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Abstract. Some rings characterized using projective modules are given. Our results generalize
several well-known results by Golan [3], Huynh and Smith [5], and Rangaswamy and
Vanaja [9].

1. Introduction

In their groundbreaking papers [8, 13], Miyashita, Wu and Jans introduced the
notions of a self-projective or quasi-projective cover. These generalized the classi-
cal concepts of a projective module and a projective cover. Since its introduction,
the study of quasi-projective modules and its generalization has been pursued with
some success (see [6, 9, 10, 11, 14] etc.). Those notions turned out to be important
tools in the ring and module theory nowadays. However, except for [3, 4], which
describes some rings in terms of quasi-projective modules and quasi-projective
covers, little results on characterizations of rings using quasi-projective modules
have been obtained. Now many well-known theorems about projective and self-
projective modules have been generalized by using weaker properties and an
interest has grown for those “‘projective properties”’, and there are a number of
well-known theorems which characterize rings in terms of those projectives (cf. [9,
10, 11, 14]). Our results concern the characterization of rings using the notion of
weakly projective modules which was introduced by Zoschinger [14].

Throughout, all rings considered have an identity and modules are unital left
modules. We will freely make use of the notation, terminology and results of [3, 4, 12].

Let M be an R-module. Recall that an R-module Q is called M-projective if,
given an epimorphism ¢ of M onto another R-module N, every homomorphism
f: O — N can be lifted to a homomorphism g: Q — M relative to ¢. Thus, an R-
module is projective if and only if it is M-projective for all R-module M, and M is
quasi-projective if and only if it is M-projective. M is called pseudo-projective [10]
if, for any epimorphism g: M — 4 and f: M — A, there exists # € End(M ) such
that f = gh.

Following [11], we call a module underprojective if, for homomorphism
g: M|[N — M|N, where N is a submodule of M, there exists a homomorphism



92 Dingguo Wang

g: M — M such that fh = hg, where h: M — M/N is the canonical map. We call

a module M weakly projective® if, for every pair (4, B) of submodules of M with

M = A + B, there exists an endomorphism f: M — M such that Im(f) < 4 and

Im(1 - f) = B. Obviously, quasi-projective modules are underprojective. Tugan-

baev [11, Lemma 2.1] proved that underprojective modules are weakly projective.

Clearly, direct summand of weakly projective modules is also weakly projective.
The following lemma is very useful in this paper.

Lemma 1.1. Let P be projective and P @ M weakly projective. If there is an epi-
morphism h: P — M, then M is projective.

Proof. 1t is clear by [14, Lemma 1.2]. [ ]

2. Characterizing Rings by Weakly Projective Modules

A ring R is left PP if each principal left ideal is projective. We denote by R, the
ring of n x n matrices over R. If M is an R-module, then M" is the product of n
copies of M.

First, we give two characterizations of left PP-rings by means of weakly
projective modules.

Proposition 2.1. The following are equivalent:
(1) Ris aleft PP-ring.
(2) For any r € R, R@ Rr is weakly projective.

Proof. (1)=(2) is trivial.
(2) =(1). Since there exists an epimorphism R — Rr, by Lemma 1.1, Rris
projective. |

A ring R is left (semi-)hereditary in case each (finitely generated) left ideal of R
is projective. It is well known that R is left (semi-)hereditary if and only if each
(finitely generated) submodule of a projective left R-module is projective. Golan [4]
proved that a ring is left (semi-) hereditary if and only if (finitely generated) sub-
modules of a projective left R-module are quasi-projective, if and only if principal
left ideals of End(F) are quasi-projective for any (finitely generated) free R-module
F. Here, we have the following.

Theorem 2.2. Let R be a ring. The following conditions are equivalent:

(1) R is left hereditary.

(2) Every submodule of a projective R-module is weakly projective.

(3) Every principal left ideal of End(F) is weakly projective for any free R-
module F.

Proof. The implication (1) = (2) is trivial.

*Zoschinger [14] called it Kostetig.
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(2) = (1). Let N be a submodule of a projective R-module P. Let F be a free
R-module with an epimorphism F — M. Then F @ N is a submodule of the pro-
jective R-module F ® M, so F @ N is weakly projective. Hence, N is projective
and R is hereditary.

(1) = (3). If R is left hereditary, then S is left PP by [1, Theorem 2.3}.

(3) = (1). If F is a free R-module with endomorphism ring S, then F?is a free
R-module with endomorphism ring S>. By (3), each principal left ideal of S, is
weakly projective, so S is left PP by Proposition 2.1 and R is left hereditary by
[1, Theorem 2.3]. |

An analogous result for semihereditary rings is the following.

Theorem 2.3. Let R be a ring. The following are equivalent:

(1) R is left semihereditary.

(2) Every finitely generated submodule of a (finitely generated) projective R-module
is weakly projective.

(3) Every finitely generated (principal) left ideal of R, is weakly projective for all
n>1

Using ideas of Huynh and Smith [5] and Liu [7], we can prove the following.

Theorem 2.4, Let R be a ring. The following statements are equivalent:

(1) R is left hereditary.

(2) There exists a cardinal ¢ such that every submodule of a projective left R-module
is the direct sum of a weakly projective module and a c-limited ES-module.

Proof. The implication (1) = (2) is trivial.
(2) = (1). Let M be a projective left R-module and N a submodule of M.
There exists an exact sequence as follows:

0—-K—P—>N-—>OQ,

where P is projective. Set L =N @ P. Then L is a submodule of the projective
left R-module M @ P.

Let {S,: @ € Q} denote a collection of representatives of the isomorphism
classes of simple left R-modules and let § = @y enSw- Let K be an index set with
|K| > ¢, and for each a € K, let T, = S, then define 7 = @yex Ty Let I be an
index set with || > |E(T)|. For each x in I, let L, = L, and F = @rLx. Since
L, is a submodule of the projective left R-module M @ P, we obtain that F is a
submodule of the projective left R-module @,c;M @ P. By assumption, there
exists a weakly projective module A and a c-limited ES-module B such that
F = A@® B. Note that Soc(B) is a direct sum of at most ¢ simple submodules of B;
it is clear that there exists a monomorphism f: Soc(B) — T. Thus, we obtain a
homomorphism g: B — E(T') such that g|s,p = f. Since B is an ES-module,
Soc(B) is an essential submodule of B, which implies that g is a monomorphism.
Thus, we have |B| < |E(T)|. For each b € B, there exists a finite subset I(b) of I
such that b € @yes(p)Lx- Let I' = UpepI (). If | B| is finite, then [ " is finite. Thus,
I’ < |E(T).
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Now suppose |B| is an infinite cardinal, then |I'| > |B| < |E(T)|. Set I" =
I —I'. From the construction of 7, it follows that || > |E(T)|, and thus, I” # 0.
Now, let G = @yepLy and H = @ycy7Ly. Then we have F=G@O® H = A ® B
and B < G. Thus, it follows by modularity that G=(4NG)®B. So F= A4 ®
B=(4nG)® B® H, which implies that 4 ~ (4" G) @ H. Since 4 is weakly
projective, it follows that H is weakly projective, too. Thus, L=N @ P = L, a
direct summand of H, is weakly projective. Hence, N is projective and thus, Ris a
left hereditary ring. |

Let R be a domain. R is called a Dedekind domain if R is a hereditary ring. We
have the following.

Proposition 2.5. Let R be a domain. The following statements are equivalent:

(1) R is a Dedekind domain.

(2) There exists a cardinal ¢ such that every submodule of a projective left R-module
is the direct sum of a weakly projective module and a c-limited ES-module.

Koehler [6] and Golan [4] characterized semisimple rings using quasi-projective
modules, and Tiwary and Pandeya [10] did so using pseudo-projectives. We can
use Lemma 1.1 to generalize some of their results.

Theorem 2.6. Let R be a ring. The following are equivalent:

(1) R is semisimple.

(2) Every (finitely generated) R-module is weakly Dprojective.

(3) Every 2-generated R-module is weakly projective.

(4) The class of all weakly projective modules is closed under finite direct sums.

(5) The direct sum of two quasi-projective R-modules is weakly projective.

(6) The class of all weakly projective modules is coincidental with the class of all
Dprojective modules.

(7) There exists a cardinal ¢ such that every R-module is the direct sum of a weakly
projective module and a c-limited ES-module.

Proof. The implication (1) = (2) = (3), (1) = (4) = (5), (1) = (6), and (1) =(7) are
trivial.

(3) =(1). Let I be a left ideal of R. Since R @ (R/I) is weakly projective, R/I is
projective. Therefore, I is a direct.summand of R, proving (1).

(5)=(1). If T is a simple R-module, then R @ T is weakly projective by (5)
and whence T is projective, hence R is semisimple by [13, 20.7].

(6) = (1). Since every simple R-module S is quasi-projective, S is weakly pro-
Jective. Then S is projective by (6). Thus R is semisimple.

(7) = (1). Suppose M is a simple left R-module. There exists an exact sequence
as follows:

0-K—-R—-M-—>0.

Set L=M @ R. Let {S,: w € Q} denote a collection of representatives of the
1somorphism classes of simple right R-modules and let S = @ ,,.S,,. Let K be an
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index set with |K| > ¢, and for each « € K, let T, = S and define 7 = @, Ty. Let
I be an index set with |I| > |E(T')|. Foreach xin I, let Ly = L, and F = @, 1Ly.
Analogous to the proof of Theorem 2.4, we can prove that L = M @ R is weakly
projective. Hence, M is projective, and thus, R is semisimple.

3. Characterizing Rings by Weakly Direct Projective Covers

Golan [3] proved that R is left (semi-)perfect if and only if every (finitely generated)
module has quasi-projective cover. Tiwary and Pandeya [10] introduced the concept
of pseudo-projective covers and characterizations of semisimple rings and perfect
rings using pseudo-projective modules and pseudo-projective covers.

For weak projectivity, we introduce the following concept.

Definition. We call an epimorphism f: Q — M a weakly projective cover of M if Q
is weakly projective and ker f is small in Q.

We can prove the following.

Lemma 3.1. Let P be a projective module and P ® M has a weakly projective cover.
If there is an epimorphism f: P — M, then M has a projective cover.

Proof. Suppose f: P@ M is an epimorphism and ¢g: Q — P @ M is the weakly
projective cover of P@ M, and ¢: P ® M — P is the projection map. Then there is
an exact sequence

0—g (M) — 0 P—0,
hence, Q = P® g ' (M). Letg' = glg_l (M). Then we have the exact sequence
0 — ker(g) — g~ (M) L M = 0.

Since ker(g) is small in Q, ker(g’) = ker(g) is small in g~!'(M). In order to prove
that g=': g7!(M) — M is a projective cover of M, it only needs to prove that
g~ (M) is a projective module.

Since P is projective, there is a homomorphism h: P — g~!(M) such that
f =g'h. Let x e g~'(M), since f is an epimorphism, there exists p € P such that
g(x) = g'(x) = f(p), hence g(h(p)) = g'(h(p)) = f(p) = g(x). Therefore, x € Im(h)+
ker(g). Thus, g~'(M) = Im(k) + ker(g). By the fact that ker(g) is small in g~ (M),
g~Y(M) = Im(h), i.e., h is an epimorphism. Because P @ g~ (M) =~ Q is weakly
projective, g—' (M) is projective. |

Proposition 3.2. The following conditions are equivalent for any ring R:
(1) R is semisimple.
(2) Every R-module with a projective cover is precisely weakly projective module.

Proof. Trivially, (1) implies (2).
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Assume (2). Let M be a weakly projective module. By assumption, M possesses
a projective cover P. Then P @ M will have a projective cover and hence is weakly
projective by hypothesis. Hence, M is projective. Since any simple R-module is
quasi-projective, it becomes projective. Thus, R is semisimple. |

It is well known that a ring R is left perfect if and only if every flat left R-
module is projective. The following two theorems characterize left (semi-)perfect
rings by means of weakly projective modules and weakly projective covers. These
results generalize several well-known results by Golan [3] and Rangaswamy and
Vanaja [9].

Theorem 3.3. The following conditions are equivalent for a ring R:

(1) R is left perfect.

(2) Every left R-module has a weakly projective cover.

(3) Every flat left R-module has a weakly projective cover.

(4) Every flat left R-module is weakly projective.

(5) A direct limit of quasi-projective R-modules is weakly projective.

(6) A direct limit of finitely generated quasi-projective R-module is weakly projective.

(7) There exists a cardinal ¢ such that every flat left R-module is the direct sum of a
weakly projective module and a c-limited ES-module.

Proof. The implications (1) = (2) = (3), (4) = (3), (1) = (7) and (5) => (6) are trivial.
The implication (1) = (5) is clear by [9, Theorem 6.1]. The implication (7) = (1) is
analogous to the proof of Theorem 2.4.

(3)=(1). By [2, Theorem 2.1], it is only to prove that every flat left R-module
M has a projective cover. Take a projective module P and an epimorphism P — M.
Since P @ M is flat, P @ M has a weakly projective cover, by hypothesis. Then
Lemma 3.1 implies that M has a projective cover.

(6) = (4). Since, by [12, 36.2], every flat R-module is a direct limit of finitely
generated projective R-modules, the implication is immediate. |

Corollary 3.4. If the direct limit of (finitely generated) left weakly projective R-
modules is also weakly projective, then R is left perfect.

Theorem 3.5. The following conditions are equivalent for a ring R:

(1) R is left semiperfect. .

(2) Every finitely generated left R-module has a weakly projective cover.
(3) Every 2-generated left R-module has a weakly projective cover.

Proof. The implications (1) = (2) = (3) are trivial.

(3)=(1). Let I be a left ideal of R, by hypothesis, R @ (R/I) has a weakly
projective cover. By Lemma 3.1, every cyclic R-module R/I has a projective cover,
thus R is left semiperfect. u

A ring R is called quasi-perfect, if every finitely generated flat R-module is pro-
jective. It is well known that rings and left Noetherian rings are all quasi-perfect
rings.
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Proposition 3.6. The following conditions are equivalent for a ring R:

(1) R is quasi-perfect.

(2) Every finitely generated flat R-module is weakly projective.

(3) Every finitely generated flat R-module has a weakly projective cover.

Proof. The implications (1) = (2) = (3) are trivial.

(3)=(1). Let M be a finitely generated flat R-module. Take a finitely gen-
erated projective R-module P and an epimorphism P — M. Since P@® M is also a
finitely generated R-module, by hypothesis, P @ M has a weakly projective cover,
hence, M has a projective cover by Lemma 3.1. Thus, R is quasi-perfect. |

Recall that a ring R is called semilocal in case R/J(R) is semisimple. An R-
module M is called J-semisimple if the Jacobson radical of M is zero.

Proposition 3.7. The following conditions are equivalent for a ring R:
(1) R is semilocal.

(2) Every J-semisimple R-module is weakly projective.

(3) Every finitely generated J-semisimple R-module is weakly projective.
(4) Every 2-generated, J-semisimple R-module is weakly projective.

Proof. The implications (1) = (2) = (3) = (4) are trivial.

(4)=(1). Let R’ = R/J(R). To prove that R’ is a semisimple ring, it needs
to prove that every simple R’-module S is projective. Since R’ and S are all J-
semisimple as R-modules and R’ @ S is 2-generated, by hypothesis, R’ ® S is
weakly projective as a R’-module. By Lemma 1.1, the simple R’-module S is pro-
jective. Thus, R’ is a semisimple ring, i.e., R is semilocal. [ ]

We conclude this paper with the following remark.

Remark. 1t is of interest to ask, whether Morita equivalence preserves weakly
projective modules. If this is true, using ideas of Golan [3] and [4], we can prove
the following results:

(1) R is a left PP-ring if and only if every principal left ideal of R, generated by a
diagonal matrix is weakly projective.

(2) R is a semisimple ring if and only if, for all n > 1, every cyclic R,-module is
weakly projective, if and only if there exists some n > 1 such that every cyclic
R,-module is weakly projective.

(3) R is left semiperfect if and only if for all natural numbers #, every cyclic left
R,-module has a weakly projective cover, where R, denotes the ring of alln x n
matrices over R, if and only if there exists a natural number » > 1 such that
every cyclic left R,-module has a weakly projective cover.
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