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Abstract. We consider the unitary linear dynamic system o = (X, U, ¥, 4, B, C, D) of the
form

i _

dr

v(£) = Cx(t) + Du(s),

Ax(t) + Bu(t),

where x(t) € X, u(t) € U, v(¢) € V. The operators 4, B, C, D are linear bounded and the
operator

A B
= XU
T [ C D] U-X®V
is unitary. The purpose of this paper is to decompose explicitly a unitary system by facto-
rization of its transfer function and by its invariant subspace.

1. Imtroduction

1.1. Livsis originated and has developed the theory of linear dynamic systems in
infinite-dimensional spaces and the theory of unitary, dissipative systems [10, 11].
In different mathematical languages, this theory has been studied by Nagy—Foias
{12], Brodskii [6], Arov [1, 2], De Branges [5], and Khanh [8, 9].

The problem of cascade coupling or cascade decomposition of systems was
posed naturally. In the case of infinite-dimensional systems, the problem was
studied by Bart, Gohberg, Kaashoek [4], Wang, Davison [13], Chen Chi Tong,
Doeser [7], and several mathematicians. On the other hand, Livsis [11], Arov [1, 2],
Khanh [8, 9], Ball and Kriete [3], and De Branges [5], have studied this problem
for unitary or passive systems.

It is indicated in [6, 12] that there is a one-to-one correspondence between the
existence of an invariant subspace of the main operator and the regular factoriza-
tion of the transfer function. Then, the problem of decomposing a unitary system
by factorization of its transfer function and by its invariant subspace is determined
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(6, 10, 11, 12]. However, an explicit construction of these cascade decompositions
is an interesting subject to consider. This is the main purpose of the paper.

1.2. Let X, U, V be separable Hilbert spaces. Consider a linear discrete stationary
dynamic system « = (X, U, V, 4, B, C, D) of the form:
Xnl = A-xn + Bum
v, = Cx, + Duy,
where x, € X, uy € U, v, € V. The operators 4 : X - X,B: U - X, C: X — vV,
D : U — V are linear bounded.
The spaces X, U, V are called the state space, the input space, and the output

space, respectively.
The operator function of the complex variable

0(z) = D+ zC(I —z4)"'B
is called the transfer function of system.
The subspaces XC = OA"BU, X0 = GA*" C*V stand for controllable and
observable subspaces of oc(,) respectively. Tl(;e system is said to be controllable if

X = X, observable if X = X?, and simple if X = XC U X?.

Definition 1. Let o = (Xi, U, V, Ak, Bx, Ci, Di), k = 1,2 be two linear systems. a1,
ay are said to be similar if there exists a linear continuously invertible operator
W . X1 — X3 such that

Ay = WA WL
B, = WBy,
C=CWw,
D, = D,.

If, moreover, the operator W is unitary, then the systems 1 and 2 are said to be
unitarily equivalent.

Definition 2. Let two linear systems oy = (Xy, U, V, Ay, By, Cy, Dy), k=1,2, be
such that U, = V7.
The linear system o.= (X, U, V, A, B, C, D) is called a cascade coupling of a1, o
and is written as o = oot if
U=V,V=V, X=X X,
A= APy + AP, + B3Cy Py;
B =B+ B,Dy;
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G = Csz + D2C1P1;
D = D,Dy;
where Py is the orthoprojection from X onto Xy, (k = 1,2).
We have the following result. If o = opat1, then 6,(z) = 6,,(z)0y, ().

Definition 3. The linear system is called an unitary system if the operator

A B
= XU - X
T (C D) U—-XV
is unitary.

We have another equivalent definition.

Definition 4. The linear system is said to be unitary if the following equalities hold:

I-A*A=C"C, (1.1)
I— AA4* = BB*, (1.2)
I1-DD* = ccC*, (1.3)
I-D*D=PBB, (1.4)

—A*B=C'D. (1.5)

An unitary system is also called an unitary colligation [6] or a conservative
scattering system [1, 2].

It is known that if «; and ay are unitary systems, then oo is also unitary, and
according to the Livsis—Brodskii theorem, two simple unitary systems having the
same transfer function are unitarily equivalent.

Let us consider the following function model of Nagy and Foias for a simple
unitary system constructed by the given transfer function 6(z) € (U, V).

= [L}L(V) ® AL, (U)] © {(fw, Aw)|w e LT (U)},
(tl’@l//) = e *(p(e") — 9(0)) ® e "Y(e"),
e~"(0(e") - 0(0))u ® e *A(e")u,
Cle @ ¥) = 9(0),
Du = 6(0)u,

)
where A(ei) = (I — 6*(e")0(e"))/?; (U, V) denotes the class of all analytic
functions in the unit disk {z : |z| < 1}, having values as contractive operators from
U to V; L3(U) stands for the Hardy space of elements f € L,(U) whose kth
Fourier coefficient f (k) =0forall k£ < 0.
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Definition 5. Let 6(z) = 0,(2)01(z); 0(z) € L(U, V), Ou(z) € (U, Vie); k= 1,2,
U= Ul,' V1 = Uz, Vz =V
The factorization 0(z) = 04(z)6,(z) is said to be regular if

{42018 ® Arh - he Ly(U)} = ALy (Us) @ ALy ().

This definition is equivalent to the following: the operator Ah— Ay01h @
Aih can be continuously extended to a unitary operator from AL(U) onto
ALy (Us) @ ALy (Uy).

From Definition 5, we have the following theorem.

Theorem 1. [12] Suppose the factorization 60(z) = 6,(2)0;(z) is regular. Then the
space

X = [L-Z'—(V) @ Asz(Uz) &) A1L2(U1)] ) {(00), A201co, Alw)|co € L;—(U)}
contains the subspace
X2 =L (V) @ KLy(T3) @ {0} © {62, Agu, O)\u € L} (Uh)}

invariant for the operator A and it is the orthogonal complement in X of the subspace

Xy = {(Bou, Aqu, v)|u € LT (Us),v € A L,(Uh )}
© {02010, Ay6100, Ayw)|w € LI (U)}.

2. Explicit Cascade Decomposition of a Unitary System According to the
Regular Factorization of its Transfer Function

Let a simple unitary system « = (X, U, V, 4, B, C, D) be such that its transfer
function 6(z) has a regular factorization 6(z) = 6,(z)6;(z). We construct explicitly
two simple unitary systems o; and o, whose transfer functions are 0., (z) = 01(2),
0u,(2) = 62(2) and a = a0y, respectively.

According to the Livsis—Brodskii theorem, two simple unitary systems having
the same transfer function are unitarily equivalent, so we can use the model of
Nagy—Foias for a simple unitary system and still keep the generality of the prob-
lem. Besides, the factorization 6(z) = 0,(z)0;(z) is regular, so instead of the Nagy-
Foias function model « = (X, U, V, 4, B, C, D), we can decompose the function
model & = (X, U, V, 4, B, C, D), where

X =[L{(V)® AML(U;) @ A Ly, (Ty)]

© {(0w, Ay 10, A\w)|w € LF (U)}, (2.1)
Alp @y @ @) = (e~ (ple") — p(0)) ® e "Y(e™) ® e "g(e™), (2.2)
B (G(e") = 0(0) 2 A2(€”)§l(€'t)u - A1(:”) u)} 2.3)
e e e
Clo® Y @ ¢) = p0), (2.4)

Du = 6(0)u. (2.5)
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By Theorem 1, the subspace X, (of X) is invariant for A and it is the orthog-
onal complement in X of X, 1.

For the spaces X1 and Xz, we construct two systems & = (X, Uy, V1, A1, By,
él, D1) and & o) = (Xz, Us, Va, Az, Bz, C2, Dz) as follows:

X ={0u®Aud®v)ue L (Uy),ve A Ly,(Up)}
S {(929160 (&) A291w @ Aw) |(D € L;(U)},

(2.6)

elt ett
2.7
Blu — (02(6”) (0_1(6_”)?:_0@ u) @ Ag(ei’) (Gl(ett)e; 01 (0) u> @ Ale(slt) u) , (28)
C1(02u ® Au @ @) = u(0), (2.9)
f) = 0,(0)u, (2.10)
= [LI(V) @ A Ly(U) + {0}]
© {(6,u ® Aro,0lu e LT (U2)}, (2.11

)
A(f ®g®0) = (e7(f(e") —£(0) ®e"g(e") ®O), (2.12)
Bou = (e7"(0,(e™) — 02(0)u @ e " A(e"u®0),  (2.13)
Co(f ® g ®0) =£(0), (2.14)
Dyu = 6,(0)u. (2.15)

Then we have the following.
Theorem 2. The simple unitary system of the form (2.1)—(2.5) has an explicit

decomposition into two simple unitary systems &y and d, & = 08, by the formulas
(2.6)—(2.15).

Proof. Theorem 1 leads to X=X ®X.
Now, we have to prove all operators of the systems &, & are correctly determined.
Firstly, A; is an operator from X to Xi. Indeed, since u € L} (U), then we

u(e™) — u(0) N .
have——T— e LT(U,). Moreover, note that foru e L; (Up),and ® € A Ly(Uy),

(021, Ayu, @) belongs to the space X if and only if 0ju + A;® belongs to L; (U)).
Hence, for (f,u, Ayu, ®) € X1, we have that

o (u(e = u(O)) LA Oet) 07 (eMule™) + Ai(e")D(e") = 0 (e™u(0)

ezt eit = eit e:’i

belongs to L; (U1). Therefore, A,(6u, Ayu, D) e b
Secondly, B; is an operator from Uj to X1 because we have

B(e”) — 61(0)

P ue L;(Uz)
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and

ett elt

0;(e" [w u} LAy, B oy A0 e ;)

The remainer operators are obviously determined.
Now, we prove & = &,d;. It is easy to verify that

(A1P1 + A2P5 + B,C\Py)(0, ¥, §)
= A1(02u, Agu, @) + Aa(p — Ogu,  — Agu, 0) + B, C(Oyu, Ayu, @)
2

=[9@%Cﬁﬂ;ﬁ@%}Axw(””*”@g)¢@%4
e’ eit it
<+@@%—%W%wﬂ—ﬂm+%®w»w@%—m@qu0>
eit 5 eit 3
+-(9( )it92() «»,Ax§“540%0>
e e
( u, (‘tztlt) ’ q)(ftlt)) . “i(¢: ‘p’ (I))y
€ e
(Bl + BZﬁl)u = Biu+ By(6,(0)u)
e et
+< (Luwm%@’ﬂﬁ”&@mﬁ
eit el
( AZ( )-U (eir}u, A'(e“)“) = Bu,
et ell

(C2Py + Dy C1Py) 0, 0, 8)
= Cy(p — Oyu, ¥ — Agu, 0) + D, C1(0au, Ayu, d)
= 9(0) — 62(0)u(0) + 62(0)u(0)
= 9(0) — 6,(0)u(0) + D2(u(0)) = 9(0) = C(p,y, ¢),

Dy Dyu = 6,(0)0,(0)u = 6(0)u = Du.

Since X =X, ® X 2 and the operators of the systems &;, d, & satisfy the equalities
of cascade couplmg, we have & = &,d;.

The system & is constructed according to the function model of Nagy—Foias
80 &y i s1mple unitary, and has 6,(z) as the transfer function. To prove that the
system & is simple, unitary, and has 6,(z) as the transfer function, we consider the
system ay = (X1, Uy, V1, 41, B1, C1, Dy) constructed by the Nagy-Foias model
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corresponding to the transfer function 0;(z). For the state space X of «y,
X, = [LF (") ® AL, (U1)] © { (610, Ao)|w € L (Un)},

we consider the operator
r':x— X s
(# ® v) > (O2u ® Ayu ® v).

The operator is determined because we have that (u @ v) belongs to X if and only if
67u + Aqv belongs to Ly (U1), and the latter happens if and only if (6u @ Asu @ v)
belongs to X .

Obviously, the operator T' is surjective. Moreover, for any two elements
(u1 @ v1), (up ® v2) of Xj, we have

(T(uy @ v1),T(uz @ v2) 3 = {Baun, bauz) + Aquy, Aguiz ) + (01,02
= (6302u1 + Adur, w2 + <v1, 12>
= Cuy, w2 + o1, 02)
= {(u1 D v1), (2 @ 12))yx,-
Thus, I is unitary. Besides, it is easy to check that
T4, = AT, B =B, C,=C T, D =D,.

Hence, the system & is unitary equivalent to a;. Then & is simple, unitary, and
has 6;(z) as the transfer function.
This completes the proof of the theorem. |

3. Explicit Cascade Decomposition of a Unitary System by its Variant Subspace

Consider a unitary system o= (X, U, V,4,B,C,D) having X, as a subspace
invariant for 4. We construct explicitly two unitary systems o; and oy, whose state
spaces are X; = X © Xa, respectively, and X, such that o = o).

The idea in this section is based on [6].

By hypothesis, since the subspace X is invariant for 4, then T(Xj) is included
in X, ® V where T is defined in Definition 3. Let R be the orthogonal complement
of T(X>) in the space X, ® V, i.e., R=[X2 @ V] © T(X2). Now we construct two
systems oy = (X1, Ul, Vl,A1,Bl, C1,D1) and oy = (Xz, U2, V2, Az, B2, Cz,Dz) with
U, = V] = R, as follows:

U=U Vo=V, Xi=XOXo, (3.1)
A = PiAly, (3.2)
By = Py B, (3.3)
C1 = P2Aly, @ Cly, (3.4)
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D, = P,B® D, (3.5)
Ay =Aly, (3.6)
G = Clxz: (3.7)
By : R — X, By(x; ®v) = x5, (3.8)
Dy:R—V,Dyxy®v) =u. (3.9)

Then we have the following.

Theorem 3. The unitary system has an explicit decomposition into two unitary sys-
tems oy, oy defined by the formulas (3.1)-(3.9), and o = aa;.

Proof. Obviously, the operators 41, By, A», B;, (3, D, are determined. To prove C;
and D; are determined, first we observe that, for any x; € Xp, veV, x,@v
belongs to R if and only if 43x, + Cjv = 0. Indeed,

X PreRes(x @, ux'2>X2@V =0, Vxlz eXy
<0 @ v, 4% ® Cxydper =0, Vx, € X;
<> (x, Aaxy Yy, + v, Crxy )y = 0, ¥x, € X,
< {A3x + G, x’2>X2 =0, \7’x'2 eX,
< A3x; + Cjv=0.
With the operator C; defined by Cyjx; = PrA(x; @ 0) @ C(x; @ 0), we have
A3P2A(x1 @ 0) + C5C(x1 @ 0) = PrA*A(x1 ® 0) + P,C*C(x; @ 0)

= Py(4"4 + C*C)(x; @ 0),
by virtue of « being unitary, so the equality (1.1) in Definition 4 leads to

A;PzA(xl @0)+ C2*C(x1 @0) = Poly(x1 @ 0)=0.

Thus, Cix; € R and C; is an operator from X; to R. With the operator D,
defined by Dyu = P,Bu @ Du, it results that D; is an operator from U to R.
Indeed, from relation (1.5) in Definition 4, we can deduce, for everyue U,

— A*Bu = C*Du
= — PyA*Bu= P,C*Du
= — A;P)Bu= C;Du

= A;P,Bu+ C;Du=0.
Hence, P,Bu @ Du e R.
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Now, we prove that the operators of the systems a, a1, o satisfy the equalities
of cascade coupling:

A1 P| + A;Py + B,C Py = P1A|y + Aly, + B2[P2A|y, @ Clx]
= P1A|X1 +AIX2 +P2A|X1

= Ale +A1X2 =4,
By + B,Di = PB + By[P,B® D]
— P\B+P,B=B,
CyP3 + D,C Py = Cly, + Do[P2Aly, @ Cly]
= Cly, + Cly, = C,

D,D, = D,[P,B® D] = D.

Finally, we prove that the systems a;, o; defined above are unitary. Consider
the system a, with the operator

A, B
=22 2} L OR-LOV=TX)®R
C, D

For every x; € X, we have

Ty(x, @ 0) = A(x2 ©0) D C(x2 @ 0) = Ta(x, @ 0) (3.10)
and, for every r = x, @ v belonging to R, we have
H0®r)=Byr@®Dir=x@v=r. (3.11)

From (3.10) and (3.11), it follows that T> = T|y @ Ir. Since T is unitary, then so
is T: Pls
To show that a; is unitary, we first prove

T=(T® Ix)Ix, ® Th),
H A B
h= (Cl Dl)'

| PR U
Iy®T = OAI&)

0 G D

where

We have

is an operator from X, @ X1 @ Uto Xo @ X1 ® R and

A2 0 By
Loly=| 0 Ig 0)

G 0 D
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is an operator from X, @ X B Rto X, @ X1 @ V,

A, 0 B, IX2 0 0
(LOIn)In,®@T)=| 0 Iy O 0 PiA|y PB
G 0 D 0 PzAlxl@Cle P,B® D

Ay By(PAly, @ Cly) By(P,B@®D)
= 0 P1A|X’ P\ B
G Dy(PrA|y, ® Cly,) Dy(P,B@ D)

A, P |y, P:B
=| o P4, PB
G Cly, D
Since P\B+P,B=B, C+C|y =Cly, + Cly, =C, Ay+ PA|y + P1A|y, =
Aly, + Aly, = A, then the matrix above is nothing else but the operator
T= (A B) from X ® U to X @ V, where X = X, @ X;. Thus, (I, ® T}) =

C D
(T ® Iy, )"'T. From the fact that T and T3 are unitary, we conclude that 7 is
unitary and the proof is complete. |

4. The Relation Between Cascade Decompositions of a Unitary System by its
Transfer Function and by its Invariant Subspace

Note that in the first case of decomposition, given a system with its transfer func-
tion 6(z) having a regular factorization 6(z) = 6,(z)8;(z), the intermediate space U,
is also given. In the second case of decomposition, given a system a with its sub-
space X, being invariant for 4, the intermediate space is not given, and we con-
struct this space as R = [X; @ V'] © T(X;). However, we can prove that these two
spaces U, and R are unitarily equivalent.

Theorem 4. Let o = (X, U, V, A, B, C, D) be a simple, unitary system constructed
according to the Nagy—Foias model. Assume the transfer function 0(z) of a has a
regular factorization 0(z) = 0,(2)6,(z), 0(z) € L(U, V), 0,{z) € LU, V), i=1,2,
U=U, V="V, U, =W, and assume X, is a subspace invariant for A. Then the
space U, is unitarily equivalent to the space R=[X, @ V]OT (X2) through an
operator defined as follows:

I': Uy — R,
Tu = (e7"(62(e") — 02(0))u, e *Ag(e™u) ® 0,(0)u.
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Proof. First, T is determined since we have

2] it — 6,00 A it
AZ( H(e )eit 2( )u, 2e(§ )u) + C0,0u

= ((62(€") — 02(0))u — B2, Ag(e™)u — Ayw)
+ (62(0)u — 02(€™)05(0)02(0)u, —Az(e™)05(0)02(0)u),

where

2n ity __ it
) IJ [e"@é‘(e”)(M)u+e"’A2(e"’)A2(.e )u]dt

27 Jo et

2n
- %JO [u — 65(e")02(0)u] dt = u — 65(0)6>(0)u.

From this, it follows that

A (Oz(ei’) —8:(0) Ag(e")

eit 2 elt

u) + C56,(0)u = 0.

Hence, I'u e R.
We show that T preserves the scalar-product. Indeed

Oa(e™) — 0,(0)  Bz(e™) — 6,(0) Hz)
Ly(V')

(F::I,l"ug):<

A it A eit
(P, ) (0, a0y
e Ly(Uh)

et . ot

elt

= —{B0a(e"u1, 02(0)u2) + <02(0)uy, 62(0)ur >
—{0,(0)u1, 02(e™M)uz) + <B2(0)ur, 02(0)uz) + ur, 1)

= {uy, up).

Next, we prove that I" is surjective.

Let (g, ¥, v) € R @ T'Uy; we will prove (¢, {,v) = 0.

Indeed, for any (g, ¥, v) € R, we have {(g, ¥, v),T'u)> = 0 for every u € U, if and
only if the conditions below are satisfied:

650+ Aoy € Ly (Uh), p € LE(V), Y € ALy (), (4.1)
430, ¥) + Cio =0, 42)
<¢, 9_29")‘3;;‘2@» + <|//, Aze(i‘f”) u> + <o, B(0)u> = 0. 4.3)

Condition (4.3) is equivalent to
<e" (O30 + Ao, u)y — <e"p, 02(0)u) + {v, 0,(0)u) = .
This implies
(o, uy — <e"9, 0,(0)u + <v, 02(0)u) = 0,
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where

1 2n )
wzﬂjo (030 + A di € Uy,

On the other hand, we have ¢ € L} (V), 6,(0)u € U,. Hence

<e"p, 0>(0)u) = 0.

Then condition (4.3) is equivalent to the condition (@ + 05(0)v, u) = 0 for every u
belonging to Us,. This implies w + 6;(0)v = 0.
Condition (4.2) is equivalent to
eo(e™) — By(e™)w + v — 0(e™)63(0)v = 0, (4.4)
e"Y(e™) — Ag(e™w — Ax(e™)85(0)v = 0.

From (4.4), it follows that
eple) + v = By(e")[w + 63(0)0] = 0.

Therefore, p(e*) = e~#v € L; (V). Since ¢ € LT (V'), we must have ¢ = 0 and hence,
v=0.
From (4.5), it follows that
ey = Ayfow + 65(0)v] = 0.

Hence, yy = 0.
We have already proved that R © T'U, = {0}, so we conclude I is surjective.
Concretely, we can determine

1 2n 1
I Yp, ¥, v) = 0 + 65(0)v, where & = %Jo e (050 + Ay dt.
Thus, T is unitary and this completes the proof. ]

‘Besides, U, and R are unitarily equivalent. We also observe that the operators
Ay, By, Cy, D, can be considered as the same in both cases of decompositions.
Indeed, since o = oy, then A; = A] x 2= C| x,- In the first case of decom-
position, we have

Byu = Px,(Tu), Dou = Py,(Tu), Bou+ Dyu =Tu,
while in the second case, we have
Bou = Py,u, Dou = Py,u, Bou+ Dou = u.

Once o, is constructed, oy is determined uniquely corresponding to o, from the
equality o = apa.
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