Vietnam Journal of MATHEMATICS © Springer-Verlag 1997

An Embedding Theorem of a *P*-Regular Semigroup

Hengwu Zheng

Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China

Received December 10, 1995

Abstract. In this paper, an embedding theorem of a \mathcal{P} -regular semigroup is given in terms of a \mathscr{P} -partial band and a regular *-semigroup.

1. Introduction

Yamada and Sen introduced the concept of \mathscr{P} -regularity [6] in a regular semigroup as a generalization of both the concept of "orthodox" and the concept of "(special) involution" [5]. In the area of \mathscr{P} -regular semigroups, which showed some popularity almost from its beginning, there is a large body of the semigroup literature. In the previous paper for \mathscr{P} -regular semigroups, such as [6–12], we have seen that the \mathscr{C} set of a \mathscr{P} -regular semigroup plays an important part in studies on \mathscr{P} -regular semigroups. In [10], Zheng introduced the concept of \mathscr{C} -partial bands and gave an analog of the Hall semigroup of a band. In [9, 11], the author discussed further the properties of \mathscr{C} -partial bands. In this paper, an embedding theorem of a \mathscr{P} -regular semigroup is given in terms of a \mathscr{C} -partial band and a regular *-semigroup. Unless otherwise defined, our notation will be that of [1, 2].

2. Preliminary Results and Definitions

Let S be a regular semigroup and E_S the set of idempotents of S. Let $P \subseteq E_S$. Then (S, P) is called a \mathscr{P} -regular semigroup if it satisfies the following:

- (1) $P^2 \subseteq E_S$,
- (2) for any $q \in P$, $qPq \subseteq P$,
- (3) for any $a \in S$, there exists $a^+ \in V(a)$ such that $aP^1a^+ \subseteq P$ and $a^+P^1a \subseteq P$ $(P^1 = P \cup \{1\} \text{ and } V(a) \text{ denotes the set of all inverses of } a).$

Hereafter, (S, P) will be denoted by S(P). A subset P of E_S satisfying (1)-(3) is called a C-set of S. In (3), a^+ is called a \mathcal{P} -inverse of a and $V_{\mathcal{P}}(a)$ denotes the set of all \mathcal{P} -inverses of a. The class of \mathcal{P} -regular semigroups thus includes both the class of orthodox semigroups and the class of regular *-semigroups, which has been first shown in [6, 8], and the terminology "regular *-semigroup" has appeared in [3, 4].

Let $S_1(P_1)$ and $S_2(P_2)$ be \mathscr{P} -regular semigroups. A homomorphism f of $S_1(P_1)$ into $S_2(P_2)$ is called a \mathscr{P} -homomorphism if $P_1 f = P_2 \cap S_1(P_1) f$. A \mathscr{P} -homomorphism $f: S_1(P_1) \to S_2(P_2)$ is called a \mathscr{P} -isomorphism if, f is bijective, in such a case, denoted by $S_1(P_1) \cong S_2(P_2)$. The kernel of a \mathscr{P} -homomorphism f of $S_i(P_1)$ into $S_2(P_2)$ means the congruence ker f on $S_1(P_1)$ induced by f, that is, $(x, y) \in \ker f$ if and only if xf = yf.

Let E be a partial groupoid. We shall use notation $\exists ef$ if the product ef of $e, f \in E$ is defined in E. A partial groupoid E is called a partial band if it satisfies the following axioms:

- Let e, f, g ∈ E, ∃ef, ∃fg. If one of (ef)g and e(fg) is defined in E, so are both of them, and (ef)g = e(fg), denoted by efg.
- (2) for any $e \in E$, ee = e. Let *E* be a partial hand $P \subseteq E$. E(P) is called a *Q*-partial

Let E be a partial band, $P \subseteq E$. E(P) is called a \mathscr{P} -partial band, if it satisfies the following:

- (P1) for any $q, p \in P$, $\exists qp$;
- (P2) for any $q, p \in P$, $\exists qpq$, and $qpq \in P$. For any q_1, \ldots, q_n , $e \in P$, $q_1(\cdots(q_{n-1}(q_neq_n)q_{n-1})\cdots)q_1$ is denoted by $q_1\cdots q_neq_n\cdots q_1$;

(P3) for any $q, x, e \in P$, (qxq)e(qxq) = qxqeqxq.

A partial band (P, .) is called a *C-partial band* if there exists a *P*-partial band $(E(P), \circ)$ such that the restriction of \circ to *P* is right. For example, if S(P) is a *P*-regular semigroup, then E(P) is a *P*-partial band, and the *C*-set *P* is a *C*-partial band, where $E = E_S$, and any band is a *C*-partial band.

Let P_1 and P_2 be two \mathscr{C} -partial bands. A partial isomorphism θ from P_1 onto P_2 is called a strong isomorphism, if, for any $x, y \in P_1$, $(xyx)\theta = (x\theta)(y\theta)(x\theta)$. If there exists a strong isomorphism $\theta: P_1 \to P_2$ such that $\theta^{-1}: P_2 \to P_1$ is also a strong isomorphism, then P_1 and P_2 are said to be *isomorphic* and are denoted by $P_1 \cong P_2$.

We may find the notation above from [10].

Now let P be a \mathscr{C} -partial band. If $p \in P$, then $pPp = \{pep: e \in P\}$, which is denoted by $\langle p \rangle$. Let $\mathscr{U} = \{(q, p) \in P \times P : \langle q \rangle\}$. If $(q, p) \in \mathscr{U}$, then $H_{q,p}$ denotes the set of all strong isomorphisms from $\langle q \rangle$ onto $\langle p \rangle$ such that the inverse mappings are strong isomorphisms from $\langle p \rangle$ onto $\langle q \rangle$.

If $(q,p) \in \mathcal{U}$ and $\theta \in H_{q,p}$, we define $\theta_l \in \mathscr{PT}(P/\mathscr{L})$ (the semigroup of partial mappings of set P/\mathscr{L}) and $\theta_r \in \mathscr{PT}(P/\mathscr{R})$ by the formulae

$$L_x \theta_l = L_{x\theta}, R_x \theta_r = R_{x\theta}, (x \in \langle q \rangle).$$

Define

$$H_P = \{ (\rho_a \theta_l, \lambda_p \theta_r^{-1}) \colon \theta \in H_{q,p}, (q,p) \in \mathcal{U} \},\$$

where $\rho_q \in \mathcal{T}(P|\mathcal{L})$ (the semigroup of all transformations on $P|\mathcal{L}$) and $\lambda_p \in \mathcal{T}(P|\mathcal{R})$ are defined by

$$L_x \rho_a = L_{axa}, R_x \lambda_p = R_{pxp}, (x \in P)$$

An Embedding Theorem of a P-Regular Semigroup

Lemma 1. [10, Result 1] H_P is a subsemigroup of $\mathcal{T}(P|\mathcal{L}) \times \mathcal{T}^*(P|\mathcal{R})$, and H_P is \mathcal{P} -regular, with the C-set $P^* = \{(\rho_q, \lambda_q): q \in P\}$ isomorphic to P, where the mapping $\alpha: P^* \to P$ defined by $(\rho_q, \lambda_q)\alpha = q$ is a strong isomorphism.

We use the terminology \mathcal{P} -congruence for a usual congruence ρ on a \mathcal{P} -regular semigroup S(P). If a \mathcal{P} -congruence ρ on S(P) satisfies the following:

for any $q \in P$ and $a \in S$, $q\rho a$ implies $q\rho a^+$ for all $a^+ \in V_P(a)$,

then ρ is called a strong \mathcal{P} -congruence [8].

Lemma 2. [8, Theorem 4.6] Let S(P) be a \mathcal{P} -regular semigroup. Then the transitive closure γ^* of the relation γ defined by

$$y = \{(a, b) \in S \times S: V_P(a) \cap V_P(b) \neq \emptyset\}$$

is the least strong \mathcal{P} -congruence on S(P).

Let S(P) be a \mathscr{P} -regular semigroup. We define, for each $a \in S$, $\rho_a \in \mathscr{T}(P/\mathscr{L})$, and $\lambda_a \in \mathscr{T}(P/\mathscr{R})$

$$L_x \rho_a = L_{a^+ xa}, \quad R_x \lambda_a = R_{axa^+} \ (x \in P),$$

where a^+ is an arbitrary \mathcal{P} -inverse of a.

Lemma 3. [11, Theorem 4.1] Let S(P) be a \mathcal{P} -regular semigroup and ξ the mapping from S(P) into $\mathcal{T}(P|\mathcal{L}) \times \mathcal{T}^*(P|\mathcal{R})$ defined by $a\xi = (\rho_a, \lambda_a)$. Then ξ is a homomorphism whose kernel is the maximum idempotent-separating congruence μ on S(P).

Lemma 4. [7, Lemma III.1.2] Let S(P) be a \mathcal{P} -regular semigroup and γ , μ the least strong \mathcal{P} -congruence on S(P) and an idempotent-separating congruence on S(P), respectively. Then $\gamma \cap \mu = 1_S$.

Lemma 5. [7, Proposition II.2.1(1)] Let S(P) be a \mathcal{P} -regular semigroup and γ the least strong \mathcal{P} -congruence on S(P). Then, for any $e \in E_S$, $e\gamma a$, $a \in S(P)$ implies $a \in E_S$.

3. Embedding Theorem

Let P be a \mathscr{C} -partial band and T a regular *-semigroup with the set of projections P_1 . Let γ_1 be the minimum strong \mathscr{P} -congruence on H_P . Then H_P/γ_1 is a regular *-semigroup with the set of projections $P^*/\gamma_1 = \{(\rho_q, \lambda_q)\gamma_1: q \in P\}$. Let $\Psi: T \to H_P/\gamma_1$ be a \mathscr{P} -homomorphism whose range contains all projections of H_P/γ_1 . We denote the spined product

$$S = \{(x, t) \in H_P \times T \colon xy_1^{\sharp} = t\Psi\}$$

of H_P and T with respect to H_P/γ_1 , γ_1^{\ddagger} and Ψ by $\mathscr{Z}(P, T, \Psi)$.

Theorem 1.

- (1) $S = \mathscr{Z}(P, T, \Psi)$ is a \mathscr{P} -regular semigroup having $\{((\rho_q, \lambda_q), p) \in P^* \times P_1: (\rho_q, \lambda_q)\gamma_1 = p\Psi\}$ as its C-set.
- (2) If Ψ is an idempotent-separating \mathcal{P} -homomorphism, then the C-set of S is isomorphic to P.
- (3) If γ is the minimum strong \mathscr{P} -congruence on S, then $S/\gamma \cong T$.

Proof. (1) Obviously, $H_P \times T$ is regular. If $(x, t) \in S$, then $x\gamma_1^{\sharp} = t\Psi$. Taking $x^+ \in V_{P^*}(x)$, denoting a unique \mathscr{P} -inverse of t in T by t^{\sharp} , it easily follows that $x^+\gamma_1^{\sharp} \in V_{P^*/\gamma_1}(x\gamma_1^{\sharp})$). Since the range of Ψ contains the projections of H_{P/γ_1} and since Ψ is a \mathscr{P} -homomorphism, $P_1\Psi = P^*/\gamma_1$. Thus, $t^{\sharp}\Psi \in V_{P^*/\gamma_1}(t\Psi)$. Therefore, $x^+\gamma_1^{\sharp}$ and $t^{\sharp}\Psi$ are both \mathscr{P} -inverses of the single element $x\gamma_1^{\sharp} = t\Psi$ of the regular *-semigroup H_{P/γ_1} , which implies that $x^+\gamma_1^{\sharp} = t\Psi$, and so $(x^+, t^{\sharp}) \in S$. Thus, S is regular.

Let

$$P = \{ ((\rho_q, \lambda_q), p) \in P^* \times P_1 \colon (\rho_q, \lambda_q) \gamma_1 = p \Psi \}.$$

Then $\overline{P} \subseteq E_S$. We easily deduce that $\overline{P}^2 \subseteq E_S$ and $\overline{q}\overline{P}^1\overline{q} \subseteq \overline{P}$ for any $\overline{q} \in \overline{P}$. By the proof above, we have $V_{\overline{p}}(x,t) \supseteq V_{P^*}(x) \times \{t^{\sharp}\}$ for any $(x,t) \in S$. Thus, $S(\overline{P})$ is \mathscr{P} -regular. Since $P^*/\gamma_1 = P_1\Psi$ and T is a regular *-semigroup, $V_{\overline{p}}(x,t) \subseteq V_{P^*}(x) \times \{t^{\sharp}\}$. Hence, $V_{\overline{p}}(x,t) = V_{P^*}(x) \times \{t^{\sharp}\}$.

(2) By Lemma 1, the mapping $\alpha: P^* \to P$ defined by $(\rho_q, \lambda_q)\alpha = q$ is a strong isomorphism. We may show that the mapping $\zeta: \overline{P} \to P$ defined by $(x, t)\zeta = x\alpha$ is a strong isomorphism. To prove that ζ^{-1} is also strong, let $(x, t)\zeta(y, u)\zeta \in P$, where $(x, t), (y, u) \in \overline{P}$. Then $x\alpha.y\alpha \in P$ and $(xy)\gamma_1^{\sharp} = (tu)\gamma_1^{\sharp}$. Since α is a partial isomorphism, $(x\alpha.y\alpha)\alpha = xy$. Thus, $xy \in P^*$ and so $(xy)\gamma_1^{\sharp}$ is a projection of H_{P/γ_1} . Hence, there exists $v \in P_1$ such that $(xy)\gamma_1^{\sharp} = v\Psi$, so $(tu)\Psi = v\Psi$. But $tu \in E_T$ and so, since Ψ is idempotent-separating, $tu = v \in P_1$. Hence, $(xy, tu) \in \overline{P}$ and we conclude that \overline{P} and P are isomorphic.

(3) Obviously, the mapping $\pi : (x, t) \mapsto t$ is a \mathscr{P} -homomorphism from S onto T. If γ is the minimum strong \mathscr{P} -congruence on S, then $\gamma \subseteq \ker \pi$, and so there exists a \mathscr{P} -homomorphism f from S/γ onto T such that $\gamma^{\sharp}f = \pi$. To prove that $\gamma = \ker \pi$, we only need to show that $\ker \pi \subseteq \gamma$. Let $(x, t), (y, u) \in S$, satisfying $((x, t), (y, u)) \in \ker \pi$. Then $(x, t)\pi = (y, u)\pi$, i.e., t = u and so $t\Psi = u\Psi$. Hence, $x\gamma_1 = y\gamma_1$, that is, $(x, y) \in \gamma_1$. Thus, by Lemma 2, there exist $x_0 = x, x_1, \ldots, x_n = y \in H_P$ such that $V_{P^*}(x_i) \cap V_{P^*}(x_{i+1}) \neq \emptyset$, $i = 0, 1, \ldots, n-1$. Since $x_0\gamma_1 = x\gamma_1 = t\Psi$, $x_1\gamma_1 = \cdots = x_{n-1}\gamma_1 = t\Psi$, which implies that $(x, t), \ldots, (x_{n-1}, t) \in S$. But

$$(V_{P^*}(x_i) \times \{t^{\sharp}\}) \cap (V_{P^*}(x_{i+1}) \times \{t^{\sharp}\}) \neq \emptyset$$

i.e., $V_{\bar{p}}(x_i, t) \cap V_{\bar{p}}(x_{i+1}, t) \neq \emptyset$, i = 0, 1, ..., n-1. Hence, $((x, t), (y, u)) \in \gamma$. Thus, $f: S/\gamma \to T$ is a \mathscr{P} -isomorphism.

Let S(P) be a \mathscr{P} -regular semigroup and $a \in S$, $a^+ \in V_P(a)$. Denote $q = aa^+$, $p = a^+a$. Then it easily follows that $\rho a = \rho_q \theta_l$, where ρ_a is as in Lemma 3 and θ is the mapping $\theta : x \mapsto a^+ xa$ from $\langle q \rangle$ onto $\langle p \rangle$. Dually, $\lambda_a = \lambda_p \theta_r^{-1}$. Hence, the homomorphism $\xi : a \mapsto (\rho_a, \lambda_a)$ in Lemma 3 is a \mathscr{P} -homomorphism from S(P) to H_P . **Proposition 2.** The mapping $\eta : S \to H_P \times S/\gamma$ defined by $a\eta = ((\rho_a, \lambda_a), a\gamma)$ is an injective \mathcal{P} -homomorphism.

Proof. By Lemma 4, $\gamma \cap \mu = 1_S$. However, by Lemma 3, since $\mu = \ker \xi$, η is an injective homomorphism. Clearly, $H_P \times S/\gamma$ is a \mathscr{P} -regular semigroup with the *C*-set $P^* \times P/\gamma$, where $P/\gamma = \{q\gamma: q \in P\}$. It easily follows that $P\eta \subseteq (P^* \times P/\gamma) \cap S\eta$. Conversely, if $((\rho_q, \lambda_q), p\gamma) \in (P^* \times P\gamma) \cap S\eta$, then $q, p \in P$, and there exists $a \in S$ such that $a\eta = ((\rho_q, \lambda_q), p\gamma)$. Thus, $(\rho_a, \lambda_a) = (\rho_q, \lambda_q)$ and $a\gamma = p\gamma$. Since $p \in P$, by Lemma 5, $a \in E_S$. But $(a, q) \in \ker \xi = \mu$, we have that a = q. Hence, $((\rho_q, \lambda_q), p\gamma) = q\eta \in P\eta$. Therefore, η is a \mathscr{P} -homomorphism.

If γ_1 is the minimum strong \mathcal{P} -congruence on H_P , then $\xi \gamma_1^{\sharp}$ is a \mathcal{P} -homomorphism from S into H_P/γ_1 .

Proposition 3. The mapping $\alpha : S/\gamma \to H_P/\gamma_1$ defined by $(a\gamma)\alpha = a\xi\gamma_1^{\sharp}$ is a \mathscr{P} -homomorphism whose range contains the projections of H_{P/γ_1} .

Proof. If $a\gamma = b\gamma$, then there exist $a_0 = a, a_1, \ldots, a_n = b$ such that $V_P(a_i) \cap V_P(a_{i+1}) \neq \emptyset$, $i = 0, 1, \ldots, n-1$. Taking $b_i \in V_P(a_i) \cap V_P(a_{i+1})$, then it easily follows that

$$(\rho_{b_i}, \lambda_{b_i}) \in V_{P^*}(\rho_{a_i}, \lambda_{a_i} \cap V_{P^*}(\rho_{a_{i+1}}, \lambda_{a_{i+1}}) \neq \emptyset, i = 0, 1, \dots, n-1.$$

Thus, $(\rho_a, \lambda_a)\gamma_1 = (\rho_b, \lambda_b)\gamma_1$, that is $a\xi\gamma_1^{\sharp} = b\xi\gamma_1^{\sharp}$, and so α is a mapping. It is easy to see that α is a \mathscr{P} -homomorphism whose range contains the projections of H_{P/γ_1} .

Theorem 4 (Embedding theorem). Let S(P) be a \mathcal{P} -regular semigroup. Then S(P) can be embedded into $\mathcal{Z}(P, S|\gamma, \alpha)$.

Proof. Since S(P) is \mathscr{P} -regular, P is a \mathscr{C} -partial band. Since S/γ is a regular *-semigroup with projections $P/\gamma = \{q\gamma; q \in P\}$, it follows from Theorem 1(1) that the spined product $\mathscr{Z}(P, S/\gamma, \alpha)$ of H_P and S/γ with respect to $H_{P/\gamma_1}, \gamma_1^{\sharp}$ and α is a \mathscr{P} -regular semigroup with the C-set $\overline{P} = \{((\rho_q, \lambda_q), p\gamma) \in P^* \times P/\gamma; (\rho_q, \lambda_q)\gamma_1 = p\gamma\alpha\}$. Since, for any $((\rho_a, \lambda_a), a\gamma) \in \operatorname{ran}(\eta)$ in Proposition 2, we have that $(\rho_a, \lambda_a)\gamma_1 = a\xi\gamma_1 = a\gamma\alpha, ((\rho_a, \lambda_a), a\gamma) \in \mathscr{Z}(P, S/\gamma, \alpha)$. It follows from Proposition 2 that $\eta: S \to \mathscr{Z}(P, S/\gamma, \alpha)$ is an injective \mathscr{P} -homomorphism.

Acknowledgement. The author thanks Professor Yuqi Guo for his encouragement and help.

References

- 1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc., Surveys 71 (1961).
- 2. J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- 3. T. Imaoka, Representation of *-congruences on regular *-semigroups, Proc. of 1984 Marquette Conference on Semigroups, Marquette University, 1984, pp. 65-72.

- 4. T. E. Nordahl and H. E. Schiblich, Regular *-semigroups, Semigroup Forum 16 (1978) 369-377.
- 5. M. Yamada, Note on the construction of regular *-semigroups, Mem. Fac. Sci. 15 (1981) 17-22.
- 6. M. Yamada and M. K. Sen, *P*-regularity in semigroups, *Mem. Fac. Sci.* 21 (1987) 47-54.
- 7. M. Yamada, On P-regularity in semigroups, and the structure of P-regular semigroups, Proc. First International Symposium on Algebraic Structures and Number Theory, Hong Kong, 1988, pp. 297-331.
- 8. M. Yamada and M. K. Sen, *P*-regular semigroups, Semigroup Forum 39 (1989) 157-178.
- 9. H. W. Zheng, Some studies on *P*-regular semigroups, Doctoral Dissertation, Lanzhou University, 1992.
- H. W. Zheng, On P-regular semigroups and uniform and antiuniform characteristic partial bands, J. Shandong Normal University 8 (1993) 36-39.
- 11. H. W. Zheng, P-regular semigroups and C-partial bands (manuscript).
- H. W. Zheng, Strong *P*-congruences on *P*-regular semigroups, Semigroup Forum 51 (1995) 217-223.

روپ بدن الا اين (يوريكي ت ¹يخ (يوري خ_{يرو}) × 20 (1,0 ±

Thus, (product) = (product) (1) that is not (2) = h(2), and at a is a mapping (1) (ready to as that a to a tribution phine sumps contains the projection of Neural as

Theorem 4 (Etcloridium theorem) (Let S(P) do a Propolar multiplier Theoris CP) are its embadded into (F, P, S), 61.

From Since S(P) is S-regular, P is a Figurual band. Since S(P) is a regular band group with propertion $\mathcal{O}(p) = (n_1 + n_2)^2$, if $(n_1 + n_3)^2 = (n_1 + n_3)^2$, if $(n_1 + n_3)^2 = (n_1 + n_3)^2$, if $(n_1 + n_3)^2 = (n_1 + n_3)^2$, if $(n_1 + n_3)^2 = (n_1 + n_3)^2 = (n_1 + n_3)^2 = (n_2 + n_3)^2 = (n_3 + n_3)$

Information way The suffer theolog Preferror Yan, this for his recommendant bulp

1224121215

- A. H. Olffwert and G. B. Pferick, The Discharge Matrix Barry of Temperings, Amer. Matrix Nucl., 2009ard 71 (1964).
- 1. J. M. Hanie, in Derecher in Semigroup Theory Stationary Press, London, 1870.
 - 3. T. Hundin, Representation of "computences on regular "computing, Proc. 10 156 Margareter Circulation on Strangouge Marganite Linn analy. 1994, pp. 65–73.