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Abstract. In this paper, an embedding theorem of a #-regular semigroup is given in terms of
a ¥-partial band and a regular *-semigroup.

1. Introduction

Yamada and Sen introduced the concept of #-regularity [6] in a regular semigroup
as a generalization of both the concept of “orthodox” and the concept of ““(special)
involution” [5]. In the area of #-regular semigroups, which showed some popularity
almost from its beginning, there is a large body of the semigroup literature. In the
previous paper for #-regular semigroups, such as [6-12], we have seen that the %-
set of a P-regular semigroup plays an important part in studies on Z-regular
semigroups. In [10], Zheng introduced the concept of ¥-partial bands and gave an
analog of the Hall semigroup of a band. In [9, 11], the author discussed further the
properties of #-partial bands. In this paper, an embedding theorem of a #-regular
semigroup is given in terms of a ¢-partial band and a regular *-semigroup. Unless
otherwise defined, our notation will be that of [1, 2].

2. Preliminary Results and Definitions

Let S be a regular semigroup and Eg the set of idempotents of S. Let P = Eg.
Then (S, P) is called a P-regular semigroup if it satisfies the following:

(1) P? c Eg,

(2) forany ge P, qPg < P,

(3) for any a e S, there exists a* € ¥(a) such that aP'a® = P and a*Plac P

(P! = PU {1} and V(a) denotes the set of all inverses of a).

Hereafter, (S, P) will be denoted by S(P). A subset P of Eg satisfying (1)—(3) is
called a C-set of S. In (3), a* is called a Z-inverse of a and Vp(a) denotes the set of
all P-inverses of a. The class of #-regular semigroups thus includes both the class
of orthodox semigroups and the class of regular *-semigroups, which has been first
shown in [6, 8], and the terminology “regular *-semigroup’’ has appeared in [3, 4].
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Let S1(P1) and S3(P,) be Z-regular semigroups. A homomorphism f of S1(P;)
into S»(P,) is called a #-homomorphism if P, f = P,nS1(Py)f. A ?-homomorphism
[ S1(Py) — S3(P,) is called a P-isomorphism if, f is bijective, in such a case,
denoted by S;(P;) é S>(P,). The kernel of a #-homomorphism f of S;(P;) into
S»(P,) means the congruence ker f on S(P;) induced by f, that is, (x, y) € ker [ if
and only if xf = yf.

Let E be a partial groupoid. We shall use notation Jef if the product ef of
e, f € E is defined in E. A partial groupoid E is called a partial band if it satisfies
the following axioms:

(1) Lete, f,g € E, Jef, Afg. If one of (ef )g and e( fg) is defined in E, so are both of
them, and (ef )g = e(fg), denoted by efy.
(2) forany ee E, ee = e.

Let E be a partial band, P < E. E(P) is called a #-partial band, if it satisfies

the following:

(P1) for any q,p € P, dqp;

(P2) for any ¢q,peP, dqpq, and gpgeP. For any q,...,qs, e€cP,
q1( -+ - (gn-1(gn€qn)qn-1) - - - )q1 is denoted by q1 - - - gnegn - - - q1;

(P3) for any ¢, x,e € P, (gxq)e(gxq) = gxqegxq.

A partial band (P, .) is called a €-partial band if there exists a Z-partial band
(E(P), o) such that the restriction of o to P is right. For example, if S(P) is a #-
regular semigroup, then E(P) is a #-partial band, and the C-set P is a #-partial
band, where E = Eg, and any band is a #-partial band.

Let P; and P; be two #-partial bands. A partial isomorphism 6 from P; onto
P, is called a strong isomorphism, if, for any x,y € P, (xyx)0 = (x0)(y6)(x6). If
there exists a strong isomorphism 6: P, — P, such that 6~': P, — P; is also a
strong isomorphism, then P; and P, are said to be isomorphic and are denoted by
P = P,.

We may find the notation above from [10].

Now let P be a #-partial band. If p € P, then pPp = {pep: e € P}, which is
denoted by (p). Let % = {(q,p) e P x P:{q>}. If (¢, p) € %, then H,, denotes
the set of all strong isomorphisms from {g) onto {p) such that the inverse map-
pings are strong isomorphisms from {p) onto {g).

If (q,p) € % and 6 € H,,, we define 0, € 27 (P|£) (the semigroup of partial
mappings of set P/.#) and 6, € 7 (P[&) by the formulae

onl S LxBa Rxer = RxO, (x € <q>)
Define

Hp = {(p,01, 4,6, "): 0 € Hyp, (q,p) € U},

where p, € I (P|¥) (the semigroup of all transformations on P/¥) and
Ap € 7 (P|Z) are defined by

Lyp; = Lgsg, Ridp = Rpsp, (x € P),
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Lemma 1. [10, Result 1] Hp is a subsemigroup of 9 (P|¥) x F *(P|R), and Hp is
P-regular, with the C-set P* = {(p,, A4): q € P} isomorphic to P, where the map-
ping o: P* — P defined by (p,, A)x = q is a strong isomorphism.

We use the terminology Z-congruence for a usual congruence p on a #-regular
semigroup S(P). If a #-congruence p on S(P) satisfies the following:
for any g € P and a € S, gpa implies gpa* for all a* € Vp(a),
then p is called a strong #-congruence [8].
Lemma 2. [8, Theorem 4.6] Let S(P) be a P-regular semigroup. Then the transitive
closure y* of the relation vy defined by
7= {(a,b) € S X S: Vp(a) n Vp(b) # 0}
is the least strong P-congruence on S(P).
Let S(P) be a #-regular semigroup. We define, foreachae S, p, e 7(P| %),
and i, € 7 (P|R)
L.p, = Laxa, Rxha=Ryxs+ (x€P),
where a™ is an arbitrary #-inverse of a.
Lemma 3. (11, Theorem 4.1] Let S(P) be a P-regular semigroup and & the mapping

from S(P) into I (P| &) x T *(P|R) defined by al = (p,, As). Then & is a homo-
morphism whose kernel is the maximum idempotent-separating congruence yon S(P).

Lemma 4. [7, Lemma I11.1.2] Let S(P) be a P-regular semigroup and y, u the least
strong P-congruence on S(P) and an idempotent-separating congruence on S(P),
respectively. Then y nu = lgs.

Lemma 5. [7, Proposition I11.2.1(1)] Let S(P) be a P-regular semigroup and 7y the
least strong P-congruence on S(P). Then, for any e € Es, eya, a € S(P) implies
ae Eg.

3. Embedding Theorem

Let P be a %-partial band and T a regular *-semigroup with the set of projec-
tions P;. Let y, be the minimum strong #-congruence on Hp. Then Hp[y, is a
regular *-semigroup with the set of projections P*[y; = {(p,, 44)71: g € P}. Let
¥: T — Hp|y; be a #-homomorphism whose range contains all projections of
Hp|y,. We denote the spined product

S={(x,t)eHp x T: xyf =1V}

of Hp and T with respect to Hp/y;, y? and ¥ by Z(P, T, ).
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Theorem 1.

(1) S=Z(P,T,¥) is a P-regular semigroup having {((pgs 49), P) € P* x Pi:
(pgs 4q)y1 = p¥} as its C-set. .

(2) If ¥ is an idempotent-separating P-homomorphism, then the C-set of S is
isomorphic to P. £

(3) If'y is the minimum strong P-congruence on S, then S|y ~ T.

Proof. (1) Obviously, Hp x T is regular. If (x,¢) e S, then xyf = (¥. Taking
x* € Vp.(x), denoting a unique P-inverse of ¢ in T by ¢!, it easily follows that
x*'y? € Vpoyy, {xyf)]. Since the range of ¥ contains the projections of Hp/, and
since ¥ is a #-homomorphism, P;'¥ = P*[y,. Thus, /!¥ Vps sy, (t¥). Therefore,
x*ﬂ,‘f and ¥ are both Z-inverses of the single element xﬁ = t¥ of the regular
*-semigroup Hpy, , which implies that x ]r’l' = (¥, and so (x*,#) e S. Thus, S is
regular.

Let

P - {((pq: lq);P) € P* X P1: (pq: 'q'q)')’l :p‘P}

Then P < Eg. We easily deduce that P° < Eg and quq < P for any g € P. By the
proof above, we have Vj(x, ) 2 Vps(x) x {t!} for any (x,7) € S. Thus, S(P) is 2-
regular. Since P*[y; = Pi'¥ and T is a regular *-semigroup, V3(x,?) S Vp:(x)x
{#*}. Hence, V3(x, 1) = Vp:(x) x {t1}.

(2) By Lemma 1, the mapping o: P* — P defined by (p,, A,)a = ¢ is a strong
isomorphism. We may show that the mapping {: P — P defined by (x, #){ = xa is
a strong isomorphism. To prove that { ' is also strong, let (x, 1){(y,u){ e P, where
(x,8),(y,u) € P. Then xo.yaue P and (xy}y? = (tu)y]. Since o is a partial iso-
morphism, (xe.ya)x = xy. Thus, xy € P* and so (xy)ﬂ is a projection of Hp,, .
Hence, there exists v € P such that (ch)}rii = 'Y, so (tu)¥ = v¥. But tu € Er and
so, since ¥ is idempotent-separating, tu = v € P,. Hence, (xy, tu) € P and we con-
clude that P and P are isomorphic.

(3) Obviously, the mapping = : (x, 7) — t is a Z-homomorphism from S onto
T. If y is the minimum strong 2-congruence on S, then y < kern, and so there
exists a #-homomorphism f from S/y onto T such that y¥f = 7. To prove that
v =kern, we only need to show that kern < y. Let (x,1),(y,u) € S, satisfying
((x,1),(y,u)) e kern. Then (x,)n = (y,u)w, i.e., t=u and so ¥ = u'¥P. Hence,

Xy1 = yy, that is, (x,y) € y;. Thus, by Lemma 2, there exist xo = x, x1,...,x, =
y € Hp such that Ve (x;) N Vp*(gci+1) #@¢,i=0,1,...,n— 1. Since X0y = Xy, =
t¥, x1y; = - - = Xp_1y, = t¥, which implies that (x, ), ..., (x,_1,?) € S. But

(Ve (1) x {2'}) 0 (Vs (1) % {£4}) # 0

ie., Va(xi, )N Va(xip1,8) #9, i=0,1,...,n— 1. Hence, ((x, 1), (y,u)) € y. Thus,
S Sy — T is a P-isomorphism.

Let S(P) be a #-regular semigroup and a € S, a* € Vp(a). Denote g = aa™,
p = a’a. Then it easily follows that pa = p401, where p, is as in Lemma 3 and 6 is
the mapping 6 : x > a*xa from (g) onto {p). Dually, i, = 1,0, ! Hence, the
homomorphism ¢ : a +— (p,, 4,) in Lemma 3 is a #-homomorphism from S(P) to
Hp. [ |
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Proposition 2. The mapping 1 : S — Hp x S|y defined by an = ((p,, Aa), ay) is an
injective P-homomorphism.

Proof. By Lemma 4, y n u = lg. However, by Lemma 3, since u = ker ¢, # is an
injective homomorphism. Clearly, Hp x S[y is a 2?-regular semigroup with the C-
set P* x PJy, where P[y = {qy: q € P}. It easily follows that Py = (P* x P[y) n Sy.
Conversely, if ((pg, 44), py) € (P* X Py) n Sy, then ¢g,p € P, and there exists ae S
such that an = ((p,, 4¢),py)- Thus, (pg, 4a) = (pg» Ag) and ay = py. Since p € P,
by Lemma 5, a€ Es. But (q,q)ekeré =y, we have that a=g. Hence,
((pg> 29), P¥) = qn € Py. Therefore, n is a #-homomorphism. [ ]

Ify, is the minimum strong #-congruence on H p, then 6)}% is a #-homomorphism
from S into Hp/y,.

Proposition 3. The mapping o : S|y — Hp|y, defined by (ay)a = aéyll1 is a P-
homomorphism whose range contains the projections of Hp/,,.

Proof. If ay = by, then there exist ap =a, ai,...,a, =b such that Vp(a;) N
Vp(ai1) #9,i=0,1,...,n— 1. Taking b; € Vp(a;) n Vp(air1), then it easily follows
that

(pb,-: ;Lb,-) € VP'(pa,-: 'lai a VP*(paH,l’ Aai-H) # (b; i= 0: 11 s — L.

Thus, (p,,4q)71 = (Pp.As)71, that is aéy‘li = b?jyf, and so « is a mapping. It is easy to
see that « is a #-homomorphism whose range contains the projections of Hp,, .
[ |

Theorem 4 (Embedding theorem). Let S(P) be a P-regular semigroup. Then S(P)
can be embedded into Z (P, S|y, a).

Proof Since S(P) is P-regular, P is a ¥-partial band. Since S/y is a regular

*_semigroup with projections P[y = {qy: g € P}, it follows from Theorem 1(1) that
the spined product Z (P, Sy, «) of Hp and S[y with respect to Hp/,,, ?1 and o is a
P-regular semigroup with the C-set P = {((p,, 49),py) € P* X P[y: (py, Ag)v1 =
pya}. Since, for any ((p, 4q),ay) € ran(n) in Proposmon 2, we have that
(o Aa)yy = aly, = aya, (P4, L), ay) € Z(P, S[y, o). It follows from Proposition 2
that n: § — Z(P, S/, «) is an injective #-homomorphism. |
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