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Abstract. After recalling important historic steps, we give a survey of recent results on
separately analytic functions (and mappings) and related subjects.

1. Historical Preliminaries

Let D and G be open sets in C™ and C”, respectively. Given a complex function
f(z, w) on D x G, we note by f; the function w — f(z, w) for every fixed z € D,
and by f" the function z — f(z, w) for every fixed w e G. If f is continuous in
D x G and if f, and f¥ are analytic in G and D, respectively, for every fixed
(z, w) € D x G, then by Fubini’s theorem and Cauchy’s integral formula for poly-
discs, one sees easily that f is analytic in D x G. Osgood [33, 34] remarked in 1899
that the continuity of f is superfluous; it suffices that f is locally bounded in
D xG.

The first important step is Hartogs’ 1906 paper [16], where local boundedness
is dropped. The proof is based on the all important, so-called Hartogs lemma.
Another important result was performed by Bernstein.

Theorem 1. If f is a complex function on [—a, a] x [—b, b] such that
(1) Vx € [—a, 4], fx has an analytic continuation to the open ellipse E(b, S) of
focis +b and mean axis bS,
(i) Vy € [—b, b], f? has an analytic continuation to the open ellipse E(a, R) of
Jfocis +a and mean axis aR,
(iii) these separated continuations are uniformly bounded, then f has an analytic
continuation to the open set

\J E(a, R% x E(b, $'79).
0<o<1

This is the first result related to global analyticity of separately analytic func-
tions of real variables. Unfortunately, it was practically unknown for the past fifty
years. Now we know of it thanks to Akhiezer and Ronkin [1]. It has been redis-
covered by Cameron and Storvick [13] in a weaker form.
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1961 marked the appearance of Lelong’s work [24] on separate real analyticity.
Introducing new tools, in particular the Real Hartogs lemma, he proved the ana-
lyticity of separately real analytic functions of the classes Lp. This enabled him to
prove the harmonic analog of the Hartogs theorem. At the same time, motivated
by analyticity of some distribution kernels, Browder [10] also considered functions
of the same type and gave a weaker result which can be deduced from the Bern-
stein theorem. Naturally, he was unaware of this.

Another generalization of the Hartogs theorem was performed by Shimoda
[41] (1957) and Terada [45] (1967). Continuing Shimoda’s work [41], Terada has
considerably weakened an assumption in the Hartogs theorem: Instead of “f; is
analytic in G for every fixed z € D”, it suffices to assume this for every fixed z € E,
where E is nonpluripolar in each connected component of D. He showed also that
this assumption is optimal if E is a F,-set.

We now refer to the crucial works of Siciak and Zaharjuta. Unaware of the
Bernstein theorem, Siciak [42] gave in 1969 a more general version of this theorem
without any boundedness assumption. One year later he put his result in a general
context [43]; this is the well-known Siciak theorem. In 1976, Zahajuta [49] gener-
alized the Siciak theorem, resulting in the Siciak-Zaharjuta theorem. We need
some preliminaries for the statement of this theorem and other results.

For an open set D c C™ and E arbitrary subset of C”, we denote by
o( -, E, D) the upper regularized of

sup{u € PSH(D), u<1,u <0 on E n D}.

E is called locally pluriregular at a point z if w(z, E, V') = 0 for every open neigh-
borhood V of z. This property is equivalent to the local polynomial condition (L)
of Leja. We pose

&(-, E, Dy=limow(-, E, Dy),
where (D) is an increasing sequence of relatively compact open subsets of D such
that UD; = D (the second member is independent of the choice of (D;)).
1.1. The Siciak—Zaharjuta Theorem

Let D and G be pseudoconvex domains in C™ and C”, respectively, and E and F
compact subsets of D and G, respectively, each of them is locally pluriregular at
every of its points. Let f be a complex function on the crossed set

X=(ExGuU(DXF).
If f is separately analytic on X, i.e. f; (resp. f) is analytic in G (resp. D) for
every z € E (resp. w € F), then f has an analytic continuation to

X ={(z, w e D x G: 0(z, E, D) + o(w, F, G) < 1}.

Remark. The theorem is also true for connected Stein manifolds D and G. Siciak
gave the p-separate analyticity version with X = (D; x Ey X --- X Ep) U+ U
(Eq x - x E,_1 x D), where E; < D; = C.
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The present paper is divided into three parts:
» A general version of the Siciak—Zaharjuta theorem (and its direct consequences).
» Separate harmonicity and separate subharmonicity.
¢ Miscellaneous.

2. A General Version of the Siciak—Zaharjuta Theorem

Theorem 2. Let E =« D < C™, F < G = C", where E and F are nonpluripolar, and
D and G are open. Let f be a separately analytic function on X = (E x G) v
(D x F). Denote by E' the set of locally pluriregular points of E.

(1) If G is connected, then there exists a Sfunction f analytic in an open neighborhood
Q of E' x G such that f f on QX where E' is the set of locally pluriregular
points for E in D.

(ii) If D is pseudoconvex, then there exists a function f analytic in

X={(z,weDxG: @z E,D)+dWwF,G) <1}
such that f =f on X n X.

Indications for the Proof.

(i) Schiffman [38] proved this part by Siciak’s interpolation method.

(ii) We observe that without loss of generality, one can suppose the boundedness
of D and G (that implies w(-, E,D)=a&(-, E, D) and (-, F, G)=
@(-, F, G)). We need the followmg lemma: (ii) is true when E is ) -analytic
with w(z, E, D) instead of w(z, E’, D). This result is proved in [29] (see also
[30]) by series expansion with respect to a Bergman’s doubly orthogonal sys-
tem. Now we indicate how to do without the hypothesis “E is & -analytic”: it
suffices to use (i) and to observe that E’ is a Gj-set, so it is A -analytic and
non-pluripolar (Bedford and Taylor [8]), so @(-, E, D) = w(-, E', D).

Remark. Sadullaev [36] has sketched a proof of (ii) using tensor product of two
doubly orthogonal systems, with the assumption that D and G are pseudoconvex,
and that E and F are Borel sets.

Very recently, Alehyane [4] gave a proof of the theorem using only the method
of [29].

The theorem is probably true without the assumption “D (or G) is
pseudoconvex”’.

2.1. Direct Consequences

» Consequence of Part (i), [38, Corollary 3]. With the notations and hypothesis of
the theorem, if D\E is of Lebesgue measure 0, then there exists f analytic in
D x G such that f f almost everywhere.

o Consequence of Part (i), [38, Theorem 1]. Let Q be an open subset of R, G a
domain in C”*, and f(x, w) a complex function defined on Q x G such that f; is
analytic in G for every x e Q and f" is (real) analytic in Q for every ze F,
where F is a nonpluripolar subset of G. Then f is analytic in 2 x G.
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* Consequence of Part (ii). With the notations and hypothesis of the theorem, if
we suppose D is connected and &( -, F, G) = 0, then there exists f analytic in
D x G such that f = f on X.

Remark. The last result is proved in [52] for the case G = C”. The general case is
given by Zahajuta [49], however, the proof indicated by Zaharjuta cannot work; it
uses the local pluriregularity of compact sets E and F.

3. Separate Harmonicity and Separate Subharmonicity
3.1. Harmonic Analogs of the Siciak and Terada Theorems

Theorem 3. [50] Forj=1,2,..., p, let E; be a compact subset of R? satisfying the
local Harmonic polynomzal condition (H) at every of its points, and D; be a domain
in R? containing E;. If f is a separately harmonic function on

X:(Dlezx---pr)u---u(Elx~--><E,,_1><Dp),

then f has a harmonic continuation to

?
X = {(xl,...,xp)eDl X -+ X Dy Zw(xj, E;, D)) < 1}.

j=1

This result has been proved earlier [26] under strong assumptions. We recall
the following.

Definition of (H). E = R™ satisfies (H) at a point x, if, for every neighborhood V
of xo, every family & of harmonic polynomials of m real variables, verifying

sup{|f(x)|: feF} < 0,VxeVNE,
and every b > 1, there exists a neighborhood W of xo and a positive constant M
such that
|f(x)] < Mb Yxe W,V f e &

Very recently the author has given the following analog of the Terada theorem.

Theorem 4. [28] Let D be a domain in R™, E a subset of D satisfying (H) at some
point of D, and G an open subset of R™. If f(x, y) is a complex function in D x G
such that fs is harmonic in G for every x € E, and f¥ is harmonic in D for every
y € G, then f is harmonic in D x G.

We now give a result similar to Cor. 3 of Shiffman [37] (see 1.2. above).

Proposition 5. In the preceding theorem if we suppose that f” is harmonic in D Jor
almost all y € G, and f, is harmonic in G for every x € E = D, where E is non-
pluripolar as a subset of C™ = R™ + iR™, then there exists f harmonic in D x G
such that f = f almost everywhere.
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Proof. Let
h=|J{zeC™ ||z—x| < 27dist(x, aD)},
xeD
G=|){weC™ |w-y| <27dist(y, 3G)}.
yeG

Let F = G such that mes(G\F) = 0 and f” is harmonic in D for every y € F. Let
(Dy) be a sequence of subdomains of D such that D5 = Dsyy and Dy = D. For
s > 8o, E; = E n Dy is nonpluripolar in C™. We remark that it suffices to prove
that the conclusion is true for D; instead of D (s > sp). Let Dybea pseudoconvex
open connected neighborhood of D, (which is a connected polynomially convex
compact of C™) in D. For y € F (resp. x € Ey), f” (resp. fx) is analytically con-
tinuable to D; (resp. G), so we can define a function f separately analytic on X; =
(Dy x F) U (E x G) and equal to f on (D; x F)U(E x G). By Theorem 2(ii),
there exists f analytic in

X, ={(x, w) e D, x G: w(z, E;, Dy) + w(w, F, G) < 1}

and is equal to f on X, N X;. Following [15], F is locally pluriregular at every
pomt of G, thus, w(-, F, G) =0 in G. On the other side, o -, Es, D ) <1lin
D;, because E; is nonplunpolar in the domain D,. Thus, D; x G < X, f is real-
analytic in D; x G, andf f f on Dj xF(sof f ae. in Dy x G). Af
is real- analytic in D, x G and for every (x0, yo) € Dy % G, A\,j (x0, o) =

A f( -, yo)xo) +Afxu,- = A f( -, yo) + Ay f(vo, - )(yo) = 0. Because E; x F
is a uniqueness set for real-analytic functlons in Dy x G, we have Af = 0.

Remark. Following the proof we have f harmonic in D x G if F = G. This result
can be considered as an immediate consequence of the preceding theorem. In fact,
following [8], E is locally pluriregular at a point xo € E, so E verifies (H) at xo.
The converse is not true. One can find in [44] an example of a set E < R?, which is
pluripolar in C? and verifies (H).

3.2. Separate Subharmonicity

The following problem: “Let D and G be open sets in R™ and R”, respectively. Is

every separately subharmonic function in D x G subharmonic?” has been open

~until 1988, when Wiegerinck [47] gave a very simple counter-example.
Subharmonicity of separately subharmonic functions was first studied by

Lelong [24] and his student Avanissian [7]. They have given a positive answer

under the hypothesis that f is locally upper bounded. Arsove [6] assumed only that

f has a Ll majorant. More recent results of this kind are due to Riihentauss (53]

and Armitage and Gardiner [5]. Assumptions on the partial functions f; and f?

are also considered:

(i) f(x, y) is real-analytic and subharmonic in x, and harmonic in y [17] (this
result can be considered as an immediate consequence of [38, Theorem 1]
cited above in Sec. 2.1).

(ii) f(x, y)is C? and subharmonic in x and harmonic in y [22].
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We also cite a result of Cegrell and Sadullaev [14] used in [22].

Let By and B; be open balls in R” and R”, respectively and f a real function
defined in a neighborhood of B; X B,, subharmonic in x and harmonic in y. Then
there exist two closed sets with empty interiors E; = B; and E; = B, such that f
is subharmonic in (B; x By)\(E) x E,).

We end this paragraph by a result of Wiegerinck and Zeinstra [48].

Every separately (1, p)-subharmonic function in R” is subharmonic (0 < p < n).

We recall that a function f(x), ..., x,) defined in an open set Q € R” is called
separately (1, p)-subharmonic iff, for every fixed x?,..., xg_p, the function
S(x1,. .., xn) restricted to QN {x; = x7, j =i,..., in_p} is subharmonic.

4. Miscellaneous
4.1. Singular Sets of Separately Analytic Functions of Real Variables

For a function f(x, y) separately analytic in an open set Q of R” x RY, we pose

A(f) = {(x, y) e Q: f is analytic in a neighborhood of (x, y)},
S(f) = Q\A(f).
S(f) is called the singular set of f.

Theorem 6 (Saint Raymond-Siciak). Let S be a closed subset of an open set Q in
R™ x R", and S1 and S, the projection of S on R™ and R", respectively. Then S; and
Sy are pluripolar in C™ = R™ + iR™ and C" = R" + iR", respectively, if and only if
S is the singular set of a separately analytic function f(x, y) on Q (x € R™, y e R").

This theorem is from Siciak [55] who proved a more general version (see also
[51]). It has been first proved by Saint Raymond [54] for m = n = 1.

4.2. Separate Analyticity in Infinite Dimension

The Hartogs theorem was extended to separately analytic functions on complete
metrizable topological vector spaces (F-spaces) by Noverraz [32]. We give here an
extension of the Terada theorem.

Theorem 7. Let D and G be open subsets in F-space A and B, respectively, D con-
nected. Let E be a subset of D satisfying the local Polynomial Condition of Leja at
some point of D. If f: D x G — C is such that f; (resp. f”) is analytic in G (resp.
D) for every x € E (resp. y € G), then f is analytic in D x G.

In [27], the author proved this result with an additional assumption on f which
was dropped recently by Bui and Nguyen [12].
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4.3. Separately Analytic Mappings

Let X be a complex analytic space having the Hartogs Extension Property (HEP).
If f is an analytic mapping from

Hr)={(z,weChlzj<ror|w|>1-r},0<r<1,

into X, then f is the restriction to H(r) of an analytic mapping from the bidisc A?
into X.

Analogs of the Terada theorem for analytic mappings into X € (HEP) are
given by Shiffman [39]. Recently, Alehyane [2] has extended Theorem 2 to these
mappings: same statement, with a complex analytic space X € (HEP) instead of C.

4.4. Separately Meromorphic Functions and Mappings

Firstly, the meromorphic analog of the Hartogs theorem was given in the 1950s by
Rothstein [35] and Sakai [37]. In 1976, Kazarian [20] gave the analog of the Siciak
theorem, ten years after [21], the analog of the Siciak—Zaharjuta theorem. Recently,
Alehyane [3] has generalized Theorem 2 to meromorphic mappings into a complex
analytic space having the p-Meromorphic Extension Property (p-MEP) with
p = m + n: same statement with X € (p-MEP) instead of C.

We recall the definition: X e (p-MEP) signifies that every meromorphic map-
ping from

Hy(r) = {(z, ) e CP' x C: |z <rorg|>1-r},0<r<1

into X is the restriction of a meromorphic mapping from the polydisc A? into X.
Every compact Kihler manifold verifies (p-MEP) for p > 2 [18] (see also [31] for
similar results). In 1994, Shiffman [40] gave at Dolbeault’s colloquium various
results on separately meromorphic mappings into compact Kéhler manifolds.

4.5. Applications

Results on separately analytic functions have various applications in Partial Dif-
ferential Equations and Theoretical Physics (Feynman Integrals, “Edge of the
Wedge” theorem). For the 1960s, see the Introduction of [11]. Akhiezer and
Ronkin [1] gave an application to the “Fine End of the Wedge”. A more recent
application to the study of Anosov and geodesic flows is in [19].
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