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Abstract. We consider the unitary linear dynamic system a:(X,U,V,A,B,C,D) of the
form

dx
j: 'nx@ + Bu(t)'

o(t) : 9*111a Du(t)'

whe rex ( r )  eX ,u ( t )e I J ,u ( t )eV .The  ope ra to rs  A ,B ,C ,Dare l i nea r  boundedand the
operator

is unitary. The purpose of this paper is to decompose explicitly a unitary system by facto-
rization ofits transfer function and by its invariant subspace.

l. Introduction

1.1. Livsis originated and has developed the theory of linear dynamic systems in
infinite-dimensional spaces and the theory of unitary, dissipative systems [10, 11].
In different mathematical languages, this theory has been studied by Nagy-Foias

[12], Brodskii [6], Arov fl,2f,De Branges [5], and Khanh [8, 9].
The problem of cascade coupling or cascade decomposition of systems was

posed naturally. In the case of infinite-dimensional systems, the problem was
studied by Bart, Gohberg, Kaashoek [4], Wang, Davison [13], Chen Chi Tong,
Doeser l7l, and several mathematicians. On the other hand, Livsis [11], Arov [], 2],
Khanh [8, 9], Ball and Kriete [3], and De Branges [5], have studied this problem
for unitary or passive systems.

It is indicated in [6, 12] that there is a one-to-one correspondence between the
existence of an invariant subspace of the main operator and the regular factoiza-
tion of the transfer function. Then, the problem of decomposing a unitary system
by factorization of its transfer function and by its invariant subspace is determined

' : l t  to l ' ' * ( r+X@v
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[6, 10, 11, 12]. However, an explicit construction of these cascade decompositions
is an interesting subject to consider. This is the main purpose of the paper.

1.2. Let X, U, V be separable Hilbert spaces. Consider a linear discrete stationary
dynamic system a : (X , (J , V, A, B, C, D) of the form:

x n + l : A x r I B u n ,

un: Cxn I Dun,

where xn e X,une U,uneV.The operators A:  X - -+ X,  B:  (J  - - -+ X,  C:  X - - -+ l / ,
D : U ---+ V are linear bounded.

The spaces X, U, V are called the state space, the input space, and the output
space, respectively.

The operator function of the complex variable

0 ( z ) : P * z C ( I - z A ) - t B

is called the transfer function of system.

The subspaces Xf :(1*nu,4:0 a*k6*V standfor controllable and

observable subspaces of al respectively. Tfle system is said to be controllable if
X : Xf;, observable if X : X!, and simple if X : Xf u 4.

Definition l. Let ay : (Xu U, V, Ap, Bk, Ck, Dil, k : 1,2 be two lineqr systems. ar,
tt2 ctt€ said to be similar if there exists q linear continuously inuertible operator
lV' : X1 --+ Xz such that

A z :  W A : W - |  ,

Bz :  WBt ,

cz: Crv[ / - |  ,
D z :  D t -

If, moreouer, the operator w is unitary, then the systems I and 2 are said to be
unitarily equiualent.

Definition 2. Let two linear systems u1" : (Xp, (J, V, Ap, Bk, Ck, Dil, k : 1,2, be
such that Uz: Vt.

The linear system a : (X, (J, V, A, B, C, D) is called a cascqde coupling of a1, a2
and is written as q": a2q if :

u : v t , v : v 2 , x : x @ X Z l

A:  ArPt  - f  A2P2*  fuC1P;

B:  Br  *  B2D1;
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C: CzPz* DzCrPt;

D:  DzDi

where P7, is the orthoprojection from X onto Xk (k : 1,2).

We have the following result. If q.: cr.2u1, then 0"(z) : 9orQ)9orQ).

Definition 3. The linear system is called an unitary system if the operator

I - A * A - C * C ,

I _ A A - - B B * ,

I _ D D - _ C C * ,

I _ D - D _ B ' 8 ,

-A*B:  C*D.

r59

lA B\
t : ( ;  

o )  
' * @ t / - X @ v

is unitary.

We have another equivalent definition.

Definition 4. The linear system is said to be unitary if the following equalities hold:

( l . t )

(r .2)
(1 .3)

(1.4)

( l .s )

An unitary system is also called an unitary colligation 16] or a conseruatiue
scattering system fl, 2].

It is known that if or1 and u2 arc unitary systems, then a2a1 is also unitary, and
according to the Livsis-Brodskii theorem, two simple unitary systems having the
same transfer function are unitarily equivalent.

Let us consider the following function model of Nagy and Foias for a simple
unitary system constructed by the given transfer function 0(z) e.il(U,V).

X : lL!(V) @ )] O {(oar, Aco)lro e Ll(U)},

A(p @ rlt) : e-i' (,p(eu) - p(0)) @ e-i'{/(ei'),

Bu : e-i' (0(ei'1 - 01011u @ e-it L(ei',)u,

C(p@fu) :  q (0) ,

Du: 0(0)u,

where A(e") : (I - 0.(ei')0(ei'))tl2; .il(U, Z) denotes the class of all analytic
functions in the unit disk {z : lzl < l}, having values as contractive operators from
U to V; Lt(U) stands for the Hardy space of elements f e Lz(U) whose kth
Fourier coefficient/(k) :0 for all k < 0.
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Def in i t ion 5.  Let  0(z) :02Q)0lz) ;  0(z)  e, i l ( ( I ,V) ;  0 i l2)  e, i l ( ( tp ,Vr) ;  k :1,2,
U : Uti Vl : Uz, Vz: V.

The factorization 0(z) : 02Q)01Q) is said to be regular if

{M}:6EN)@ETrei.
This definition is equivalent to the following: the operator Lhe A,20fi@

L'1h can be continuously extended to a unitary operator from AJ-2({/)- onto
E4o)@EAai.

From Definition 5, we have the following theorem.

Theorem l. ll2l Suppose the factorization 0(z):1zQ)|rQ) is regular. Then the
space

x : 1rl g 1 @ EL{A; @ E1 L{AJI O {(0a, 1,20 1a,A1 ar) lar e LI (U)]
contains the subspace

x2: IL|V) @Eilq @ {0i] o {02u, a,2u,0)lu e L!(u2)}
inuariant for the operator ) and it is the orthogonal complement in * of the subspace

X, : {1e2u, L2u,u)lu e Lt(U2),u e L1fiOJ}

O {(020 p, A,201a,A1 co) lcrr e fl @)}.

2. Explicit cascade Decomposition of a unitary system According to the
Regular Factorization of its Transfer Function

Let a simple unitary system a:(X,(J,V,A,B,C,D) be such that its transfer
function 0(z) has a regular factoization 0(z): 6r1t1q (z). We construct explicitly
two simple unitary systems d1 and d2, whose transfer functions are |ore) : llrj,
9orQ):02Q) and d,: q,2ctr, respectively.

According to the Livsis-Brodskii theorem, two simple unitary systems having
the same transfer function are unitarily equivalent, so we can use the model of
Nagy-Foias for a simple unitary system and still keep the generality of the prob-
lem. Besides , the factoizalion 0(z) : 0zQ)0{z) is regular, so instead of the Nagy_
Foias function model d^:^(X.,(J,V,A,B,C,D), we can decompose the function
model &. : (X, (J, V, A, B, e ,01, where

* :yr;91@ELr@; oEEdOJl
O {(0a,A,201a,A1co)lar e Ll(U)}, (2.r)

Lkp a {t @ d) : @-i.(ekit) - eQD @ e-i '{t(ei ') @ e-i,Aki,)), (2.2)

^ /i l" it) - 0(0) ^ L,2@it)0(eit) ^ Ar(e,') \n" : 
\7" a -ff" @ ̂tfu 

), Q.3)
ekpay@O):e(o) ,  e .4)

Du: 0(0)u. (2.s)
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By Theorem 1, the subspac e *z @f .;t) is invaria nt for A and it is the orthog-

onal complement in X of X1.
For the spaces *t and f2,-we coqstruct two systems &t: (Xt,Ut,Vt,At,Bt,

e ,, br) and 6,2 : (tz, (Jz, Vz, Ar, Br, er, Dr) as follows:

X, : 110ru @ Lzu @ u)lu e LI (U2), u e EtrdOJ]

C{1zu@ Lzu @ O) : a(0),

bp: 01(o)u,

xr: l t l (v) @ L2L2(u) + {0}l

O {@zu@ Lz.a.,}1u e L[(U)],

,[z(f @9 @ 0) : (e-it(f@it) -/(0)) gte-'ts(e't) gt0),

B2u : 1e-it 1021eit1 - ?zQDu g e-it L,2@it1z @ 0),

ezU@r@o) : f (o) ,

b2u: 02(0)u.

Then we have the following.

(2.6)
O {@z?'r ' t@ L,z|p @ A1a;) l ra e L[(U)] ,

Ar(,zu @ Lzu@ o) : (rr\"")Y1*1 @ Lzk'\Yry)t 9#),
(2.7\

ilp: (u1,',(ry+*u) a o,t"")(*"*") * ^#,), tr tr
(2.e)

(2 .10)

(2.rr)

(2.r2)

(2.r3)

(2.r4)

(2.1s)

Theorem 2. The simple unitary system of the form (2.1)-(2.5) has an explicit

decomposition into two simple unitary systems &.1 and &2, &.: &.2&1, by the formulas
(2.6)-(2.rs).

Proof. Theorem 1 leads b * : Xr @ Xz.
Now, we have to prove all operators of the systems ri 1, &2zra coffEctly determined.

Firstly,2l is an operator from ir to Xl.Indeed, since z eLl(U), then we

-  u (e i t \  -  u (0)  -  +
naveffeL|(U2).Moreover,notethatforueL|(( I) ,andOeAlLz(Ut),

(02u,L2u,O) belongs to the space ir if and only if |iu+ L1A belongs to L;(Ur).

Hence, for (02u, L2u,Q) e *1, we have that

^_ /u(ei,) - il(0)\ ^ o(ei') Ti@it)u(ei') + ar(et')o(et')
a i l - - - -  - - 1 + \ - n r t : T' \  

e t t  /

belongs to L; (U ). Therefore, A 1(0 2u,_L2u,tD.] e -tr .
Secondly, ,B1 is an operator from Ur to Xr because we have

o1@it) - o{o)
u e Ll(U2)
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and

eiprlpk2-lt(U-uf + L,k,,\ !(:! u n*, u' gr(0)
L err I  etr  

t t :  -  -  ai \e")- i  t  L;(U) '

The remainer operators are obviously determined.
Now, we prove d : &.2&t.It is easy to verify that

r  *  LzPz+ Bze g;1q,P,67

A1(02u, A,2u,e) + Az(q - Tzu,rlt - Lzu,o) + Bze lezu, L2u,e)

lrrk')((ett) 
- u(o) r),or(",,) (u(et') -.u(o) 

,\.!y2rl
L  \  e "  / '  

' \  
e t '  / '  e i t  j

, (ek") - 12Qit)u(ei') - q(0) + 0z(0)u(0) ,ltk,,) - Lzkit)u(eit) ̂ \-  
\  

' - -  
" r - ' u  

)

. (w2f9\uQ),\)u(o),0)

: (a@'):-0).. r!(ei') o("")\ _ ^

, ",,  

-u' 
| '  i  )  

:  A(rP'fu'Q)'

G\ + Bzb)u: Bp* hr@rq)u)

: 1 e , r 1 " " 1 ( o l e t t ) : . o l o ) , \ , o r 1 r , , 1 , ) , - & ( ' " ) . . 1-  

Lvz\G 
i  

\  e i t  
4 

) t  
a2\c 

/  A,  " l

+ (fu?2-!'tol o1(o)u, o1(o)z,o)
\ . . /

(02@it)01@it) - 02(0)0r(0) Ar (et') \: \E ' '  ' , ,  
"u 

")

(ezPz + b2e 1n;1,p,,y,61
: Cz@ - 02u,fu - L2u,0) + Dze t@2u, L2u,e)

. : a(0)_02(0)d0)+02(0)u(0)
: e(0) 

^- 
0z(0)z(0) + Dr@QD : aQ) : e(,p,,lt,O),

DzDp: 0zQ)0J0)u: 0(0)u: Du.

since -f : fr @ t2 andthe operators of the systems &4, &.2, &,satisfy the equalities
of cascade coupling, we have &.: &.2&t.

The system d2 is constructed according to the function model of Nagy-Foias
so &2 is simple, unitary, and has 02Q) as the transfer function. To prove that the
system &1 is simple, unitary, and has 01Q) as the transfer function, we consider the
system ut : (Xt, Ul, Vt, At, Bt, Ct, D) constructed by the Nagy_Foias model

(4P
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corresponding to the transfer function 01(z). For the state space X1 of 41,

x1 : lLl(V) @EWJI O {(0rc,r, Alro)lco e L[(U)],

we consider the operator

l : X 1  - * 1 ,

(" @ u) r-+ (02u @ Azz @ u).

The operator is determined because we have that (u @ u) belongs to X if and only if
|iu * Aau belongs to L;(U), and the latter happens if and only if (9zu @ Lzu @ u)
belongs to X1.

Obviously, the operator f is surjective. Moreover, for any two elements
(ur @ ur), @z @ u) of X1, we have

(f(zr c) u),1(u2 @ u2)) *, 
- (1zq,1zuz) * (Lzq, Lzuz) * (q, uz)

: (0i02u1 -l Llu1,u2) * (u1,u2)

:  (u t ,uz)  *  (q ,uz)

:  ((ut  @ ur),(uz @ uz))x.

Thus, I is unitary. Besides, it is easy to check that

lA1  :  Ar f  , lh  :  B t ,  C t :  i r f ,  D t  :  Dr .

Hence, the system d1 is unitary equivalent to o(1. Then d1 is simple, unitary, and
has 0r(z) as the transfer function.

This completes the proof of the theorem.

3. ExpHcit Cascade Decomposition of a Unitary System by its Variant Subspace

consider a unitary system a:(x,u,v,A,B,c,D) having x2 as a subspace
invariant for r4. We construct explicitly two unitary systems d1 and d2, whose state
spaces are X1 - X O Xz, respectively, and X2 such that q': uzqr.

The idea in this section is based on [6].
By hypothesis, since the subspace X2 is invariantfor A, then T(X) is included

in xz@ v where ? is defined in Definition 3. Let R be the orthogonal complement
of T(X) in the space Xz@ V, i.e., R: lxz@ VIOT(X)' Now we construct two
systems a1 : (X1, (Jt, Vt, At, Bt, Ct, D) and az : (Xz, Uz, Vz, Az, Bz, Cz, D) with
Uz: Vt: R, as follows:

U l  : U , V 2 : V , X 1  : X Q X 2 ,

A1  :  P1A ly , ,

B t :  P t B ,

C 1 : P 2 A l y r @ C l x r ,

163
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(3 .1 )

(3.2)

(3.3)

(3.4)
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Dt :  PzB  @ D,

Az :  A l x , ,

C2:  C ly , ,

82 : R -- X2, Bz@z @ u) : xz,

D2: R ---+ V, Dz(xz @ u) : u.

(3 .5)

(3.6)

(3.7)

(3.8)

(3.e)
Then we have the following.

Theorem 3. The unitary system has an explicit decomposition into two unitarv svs-
tems al, a2 defined by the formulas (3.1)-(3.9), and a: a2ur.

Proof. Obiously, the operators At, Bt, Az, Bz, Cz, Dz are determined. To prove C1
and D1 are determined, first we observe that, for any xz € X2, u e V, x2 @ u
belongs to R if and only if Aix2 + Ciu: 0. Indeed,

xz@ u e  R+ (xz@u,u i r ; r ro r :0 ,  yx '2e  X2

+ (xz @ u,A @ Cx2)xrgv : 0, Yx'z e Xz

+(xz ,Azxz)x r *  (u ,C2x2)y :  0 ,  V  e  Xz

+ (Aix2 -l Clu,x2)y, :0, Vx', e X2

+ A[x2 I  C)u :0.

With the operator Cr defined by C1x1 : pzA(xr @ 0)O C(;r @ 0), we have

AiP2A(x1@ 0)+  c lc (x1@ 0)  :  p2A*A(x1@ 0)  +  pzc .c@le)0)

:  Pz(A*A * C.C)(x1 @ 0),

by virtue of a being unitary, so the equality (1.1) in Definition 4 reads to

AiP2A(x1@ 0)+ CIC(x1@ 0) :  Pzlx@r @ 0) :0.

Thus' c1x1 e R and c1 is an operator from xr to R. with the operator D1
defined by Dp: PzBu @ Du, it .results that D1 is an operator from (I to R.
Indeed, from relation (1.5) in Definition 4, we can deduce, for every a e U.

- A*Bu: C*Du

+ - P2A*Bu: PzC*Du

+ -A)P2Bu: CiDu

+ A iP2Bu*  C lDu:0 .

Hence, PzBu@ Du e R.



Explicit Cascade Decompositians of Unitary Systems

Now, we prove that the operators of the systems q., ar, a.z satisfy the equalities
of cascade coupling:

APt * AzPzI BzCtPr:  PtAlx,  + Alx, ' t  B2lP2Aly, @ Clr l

: ptAlx, + Alxr-f pzAl*,

:  A lx ,  *  A lx " :  A ,

h l B z D r : P r B * B 2 I P 2 B @ D l

: PtB I  P2B: B,

CzPz * D2C1P1 : Clx, -f DzlP2Al*, @ Clx,l

: Clx, I Cly, : C,

DzDr - D2IP2B @ Dl: D.

Finally, we prove that the systems 41, a2 defined above are unitary. Consider

the system a2 with the oPerator

/  A. B"\
r '  :  

\ . ' ; :  ; ; ) '  
* '@ R * xz@ v :  r(X) @ R'

Forevery x2€X2,wehave

Tz@z@0): A(xz @ 0)O C(xzqf^ 0) :  Tz(xz @ 0)

and, for every r : xz @ u belonging to R, we have

f2(0 @ r) : Bzr @ Dzr : x2 @ t: : r.

From (3.10) and (3.11), it follows that Tz: Tlx, @ In' Since 7 is unitary, then so
is T2.

To show that ar is unitary' we first prove

T : (Tz@ Ix)(Ix, O Z1),

where

165

(3.r0)

(3.r  r )

We have

/ I * '  o  o \
Ix '@rr : ( ,3  

t "  i : , )
is an operator from Xz@ Xt @ U to Xz@ Xr @ R and

'': (o;, ;l)

:(!,+ i)Tz@ Ix,
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is an operator from Xz@ Xr @ R to Xz@ Xr @ V,

0 0

hAlx, hB
PzAlx,g Clx, PzB @ O

(n, PzAlx, prB\

:  I  o  ptAl* .  p f i  l .
l ' ^ ' l
\c, Clx, D I

4. The Relation Between cascade Decompositions of a Unitary system by its
Transfer Function and by its Invariant Subspace

Note that in the first case of decomposition, given a system with its transfer func-
tion 0(z) having a regular factorization 0(z) : gr1t1q (z), the intermediate space (J2
is also given. In the second case of decomposition, given a system a with its sub-
space x2 being invariant for A, the intermediate space is not given, and we con-
struct this space as R: lxz @ z] o r(x). However, we can prove that these two
spaces U2 aad R are unitarily equivalent.

Theorem 4. Let u: (X,(J,V,A,B,C,D) be a simple, unitary system constructed
according to the Nagy-Foias model. Assume the transfer function 0(z) of a has a
regular factorization 0(z): 6r1"161Q), 0(z) e ,il(U,V), |ie) e .il(U;,1\), i:1,2,
U : Ut, V : Vz, Uz: h, and assume X2 is a subspace inuariant for A. Then the
space U2 is unitarily equiualent to the space R:fXz@ ZIO T(X2) through an
operator defined as follows:

l : U 2 - - + R ,

yy: (e-it(02@it) - 02(0))u,e-irL,2(eit1u) @ ?ze)u.

/A ,  o  Bz \ ( In
( T z e ) r x ) g x , O r r ) : I O  r x ,  t  

| | 0
\ C z  0  D z l \ 0
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Proof. First, f is determined since we have

4 ( o r<"!)!rtol_ u, ̂ r::r") u\ + ci oze)u' \  
e t t  

'  
e t t  /

: ((02@it) - ?zQDu - 02@,L2@it)u - Lz(UD)

+ (?zq)u - 02kit)e;Q)02(0)u, - L2kit)0;(0)0zq)u),

where

1 12" | ,ttg*(erlfre):!r(0)\, + 
",,Lr("nrLzkil) 

1 o,' :  
zn |o  l '  

'  
\  e , ,  /  

- '  e t r  r
| 12".: 

;), lu - 0i@it)02(0)uldt : u - 0i(0)0z9)u.

From this, it follows that

n;(W2#&", u) + c;ezou:o.

Hence, lu e R.
We show that f preserves the scalar-product. Indeed

. ( ur,L#'r) 
",,r,r*r'rro)u1,02(o)u2),: - (0 2@'t )ut, 0 z(0)uz) -r (02(0)q, 0z(0)uz)

- (02(0)q, |zkit)uz) * (02(0)q, ?zq)u) * (q, uz)

- (q,uz).

Next, we prove that I is surjective.
Let(q,t ,u) e R@fUz; we wi l l  prove (p, fu,u):0.
Indeed, for any (e,t,u) e R, we have ((9,{t,u),lu): 0 for every u e Uzif and

only if the conditions below are satisfied:

e ie+L2r leL2(J ) ,eeL l (V) , teEEN) ,  (4 . r )
Ai@,t) i c)u :0, (4.2)

( r . 0 r ( r " ) - ? z Q )  \  / ,  A 2 ( e " \  \

\  F-" )*  \ f ,  

- - ; -"  

)  
*  (u,02(o)u) :  Q' (4 '3)

Condition (4.3) is equivalent to

<ei'(0;q + Lzt,u) - (ei'e,02(0)u) -t (u,lz0)u) -- 0.

This implies

(a, u) - ("t' e, 0z(0)u) * (u, 02(0)u) : Q,
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, : +f ei'(o;a + Lzt) dt e (12.

On the other hand, we have rp e L[(V), 0z(0)u e U2. Hence

(e"rp,02(0)u) : Q.

Then condition (4.3) is equivalent to the condition (ar + gj(O)u, u) :0 for every z
belonging to Uz. This implies ro * 0i(0)u : 0.

Cbndition (4.2) is equivalent to

, t 'q ( r t ' ) -02@i t )a+u-02@i t )0 i (0 )u :0 ,  (4 .4 )

ei'ltki') - L2@it)o - L2@i')0;(0)u:0. (4.5)

From (4.4), it follows that

"",p("") 
+ u : |z@i')[r, + g](0)u1 : g.

Therefore, e@t') : e-i'u e L;(V). Since p e Ll(V), we must have g: 0 and hence,
u : 0 .

From (4.5), it follows that

et'rlr : L2la -t 0i(0)ul : a.

Hence, lr :0.
We have already proved that R OfUz: {0}, so we conclude f is surjective.

Concretely, we can determine

1 lzn
f-'(rp,rlr,u) : a -t liQ)u, where crr : 

n)o 
et'(1iq + Lzrlt)dt.

Thus, I is unitary and this completes the proof. I

'Besides, U2 and R are unitarily equivalent. We also observe that the operators
Az, Bz, Cz, Dz can be considered as the same in both cases of decompositions.
Indeed, since a : o,zor, then A2 : Alx", Cz: Clxr. In the first case of decom-
position, we have

B2u : Pyr(lu), D2u : Pyr(lu), B2u I D2u : lu,

while in the second case, we have

B2u: Pyru, D2u : Pyrlt, B2u I D2U : u.

Once a2 is constructed, a1 is determined uniquely correspondingto u2 from the
equality q.: d2ctt.
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