Vietnam Journal of Mathematics 25:3 (1997) 253-265
Vietnmam Journal

of

MATHEMATICS
© Springer-Verlag 1997

Lower Estimations for the Lyapunov Exponents of Linear Systems of
Differential Equations Perturbed by White Noise

Nguyen Dinh Cong
Institute for Dynamical Systems, University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

Received June 24, 1996

Abstract. The theory of Lyapunov exponents is a powerful tool in the qualitative theory of
differential equations. Investigation of the behavior of the Lyapunov exponents is an effec-
tive way to study the problem of conditional stability of linear systems of differential
equations. This paper deals with the behavior of the Lyapunov exponents of an arbitrary
linear non-autonomous system of differential equations under small non-degenerate ran-
dom perturbation. We obtain a lower estimation for Lyapunov exponents of a perturbed
stochastic system by a kind of central exponents of the initial deterministic system.

1. Introduction

Given a linear system of differential equations
%= A(1)x, (1)

where te R, xeR” and sup,.g|4(?)|| < const < +co, we shall consider its
random perturbation

m
dy = A(t)ydt+c»_ Bryd&(d), (2)
k=1
where &, (f) are mutually independent standard Wiener processes, d&y(¢) are white
noises on a probability space (Q2,IP) and o is a positive parameter. System (2) is
a system of Ito differential equations. In case the matrix By has only one non-
vanishing entry which is equal to 1 and is in (i,j) position we can interpret
0By d&(t) as a perturbation of coefficient a;(¢) of the system (1) by the white
noise d&;(¢) with intensity a.
Throughout this paper we will assume that the perturbation satisfies the fol-
lowing non-degeneracy condition.
There exist positive numbers pu, and p, such that for any vectors y, z € R”

m
2
w2 < DBy, 2)* < vl Nzl (E)
k=1
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The condition (E) means that (2) satisfies an elliptic condition.

Denote by X (z,7) and Y,(t,7;w) the Cauchy matrices of the systems (1) and
(2), respectively. We give here the definition of the Lyapunov exponents 1, central
exponents Qi and @ (k= 1,..., n) of (1) (cf. [5, 8, 10]).

Definition 1.1. The numbers Ax,Qu, O, k = 1,. .., n, defined by

Aki= min  max hmsup 1n||X(t 0)¢|l,
Rn—k+1CRn§eRn —k+1 —

) 1 m—1 .
Q= inf J lim sup—ZlnHX l)T,zT)IX(iT’(W_k+1 Il,

RMIcR" JTeRT motoo

] m=l
Or:= sup sup 11msup—~Zln||X iT,(i+1)T)
RFcR" TeR+ m—+o0 mT

|X i+1) Y,0)RK

where R’ denotes r-dimensional linear subspace in R", R, = R"\{0}, X),, denotes
the restriction of X to R, and are called Lyapunov exponents and central exponents

of (1).

If in Definition 1.1 we replace X(¢,7) by Y(¢,7;w), we shall get Lyapunov
exponents Ax (o, w) and central exponents Qi (g, @), ®(a, ) of the system (2). We
note that the Lyapunov exponents and the central exponents of (2) actually do not
depend on o (see [12]). So we will drop @ and denote by Ax(c) and Qi (), O(c)
the Lyapunov exponents and central exponents of (2), respectively.

Lyapunov exponents are introduced by Lyapunov [8] to investigate the stabil-
ity of the origin of linear systems of differential equations. They play an important
role in qualitative theory of differential equations. The central exponent Q; has
been introduced by Vinograd (see [4]). It is greater than the top Lyapunov expo-
nent 4; and is an indicator for stability of all systems in a neighborhood of (1). In
analogy with Vinograd’s central exponent ; Millionshchikov introduced central
exponents , k =1,..., n, for investigating Lyapunov exponents. Q; makes an
upper estimation for the Lyapunov exponent A, whereas ®; makes a lower esti-
mation. For more references on Lyapunov exponents and central exponents, we
refer to [11, 12].

This work deals with the problem of parameter dependence of Lyapunov expo-
nents of linear systems of stochastic differential equations. Although this problem
attracts attention of many researchers, not much progress has been made. Results
on the problem are concerned with particular classes of perturbations (see, e.g.,
[1-3, 13-15]). In a general set up, using his turning solution method Millionsh-
chikov [9] proved the continuity of A(c) provided (1) is absolutely regular. This
paper is based on the method of Millionshchikov [9].

For a non-degenerate n x n matrix X, we denote by d;(X) > --- > d,(X) its
singular numbers, i.e., the positive square roots of the eigenvalues of the matrix
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X*X. Clearly, for any k € {1,..., n}, we have
[RE] | Xx|

)= B e DT okt Tl 3
Fork=1,..., n, we put
er(X) =di(X) - dr(X).
It is easily seen that
T3 i T @
A4 i
dim span{x1 ...,xx }=k
where G, denotes the Gram’s volume of the vectors xi, ..., x, i.e.,
(x1,x1)  (x1,%2) -+ (X1,%)
Gr. oy — det (x2,x1)  (x2,x32) - (x2,X)
(X, %1) (X X2)  wo (ks Xk)
Furthermore, for any k € {i,..., n} and matrices X, ¥,
er(XY) < ex(X)er(Y). (5)

Definition 1.2. The numbers vy defined by

-1
Vk: _hmsuphmsup—ZIndk (X((E+ 1)T,iT)), k=1,...,n, (6)

T—+w §—+w©
are called auxiliary exponents of the system (1).

These exponents are introduced by Millionshchikov [9] for the investigation
of Lyapunov spectrum of linear systems of differential equations perturbed by
random noises.

Definition 1.3. The functions vi(a, T) defined by
vi(o, T):=limsupElndy(Y,((i + 1)T,iT;@)), k=1,...,n,

m——+00

where E&(w) denotes the expectation of the random variable {(w), are called
auxiliary functions of the systems (2).

2. Main Result

Theorem 2.1. For any ¢ > 0, there exists a positive number oy such that for all
o€ (0,1) and k = 1,..., n, the following inequalities hold

lk(a) >0 —e
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For the proof of this theorem we need the following two lemmas which are
proved in [5] and [6].

Lemma 2.2. There is a positive constant ¢ such that for any ¢ € (0,1), there exists
d(e) > 0 such that for all 6€(0,1), TeN and ke {l,...,n}, the following
inequalities hold

1. 60™
10k(0) — vie(o, T)| < cv/E — —In"2
T 2
1. 6™
|Qx() — vi(o, T)| < cv/e— Sl i
T 2
Lemma 2.3. For any 6 € (0,1) and k € {1,. .., n}, there exists the limit

vi(0):= Tl—ig—loo (o, T),

TeN

and the following equalities hold
Qi (0) = A(0) = Or(0) = (o).

Proof of Theorem 2.1. We fix an arbitrary ¢ € (0,1). From the definition of @, it
follows that there exists a k-dimensional subspace R¥ of IR” such that

—1

1
O, > sup hmsup—TZlnHX (T, (i+ 1)T)

ll_l >0, —=s
TeR* Mt miis

|X((i+l)T,0)R’1‘

By virtue of the property of the norm of operators we have the following
property of quasimonotonity:
Forany/eNand T e R*

1
lim supLZmuX iT,(i+ 1)T)

M ito0, |X((i+l)T,0)R’l‘
meN

-1
i

hmsupLZInHX iT, (i + 1)IT) I

M—r-00 |x i+1)IT 0) n"
meN

Consequently, there exists a natural number T € N such that

1

O > %iipLZlnnx T G+ DT I > @ — 2e.
meN
Hence, there exists an unbounded set .o/ = N such that
gl -
O > mli%o ;-;;lnIIX iTy, (i + I)T‘)lx«imﬂm“ >0 — 2.

By virtue of the boundedness of A(-), it follows that for any N e N, the following
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inequalities hold

O > —ZlnllX(le,(z 1)T1) 1™ > O — 2,

m—»+oo

lx ((+1)Ty o)nk
d(m,of) <N

where d(m, /) denotes the distance between the point 7 and the set </ in the real
axis. Consequently, for any N € N,

m—1

1 -1
lgirg —Zln“X(lNTl’(l+ I)NTl)lx( i+1)NT; O)R"||
dmvaen T i

-1

> lrlanJlrrgof —ZlnHX(tTl, i+ )T1)|X AR, |7 = O — 2e.
d(m,d)<N o=

By the definition of @, this implies that for any N € N, the following inequalities

hold

m—1

1 it
O > %iip ;n—N—XO: In|| X(iNTy, (i + DNTY)| A—_ |~
d(mN,#)<N 1
Jgac= 1
> lrlngitgéf n_d\l_z In|| X (iNTy, (i + I)NTl)lx((.-+1)~rl,omk |
d(mN,of) <N i=0 )
> O — 2e. (7)
We define a function b(-): N — R by
1 m—1
b(N):=liminf m——z Ine, (X ((i + 1)NT},iNTY)).
d(mN ) <N
From (5) and the boundedness of A(-), it follows that b(-) satisfies the condition
b(IN) < b(N) forall I, NeN. (8)

Set
by:= Alltgv b(N).

From (8), it follows that there exist a number N; € N and an unbounded set

/1 < & such that

82
by < b(Nl) <b+-—

8n3
and
m—1
ml_lg:lw 1TIZlnek(X (i+ 1)N1T,iN1Th))
d(le,ﬁl)SNl

. 1 A : .
= liminf Tglnek(X((z+1)N1T1,1N1T1)).

d(mN;,&) <N,
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Consequently,
: 1 . . g
bo<  lim —TIZlnek(X((z+l)NlTl,leTl))sbo—i-m. (9)
d(mN, ) <Ny i=0

Hence, by (5) and the definition of bg, for any M € N,

o 1 m—1 )
bO < lrlnIE-}-If}of WZlnek (l+1)MN1T1,lMN1T1))
d(mMN, ) < MN, i=0
1 m—1

—————) Inex(X((i + 1)MN,Ty,iMN, T,
m—+o0 mMNlTIZ_; ne(X((i + 1)MN,T1,iMN, Ty))
d(mMN) o)< MN, i=

2

&€
Sbo-i-m- (10)

Now we define a function 5’(-): N — R by
b'(N):= liminf —I—Zlnekl (X((i+1)NTy,iNTy)).

m—-+4c0
d(mN, ) <N =0

This function is an analogue of b(-). By (5) and the boundedness of 4(-), we have
b'(IN) <b'(N) forall /, NeN. (11)
Put
fo_: '
by:= Allnfl;b (NN7).

€

Then there exist a number N{ € N and an unbounded set &/, < &/; such that

2

8n3
and
1 m—1
l_lg_l WZIHGIC 1( ((l+1)N1N1T1,lN1N1T1))
d(mN{Ny,&2) <N{N, i=0
1 m—1
= lminf Wzmek 1(X((i + L)N{N, T}, iN| N\ T})).
d(mN Ny, dl)SN'
Consequently,
1 m—1
’ )
b()s ml—lg—loo le—NlTZlnek I(X(( +1)N1N1T1,1N1N1T1))

d(mN{Ny o) <N|N;
22

<bo+ 8n3°
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Hence, by (5) and the definition of by, for any M e N

1 m—1
/ 28
bos lrlng-}-]gof mMNl’Nllelnek 1( ((l+1)MN1N1Tl,1MN1N1T1))
d(mN{Ny a2} < MN{N i=0
1 m—1

< lim sup —Z
m—+o0 mMNllNlTl i—0
d(mN{Nl,dz)SMN{Nl

lnek_l(X((i+ I)MNIINl Tl,iMNllN]Tl))

2
< byt (12)
Now we set
= N|N;.

Denote by X, the set consisting of those half-intervals [iMN,Ti, (i + 1) MN,T;)
such that at least one of the following inequalities holds

1 M
1 iMN, T T,,iMN,T -
MNZTI; nex(X (iMN, Ty + sNoT1, iMN, Ty + (s — 1)N, T1))

1
" MN,T;

. &
In ex (X ((i + 1)MN2T1))] S,

1R _ !
| MN, T ;l“ek—l(X(’MNle + SN2 Ty, iMN, T} + (s — 1)N, Ty))

Inee1 (X((i + 1)MN2T1))‘ < %

1
~ MN,T,
From (8), (10), (11), and (12) and the choice of ./, = o/, it follows that for
any M € N the following inequality holds
z
T meas(Zy N (0,mMN,T)) <2

m—+o0 mMN, T, ™
d(mMNz,dz) <MN,

where meas denotes the Lebesgue measure on the real axis.
Put

fa:= S.uIE)E(”I—X((l‘-}-1)N2T1,iN2T1)Ya(iN2T1,(i+ )Nle, )”)
ie

It is easily seen that there exists a positive constant b; which depends on N,, T},
A(-) but not on ¢ such that

0< f; < bo.

Take a number #€(0,1) such that the inequalities |t— 1| <N,T; and
sin /(x, y) < # imply

X, Il < oxp (S22 )10 )
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We choose a natural number 3 < M; € N such that
M N,T;
6(bl'lsn)"3exp(————£ 142 1) > 2,

where the number & = () is defined as in Lemma 2.2, and the inequality M < M,
implies

(13)

6MN2T1)

M< exp( 23

Let o1 € (0, 1) be such that
a7 exp(eMi N, Ty) < 2. (14)

The number o, depends only on ¢ and on the system (1). Let ¢ € (0,0;) be arbi-
trary. We take a number S > M, N, T such that

s exp(eS) = 2. (15)

Let M, be the least natural number such that M>N,T > S. From (13), (14) and
(15), it follows that

éexp(-z—:_,;MzNle> <n, (16)

da™ exp(eMoN,T1) > 2. (17)
We introduce the notation
Xi = X((i + 1)MyN, T, iMyN, Th),
Xis = X(IMyN, Ty + sNoT1, iMaNo T, Xigpns = Xi,.H—lX,_s !
and similarly for Y,(¢, 1, w), for instance,
Yo i(@) = Yo((i + 1) MoN, T, iMoN, T ).

By the definition of the sets Xy, for [IMaN>Th, (i + 1)M2N,Ty) ¢ Zpy,, we have
the following inequalities

M,—1
£
< —
0< 35mT ZS — In ey (Xist1.) = MN N, meed) < g

1 wllll = 1
<g= =
0 MzNle ; Ine,_ 1 ts+1s) MoN>T; ——Ine_ I(X) 8

Denote by M, ; the set of those w € Q for which the following inequality holds

Z ”I A,1~Y+1S a'ts+1:( )” <ftr

s=0
By the definition of £, we have P(M,;) > 1 — &. We fix an arbitrary w € M,; and
set ¥ii= ||I — X,SHJY (@)|l. Then by (16) and the choice of M;, M,, we

g t,s+1,s



Lower Estimations for the Lyapunov Exponents 261

have
My—1 3e
Z Vi< foe ' My < n{exp( —E—MZNZTI)}MZ < nexp(—mMzNle).
s=0
(18)

Fix a number i such that [iM,N,Ty, (i + 1)M,N,Ty) ¢ Zy,. Denote by R¥ the
linear subspace spanned by k first eigenvectors (in order of decreasing eigenvalues)

of the matrix X;*X;. For each fixed s we fix an orthonormal basis x;s1, ..., Xisn
of IR” such that Xisk € X, Ri* k=1,...,n Let XI(JJ)rl , denote the matrlx repre-

sentatlon with respect to the bases x; ; and xis+1,; (J=1,..., k) of the restriction
to X;;R¥ of the map given in the standard basis of ]R" by the matrix X .
Clearly, for m<k,

em(Xifi?_l s) < em(AX,i,S+1,S)~

For m < k, by the definitions of Rk and X,s . and (5), we have

T x® T
H em(Xi,s+1,s) = eM< H Xz+s+1s> = em(Xj). (19)
5s=0 s=0
From the definition of the set X7, and the choice of the number i, it follows that
g M1
er(X;) = {exp( — WMzNle) } L[) ex(Xist1,5)- (20)

Let % be an arbitrary vector of R¥. We denote by 7, the sinus of the angle between
the vector y; = Y, (w)X and the subspace X; ;R¥, 7o = 0. Assume y, < 7 for s < 5.
It is easily seen that

Vorl < @1 t+ l//s+1a
where

P41 = sin /( Ya,i,s+1,s(w)ys, Xist1,5Ys) < Ks,
Yoy = SID L(Xist1,5Vs, Xi s RF).
Now we give an estimation for the number ¥ ;. Denote by x; the vector

Xisy1sxis) (I=1,..., k). From the definitions of x;/, X,(Q.n and e, (X), it fol-
lows that

le,...,xk ek( 1s+1 s)

Let u; be the vector such that u, 1 Xj ‘R and y, — ug € X,;Ri , and v, be the vector
such that v, J_XI_J,HR, and Xjsy15Vs— V€ X,H.R Then y, —H and ¢, =

Xfffilrv. g 4), we have
G-"J,.Hl,z.\“nxl----sxk 1) HUSHGIL...,K;;

GJ'J;-‘M.'[I---:I:.A.J( "u"”

€1 (X:'..\'-o—i,s‘) =

k
ool X sllen (X5, )
Vsllysll
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Therefore,

-1 k -1
Osi1 < Vs€ht1 (A,i,s+1,.r)”ys|| Q ”1Yi,s+1,sys“ {ek(‘Xt(.H)—l s)} .

From the way # was chosen, the assumption y, < #, and from (3), it follows that

_ k) eN>T
1 X ser, sl vl ™ = die(X %), )exp - =271 ).
8n

Hence, by the inequality ex.1(X) < ex(X)dk(X), we have y,, | < x; + gsy,, where

k £ eN| T,
gs = ek(*’Y!,s+1 s)dk( 15+1,S)[ek(Xt(S-3-1 s)dk(’Yz(sll s)] 1exP< 8,113 1) >1

(S=0, 1,..., Mz—l).
Hence, for s < § by (18}, (19) and (20), the choice of i and X,y,, we have

Vo1 < (Z K;) [1s

j=0
36 M1
snexp( o 3M2N2T1) I ex(Xisi1)de(Xisirs)
j=0

r eN> T,
[ek t.r-?-l,.r) ( ts+1s)] < 8n3 >

-1

M
< nexp( ——M2N2T1> 1 {er(Xisi1,) e (X, ,s+1,s)]_ ¥

My—1 ¢
< 17exp< — —MzNzT) < H ek ts+ls)) (ek(Xi))_z

Jj=0
€
Snexp(—mM2N2T1>exp< M2N2T1> =7.

using the property of 7, we get

This implies y; < 5. Consequently, y, < # for any se {0, 1,..., M, — 1}. Hence,

s Xis Y, pe1(@
1Y a(e)3l]. %" = H Xirtaysll | Yossers(@)ysl

—0 llsll | X s41,51sl
My—1
£ 1
> di(x™® )exp( o —NZTI) =
g Y 8n’ ”‘Yivs+1 S Yo‘ i1s+1,s(w) ”
> H di( ”Hs)exp( o 3N2T1>(1+lcs)—1

s=0

Zexp( sz MZNZTI) TT e, e (X2, 1

s=0 5s=0
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3e £
> {exp (—n exp (—8—n3-M2N2T1> — @MzNle) }ek(X,-)

M;—-1 (k) 1
x T lerr (X )

s=0
£ & i
> exp( —-1- WM2N2T1)L’/((1Y,') exp( - WMzNle) (er—1(X3)) y
P P - £ r
>expl| — mMzNle - WMzNz = WMzNle (X3)

&
> exp( — WM2N2T1>dk(AXi)-

Therefore, for x € I_{f.‘, [iMzNle, (i+ 1)MyN,T1) ¢ Zpy,, w € My, the following
inequality holds

- [
(AN E exp( - mMzNle)ark(X,.).

Hence, by (3), for [iMyN,T1, (i + 1)MaN,T1) ¢ Zpy,, 0 € M, ;, we have

€

dk(Ym,-(w)) > exp(—mMzNle)dk(X,-). (21)

Denote by y(w) the characteristic function of the set M,; in the space (Q,P).

From the definition of M, ;, it follows that 0 < Ey(w) < e. By virtue of (21) for
[iMzNle, (i + l)MzNle) ¢ Zu,,

1 1 £
- ] > 1 A=Ak
e B Toi@) > (g () - 555 (1 - (@)
Indi (Y, (w))
SO 7 A (22)
Since A(-), is bounded, there exists a number b, € R* such that for k € {1, ..., n}
Indi(Yoi(@))\?|
N ai| Yqi\0
il WA, <
{E( MyN,Ty ) } & ¥
1
‘MzNle lndk(Xi)‘ < b,

and the positive constant 5, does not depend on M,, N,, i, T; and o€ (0,1).
Consequently, the inequality (22) implies

1 1 &
- ¥ . e Indu(X) —-—)(1—
N T, P (Teil@) = (MzNle nd(X:) 2n3>(1 ?)

1 F
Aol 2 X7) i SRyt Ay 8 )
= M)N, T, ndi(Xi) — &b 2n3(1 &)~ by
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Hence, for [iMyN,Ty,(i + 1)MyN,2T1) ¢ Xy, we have

lndk()ai(w)) 1
g 1 i — s
MyN, Ty = M>N,Ti ndk(X) b3\/g (23)

where the positive constant b3 does not depend on M, N,, Ti, i, k and
age(0,1).
By the definition of M, o, o) and &/, the inequality (23) implies

vi(o, MoN,Ty)

=i Eln di( M)N, Ty, iM.
hmsupmMzNleZ n di( + 1)MyN, T, iMu N> T @)

m—+o
meN

> lim sup mMzNlezElndk 0,i(®))

m—+oco,meN
d(mM; Ny, o) < Mo N,

1 m—1
> imi —_— = Elnd,(Y,;
> il g 2 i d(Teo)
d(mMyNy,of2) < MyN, i
1 m—1
> im i _ Indi(X;) — MyN,Tb -2
i m—l»l-{l:ol,lrlnt;N mM,yN, T, ;(n k( ’) 2 3\/5) bae

d(mMyNy,ol2) < My N>

> limi Indy (X;) — bsv/z — 2bze.
2 it mMzNzT Z 04 {Xi) = bsvs = 2bs
d(mMzNz,dz)SMZNZ

Hence, by (7),
vk(a, M2N2T1) >0, —2¢— b3\/§ — 2bse.

By Lemmas 2.2 and 2.3 and (17), this implies that for any ¢ € (0,1), we have

3

1 do"
7)) — ——In—
Vk(O') > vk(o, M>N, 1) C\/;.‘ MoN, T, In 7
>0 — 26— byve—2be—cve—¢

= ®k - b4\/—8-7

where the constant b, does not depend on g, ¢ and k. Because ¢ is arbitrary, the
theorem is proved. u

Remark. By virtue of Lemma 2.3, the central exponent @, of the initial system (1)
gives a lower estimation also for central exponents Q (o) and @ (s) of the per-
turbed system (2).
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