

c Es and qPt q =.P for any q e P.By the
proof above, we have Vp(x,t) = Vp.(x) x {1fl} for any (x,r) e S. Thus, S(P) is g-
regular. Since P*/y1 :PrY and T is a regular *-semigroup, Vr(x,t)=Vp,(x)x
{1fl}. Hence, Vr(x,t) : Vp.(x) x {ril1.

so, since Y is idempotent-separatirg, ttt: u e P1. Hence, (xy,tu) e P and we con-
clude that P and, P are isomorphic.

(3) Obviously, the mapping n : (x, t) r--+ / is a Z-homomorphism from S onto
T.lf y is the minimum strong Z-congruence on S, then y c kerz, and so there
exists a Z-homomorphism / from ,S/y onto Z such that ytf : n. To prove that
y:kern, we only need to show that kerz c y. Let (x,t),(y,u) e S, satisfying
((x, t) , (y,u)) ekern. Then (x,  t )n:  (y,u)n, i .e. ,  t :  u zrTd So tY :  aY. Hence,
xl t : !Tt,  that is,  (x,y)e y1. Thus, by Lemma 2,there exist  xe :x,  xt , . . . ,xn:
! e H p  s u c h  t h a t  V p . ( x ) a V p * ( + i + r )  + 0 ,  i : 0 ,  1 , . . .  , f l - l . S i n c e  x s y l  -  x T r :
tY, 4y 1 : r' r : xn-1| | : tY, which implies that (x, t), . . ., (xr-t, t) e S. But

(vp . (x ) '  { / } )  a (vp . (x ia )  x  { i } )  +  O

i . e . ,  V v ( x i , t ) a V " ( x i + t , t )  + 0 ,  i : 0 , 1 , . . . , n -  1 .  H e n c e ,  ( ( x , t ) , ( y , n ) )  e y .  T h u s ,
f :  Sly * Zisal- isomorphism.

Let S(P) be a T-regtlar semigroup and a€S, a+ eVp(a). Denote ql:aq.+,
p: a+a. Then it easily followsthat pa: po|t,wherc po is as in Lemma 3 and g is
the mapping 0 : x +' a+xa from (4) onto (p). Dually, lo: lo0,' . Hence, the
homomorphism ( : a > (po,l,) in Lemma 3 is a Z-homomorphism from S(-P) to

IHp.
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Proposition 2. The mapping 4 : S -+ Hp x Sly defined by a4: ((po,I),ay) is an
inj e ctiue I -homomorp hism.

Proof. By Lemma 4, T ̂  lt: ls. However, by Lemma 3, since l: ker (, 11 is an
injective homomorphism. Clearly, Hp X S/y is a 7-regiar semigroup with the C-
setP* x Ply,wherePly:  {qy:  SeP}. I teasi ly fo l lowsthatP4 c (P* x  Ply)aSa.
Conversely, if ((pq,lr),py) e (P* x Py) o 54, then q,p e P, and there exists c e S
such that a4: ((gq,)),n). Thus, (po, 1): (pq,lq) and ay: py. Since p e P,
by Lemma 5,  ae,E5.  But  (a,q)e ker( :p,  w€ have that  q:q.  Hence,
(br, )'n1,pr1 : qq e P4. Therefore, 4 is a 4-homomorphism. I

If y1 is the minimum stron gT-congrlence on 11p, then (71 is a 4-homomorphism
from S rnto Hplyr.

Proposition 3. The mapping u : Sly -- Hplyt defined by (ay)a: oht is a 9-
homomorphism whose range contains the proiections of Hp6r.

Proof .  I f  a l :bT,  then there ex is t  as:Q,  at , . . . ,an:  D such that  Vp(a)a
Vp(ai+)  # 0, i :0 ,1, . . .  ,n  -  l .Taking b i  e Vp(a)  aVp(ai11) , theni teasi ly fo l lows
that

(pt , ,  ) 'n)  e Vp' (Po, ,  ) 'o ,  a  Vp.(po,*r ,  lo ,* r )  + 0,  i  :0 ,  1,  " ' , f l  -  l '

Thus, (po,)"o)yr : bt,ln)y1, that is a$l : bTl, and so a is a mapping. It is easy to
see that a is a Z-homomorphism whose range contains the projections of Hp6r.

I

Theorem 4 (Embedding theorem). Let S(P) be a T-regular semigroup. Then S(P)
can be embedded into 9(P, Sly,a).

Proof. Since S(P) is T-regalar, P is a G-partial band. Since S/y is a regular
*-semigroup with projections P/y : {ST q e P}, it follows from Theorem l(l) th
the spined product 9(P,Sly,a) of Hp a1d,S/7 with respect lo Hp1rr, yl and a is
T-regular semigroup with the C-set P : {(bu,lq),py) eP* x Ply: (pr,lq)tt
pld\. Since, for my ((po,)'o),ay) e ran(4) in Proposition 2, we have that
(po,l)yr : a(Tr : eya' ((po,1o),ay) e 9t(P,S/t, a). It follows from Proposition 2

that 4: S -- tr(P, Sly,a) is an injective Z-homomorphism. I
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