Vietnam Journal of Mathematics 25:3 (1997) 267-269

vietnam Journal of MATHEMATICS © Springer-Verlag 1997

Short Communication

On a Characterization of Two-Sided Exponential Distribution and Its Stability

Tran Kim Thanh Department of Mathematics, College of Sciences, University of Hue Hue, Vietnam

> Received February 22, 1996 Revised September 16, 1996

Let $X_1, X_2,...$ be independent identically distributed random variables with $F(x) = P(X_j < x), \ \varphi(t) = Ee^{itX_j}, \ \mu = E|X_j| < +\infty$ and let N be independent of $X_i, \ j = 1, 2,...$ with geometric distribution, i.e.,

$$P(N = k) = pq^{k-1}, \quad k = 1, 2, \dots \ (0$$

The random variable $Z = X_1 + \cdots + X_N$ is called the geometric compounding of X_i 's.

The notation $G_{\alpha}(x)$ means $P(\alpha Z < x)$ and $\varphi_{\alpha Z}(t)$ means $Ee^{it\alpha Z}$. $\hat{F}_0(x)$ and $\hat{\varphi}_{\alpha Z}$ will denote the distribution function and the characteristic function, respectively, of the two-sided exponential distribution.

Characterization problems of the distributions and their stability have attracted much attention. Results of this nature may be found in [1, 3, 5, 6]. In [5], Renyi characterized the exponential distribution proving the following two assertions:

(a) $\lim_{x \to 0} G_p(x) = 1 - e^{-x}$.

(b) $G_p(x) = F(x) \Leftrightarrow F(x) = 1 - e^{-x}$ (with $X_j > 0$).

In [6], we estimated the stable degree of this theorem with the following metrics

$$\begin{split} \lambda(F_1;F_2) &= \min_{T>0} \max \left\{ \max_{|t| \leq T} \frac{1}{2} |\varphi_1(t) - \varphi_2(t)|; \frac{1}{T} \right\},\\ \rho(F_1;F_2) &= \sup_x |F_1(x) - F_2(x)| \end{split}$$

for two distribution functions $F_1(x)$, $F_2(x)$ and characteristic functions $\varphi_1(t)$, $\varphi_2(t)$.

This paper presents some results concerning a characterization of two-sided exponential distribution and its stability. First, we get the following characteristic theorem.

Theorem 1. Under the stated assumptions, a necessary and sufficient condition for \sqrt{pZ} having a two-sided exponential distribution is that X_j , j = 1, 2, ... have a two-sided exponential distribution, i.e.,

$$G_{\sqrt{p}}(x) = \hat{F}_0(x) \Leftrightarrow F(x) = \hat{F}_0(x)$$
.

This theorem can be proved by considering characteristic functions.

The stability of Theorem 1 will be considered with the metrics λ and ρ mentioned above and divided in two cases, when

(a) F(x) is an ε -two-sided exponential distribution function, in the sense that $\exists T(\varepsilon) > 0, T(\varepsilon) \to +\infty$ when $\varepsilon \to 0$, such that

$$|\varphi(t) - \hat{\varphi}_0(t)| \le \varepsilon, \quad \forall t \colon |t| \le T(\varepsilon), \tag{1a}$$

(b) $G_{\sqrt{p}}(x)$ is an ε -two-sided exponential distribution function, in the sense that $\exists T(\varepsilon) > 0, \ T(\varepsilon) \to +\infty$ when $\varepsilon \to 0$, such that

$$|\varphi_{\sqrt{p}Z}(t) - \hat{\varphi}_0(t)| \le \varepsilon, \quad \forall t \colon |t| \le T(\varepsilon) \,. \tag{1b}$$

Further, we establish some lemmas.

Lemma 1. For an arbitrary number α , we have the following inequalities

$$\mu_{\alpha} z = E|\alpha Z| < +\infty , \qquad (2)$$

$$|\varphi(t) - 1| \le \mu |t|, \quad \forall t \in \mathbb{R},$$
(3)

$$|\varphi_{\alpha Z}(t) - 1| \le \mu_{\alpha Z}|t|, \quad \forall t \in R.$$
(4)

Lemma 2. If

$$|\varphi(t) - \hat{\varphi}_0(t)| < \varepsilon, \quad \forall t \colon |t| \le T$$
(5)

(with some T > 0), then we have

$$|\varphi_{\sqrt{p}Z}(t) - \hat{\varphi}_0(t)| < \frac{\varepsilon}{p}, \quad \forall t \colon |t| \le \frac{1}{\sqrt{p}} T.$$
 (6)

Lemma 3. If

$$|\varphi_{\sqrt{p}Z}(t) - \hat{\varphi}_0(t)| < \varepsilon, \quad \forall t \colon |t| \le T$$
(7)

(with $0 < \varepsilon < p/q$ and some T > 0), then we have

$$|\varphi(t) - \hat{\varphi}_0(t)| < \frac{\varepsilon}{p - q\varepsilon}, \quad \forall t \colon |t| \le \sqrt{p} T.$$
(8)

Considering the stability of Theorem 1(a), we get the following two theorems.

Theorem 2. Assume that F(x) is an ε -two-sided exponetial distribution function. Then we have

$$\lambda(G_{\sqrt{p}}; \hat{F}_0) \le \max\left\{\frac{\varepsilon}{2p}; \frac{\sqrt{p}}{T(\varepsilon)}\right\},\tag{9}$$

where $T(\varepsilon)$ is number mentioned in (1a).

Theorem 3. Assume that F(x) is an ε -two-sided exponential distribution function with the number $T(\varepsilon)$ in (1a) satisfying condition $T(\varepsilon) = O(\varepsilon^{-\alpha})$ for some $\alpha > 0$ when $\varepsilon \to 0$. Then

$$\rho(G_{\sqrt{\rho}}; \hat{F}_0) \le K_1 \varepsilon^{\alpha} - K_2 \varepsilon . \ln \varepsilon \,, \tag{10}$$

where $K_1 > 0$, $K_2 > 0$ are constants independent of ε .

These theorems follow from applying Lemmas 1 and 2.

Considering the stability of Theorem 1(b), we get the following two theorems:

Theorem 4. Assume $G_{\sqrt{p}}(x)$ is an ε -two-sided exponential distribution function with $0 < \varepsilon < p/q$. Then we have

$$\lambda(F; \hat{F}_0) \le \max\left\{\frac{\varepsilon}{2(p-q\varepsilon)}; \frac{1}{\sqrt{p} T(\varepsilon)}\right\},\tag{11}$$

where $T(\varepsilon)$ is a number mentioned in (1b).

Theorem 5. Assume $G_{\sqrt{p}}(x)$ is an ε -two-sided exponential distribution function with the number $T(\varepsilon)$ in (1b) satisfying condition $T(\varepsilon) = O(\varepsilon^{-\alpha})$ for some $\alpha > 0$ (when $\varepsilon \to 0$). Then

$$\rho(F; \hat{F}_0) \le H_1 \varepsilon^{\alpha} - H_2 \varepsilon \ln \varepsilon, \qquad (12)$$

where $H_1 > 0$, $H_2 > 0$ are some constants independent of ε .

The proofs of Theorems 4 and 5 are based on Lemmas 1 and 3.

References

- 1. Nguyen Huu Bao, On the stability of the characterization of the composed random variables, *Vietnam J. Math.* 24(1) (1996) 105-108.
- 2. C. G. Eseen, Fourier analysis of distribution functions, Acta Math. 77 (1945) 1-124.
- 3. A. M. Kagan, Yu. V. Linnik, and C. R. Rao, Characterization Problems of Mathematical Statistics, Nauka, Moscow, 1972, Russian.
- 4. A. Kovats, On bivariate geometric compounding, Proc. 5th Pannonian Symp. Math. Stat., Visegrad, Hungary, 1985.
- 5. A. Renyi, A characterization of the Poisson process, Int. Koz., 1 (1956), 519-527 (Hungarian); Selected Papers of Alfred Renyi, Vol. 1, Akademiai Kiado, Budapest, 1976, English.
- 6. Tran Kim Thanh and Nguyen Van Bao, On the geometric composed variable and the estimate of the stable degree of the Renyi's characteristic theorem, *Acta Math. Vietnam*, to appear.