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Abstract. We investigate the inventory control problem. Based on the specially structured
feasible set, we present an algorithm with polynomial complexity to solve it. The result can
be also applied to more general problems.

1. Introduction

This paper presents an algorithm for a non-convex optimization problem closely
concerning the inventory control system. Consider the dynamic inventory control
problem introduced in [1]. Our aim is to make a plan to stock a sort of goods in a
time interval partitioned into n subperiods [¢, 41](j = 1, 2,...,n), so that the
buying and carrying costs would be minimum. The mathematical model of the
problem is described as follows.

Minimize

n
flx,y) = (d4;signx; + ¢x; + Licjyj1) (1)

J=1

subject to

yisi=yi+x—-D; j=1,2,...,n (2)
XjZO, j:l,Z,...,n (3)
yj+120’ j=172a"'an (4)

where the constants
(i) 4; (=1, 2,..., n) denotes the fixed charge for received order in the period

[4, i),
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(ii) ¢ (j=1,2,...,n) the buying price of a unit of the goods in the period
[tj7 lti-H]:
(iii) I; (j =1, 2,..., n), the inventory carrying charge in the period 4, ti1],
(iv) D; >0 (j=1,2,..., n), the demand of the goods in the period 5, ti],
(V) »1, the quantity of the goods at the beginning of the planning time,
and the variables
(Vi) x; (j=1,2,..., n) denotes the received order of the goods in the period
(5, tj41],
(vii) yj41 (j =1, 2,..., n), the remain quantity at the end of the period [t;, £;,1].
It is clear that the objective function of the problem (1)—(4) is concave, so we
have a concave programming problem with linear constraints. In order to solve
the problem, Hadley and Whithin [1] applied a method of the dynamic program-
ming. Based on the study of the structure of the feasible set for the given problem,
we present an algorithm with polynomial complexity to solve it.

2. Background of the Algorithm

At first, the problem (1)~(4) is modified into a simpler form, which depends only
on the variables x;.
From condition (2), we obtain

J J
Yir1 =N +2xi_ZDi, j=12,... n
=1 i=1

Let

fi(x;) = 4;signx; + Cix, j=1,2,..., n.

Then the problem can be rewritten in the following equivalent form:

f(x) =Y f(x) — min (6)
Jj=1
subject to
Nox>d, i=1,2,...,n (7)
j=1
x>0, j=1,2,...,n (8)

Denote by € the set of all feasible solutions of the problem (6)—(8).
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It is clear that the function f(x) is still concave. Denote by Dy(4),4 > di the
polytope defined by the following system of inequalities:

i
XjZdi, i=1,2,....k—1,
=

k
Y x=4, 9)
j=1

0} wgleinyi2mm, ik

From condition (5), it follows that dy <d) < -+- < d,. Additionally, we
suppose that d) > 0. Now we study the properties of the polytope Di(4). It
is easy to see that x°=(4,0,...,0) is a vertex of Di(4). Further, if x=
(x1, X2,..., Xx) € Di(4), then x; > 0. The following lemma gives a way to calcu-
late the positive coordinates of any vertex of Dy(4) knowing its index set.

Lemma 1. Suppose x* = (xk,x%, ..., xF) is a vertex of the polytope Di(1) and
Jr={1,ji,j2,. -, Jg <k} (1 <j1 < --+ <Jg) is the index set of the positive
coordinates. Then

xllc = dJ'1-1
x}i I djz—l —dj -1

(10)
xz_l T dl'q—l i djq—l_l
X =A—dj1.

Proof. Since x* is a vertex of Di(4) and has g + 1 positive coordinates at indexes
1, ji,. .., jg it must strictly satisfy ¢ + 1 inequalities obtained from the system (9)
by eliminating the null coordinates of x* as follows:

x1 =>d;

xXx{>d

X1 = dj,_l
X1+ xj;, = d;,
x1 + xj, = dj 1
(11)

x1+x; = d]’z—l
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xX1+x, +x,+ -+, 2 d,

X1+ X+ X+ X, 2 gy

X1+ Xj +x,-2+---+qu > A

There are ¢ + 1 groups of inequalities in the system (11). The inequalities in each
group have completely similar left sides. Since0 <d) <dr < --- <d, and 1 > dy,
if x* satisfies strictly some of the inequalities in a group, then it must also strictly
satisfy the final inequality of the group. Since x* has exactly g + 1 positive coor-
dinates, x* must satisfy strictly ¢ + 1 final inequalities of all groups. It means x* is
the solution of the following system of equations:
X1 =dj_1
X1+ x; = d.l'z—l
(12)
X1+ X + X + ot = A

Solving the system (12) gives (10). The lemma is proved. ]

From the proof of Lemma 1, it is easy to see that each vertex of Dy(A) is
completely defined by the index set of its positive coordinates. Therefore, the
number of vertices of Dy (4) is 2¥~! and the one of the polytope Q is 27!,

Corollary 1. If x* = (xk,x%, ..., xF) is a vertex of Dy(4), then
() T Xk =4,

(ii) x,lcc =0or ,\'f =A- dk—l-
Proof. Indeed, it is clear that (i) follows directly from the final equality of system
(12) and (ii) follows from the final equality of (10). [ ]

Now let

Pi(2) = min{ge(x) = fi(x1) + 2(32) + -+~ + fiulxi) : x € De(A)},
Azdy; k=12,...,n

Lemma 2.
P1(2) = fi(4), (13)
Pr(A) = min{Pe_1(4) + f(0), Pr_1(di—1) + fi(A — d_1)},
k=23,...,n (14)

Proof. Equality (13) follows directly from the definition of the function P, (A).
Suppose k& > 1. Since gi(x) is concave, its minimum value is attained at some
vertex of Di(4). On the other hand, by Corollary 1, the kth coordinate of which-
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ever vertex of Dy(A) must be 0 or A —dy_1. So

Pi(2) = min{min{gi(x): x € Dx(4), xx = 0},
min{gk(x): X € Dk(l),xk =Ai- dk—l}}-

Since
min{gy(x): x € D(4), xx = 0}
= min{ fi(x1) + - - +fi-1(xk-1) +fe(0): x € D1 (2)}
= Pr-1(4) +i(0),
and

min{g(x): x € Dg(A), Xk = A — di—1}
= min{fi(x1) + - -+ + fee1 (Xk—1) +fe(A — di—1): x € Die_1(die-1)}
= Pr_1(dr—1) + fi(A — di-1),
the equality (14) holds. The proof is complete. n

Lemma 2 suggests the development of an algorithm for solving the problem
(6)—(8). We now turn to the description of the algorithm.

3. Algorithm

It is clear that the problem is equivalent to the following:
Calculate

P,(dy) = min{ f(x): x € Q = Dy(dn)}.
Taking into account Lemma 2, we can rewrite the expression (14) as follows:
Pi() = min{ fi(4) +£2(0) +£(0) + - - - + /i(0),
Pi(dy) +f2(A—d) + £5(0) + - -- + £&(0),

P,-_l(d,'_1) +fi(}» - di—l) +ﬁ'+1(0) T +fk(0),

Pi_1(dk=1) + fi(A — de-1) }

Hence, Pi(4) would be obtained if Pi(d;),i=1,2,...,k—1 had already been
done. Thus, to calculate P,(d,), we should calculate Py(dy), k=1,2,...,n sub-
sequently. Then, to find the solution x* of the problem (6)—(8), by using Lemma 1,
we only need saving the maximum index ji of the positive coordinates of the
solution for each problem Py (dy), respectively.
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Algorithm 1.
Initial step. Calculate

fi=£0),i=2,3,...,n
Ji =f0) +fir1(0) +---+£(0), 2<i<j<n.

Step 1. Let Pi(d)) = fi(d;) and j; = 1.
Step k =2,3, ..., n Calculate

Fix = fi(dk) + fax,
Fyi = Pi(d1) + fo(de — di) + fax,

Fy = Piy(di1) + fildk — di1) + fiv s

Fe = Pr_1(dk—1) + fie(dre — di—1).
Let
Pi(dy) =min{Fg:i=1,2,...,k}; je=argmin{Fy:i=1,2,...,k}.
At the end of the algorithm, we obtain P,(d,), the optimal value of the objec-

tive function (6), and a sequence of indices ji, ja, ..., j,. To determine the optimal
solution x* = (x},x3,...,x}), we use the following:

Procedure ¢.

Step 1. Let k =n,dy = 0.

Step 2. Let

X' =0, jetl<j<k,
x;; = dk o cz’,—k_l.
Step 3. If k = 1, then stop. Otherwise, let k = jx — 1 and return to Step 2.
Theorem. The algorithm provides the exact solution to the problem (6)-(8) and has
the computational complexity O(n?).

Proof. By Lemma 2, the algorithm must be exact. It is evident that the initial step
requires O(n?) operations. Besides, since every other step requires O(n) opera-
tions, the algorithm has the computational complexity O(n?).

The proof is complete. [ |

4. Combinatorial Problem on the Extremal Points of Polytope Q

Let F(x) be a separable function of the following form:

F(x) = fi(x1) %1 o(x2) %2 .. *net fu(%n), X = (x1, X2, ..., xn) € Q, (15)
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where %1, *,,..., *,_1, denotes an ordered sequence of additions, multiplications
or exponents, and fi(xx) =0,k =1, ..., n.

Consider the following optimization problem:
Minimize F(x), subjectto xe V(Q), (16)

where ¥ (Q) denotes the vertex set of Q.
Let

Fr(x) = fi(x1) *1 fa(x2) *2 ... 1 fr(xk), k=1,2,...,n, xe& Dp(d).

It is easy to see that F(x) = F,(x) and the functions Fi(x) satisfy the following
property:
min{F(x): x € Dg(4), xx = const}

= min{Fk_l(x): X € Dk_l(}u — xk)} *k_lfk(xk).
Therefore, based on the structure of the polytope Di(4), we can modify Algorithm
1 to solve the problem (16).

Algorithm 2.

Step 1. Let p1(di) = fi(dh), 1 = 1.
Step k = 2, ..., n. Calculate

F]k :fl(dk) *1 f2(0) *2 fé(O) X3 ... Kk fk(O),
Foe = p1(d1) *1 fo(de — d1) *2 f3(0) *3 ... xic-1 fie(0),

Fiu = pio1(di1) *io1 fildk — diz1) *i fiy1(0) *iqq .. . *x—1 f2(0),

Fie = pre—1(die—1) *x-1 fie(dr).

Let
Pk(dk) = rnin{l"}k: i= 1, 2,..., k}

and
Je=argmin{Fy:i=1,2,..., k}.

In order to find the optimal solution x*, we can use the procedure ¢.
Remark. If F(x) is a concave function satisfying (15), then the problem
min{F(x): x € Q}
can be reduced to the problem (16) and, therefore, solved by Algorithm 2.
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