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Let X1, X2,... be independent identically distributed random variables with
F(x) : P(xj <x), p(t)- Eei'Xr, p:Elxil < + - and let N be independent of
Xi, i : 1,2,... with geometric distribution, i.e.,

P ( N  :  k )  :  p q k - ' ,  k  :  1 , 2 , . . .  ( 0  <  p  < l ;  q  :  |  -  p ) .

The random variable Z : Xr +...+ Xiv is called the geometric compounding
of Xr''s.

'ihe notation G,(x) means P(aZ < x) and goQ) means Eeitdz. Fs.;r) and Qg
will denote the distribution function and the characteristic function, respectively,
of the two-sided exponential distribution.

Characteization problems of the distributions and their stability have
attracted much attention. Results of this nature may be found in [], 3, 5, 6]. In

[5], Renyi characterized the exponential distribution proving the following two
assertions:
(a)  

ISGo(x) : r -e- ' .
(b) Gr(x) : r(x) <+ r(x) : | - e-'(with X; > 0).

In [6], we estimated the stable degree of this theorem with the following
metrics

)"(F1;F2): p,t.*{ilg+ }lvrtl 
- rrtU,*} ,

P(Fr; Fz) : suP lFr (x) - rz(r)l

for two distribution functions F1@), F2(x) and characteristic functions q1$), 92Q).
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This paper presents some results concerning a characterization of two-sided
exponential distribution and its stability. First, we get the following characteristic
theorem.

Theorem l. Under the stuted assumptions, a necessary and sufficient condition for
JpZhauingatwo-sidedexponent ialdistr ibut ionisthatXl, j : l ,2, . . .haueatwo-
sided exponential distribution, i. e.,

c6@):4( " )  <+  F(x )  :  Fo( " ) .

This theorem can be proved by considering characteristic functions.
The stability of Theorem 1 will be considered with the metrics )," and, p men-

tioned above and divided in two cases, when
(a) f(x) is an e-two-sided exponential distribution function, in the sense that

3Z(e) > 0, Z(e) + *oo when e -* 0, such that

le@ -,00(t) l  < e, vtt Vl < r(e), ( la )

(b) G6@) is an e-two-sided exponential distribution function, in the sense that
3Z(e) > 0, Z(e) + f co when e -- 0, such that

lw6pzQ) -'do1)l < e, vt: Vl < r@) '

Further, we establish some lemmas.

Lemma l. For an arbitrary number u, we haue the following inequalities

poz :  E laZ l  (  *oo ,

l q ( t )  -  r l  <  p l t l ,  V /  e  R ,

lq ,z \ )  -  l l  <  poz l t l ,  V /€R.

Lemna2.If

lq( t )  - ,00U)l  < ' ,  vt t  Vl  < r
(with some T > 0), then we haue

(2)

(3)

(4)

( lb )

(8)

lv6z|) - o.o4l. 
;, 

v/: lt l  <

Lemna3.If

lv6zU) - '00(t) l  < e, vt: Vl < T

(with 0 < e < plq and some T > 0), then we haue

lq(t) -,00U)l < :=, vr: lr l < \/FT .p - q e

(s)

(6)

(7)

Considering the stability of Theorem l(a), we get the following two theorems.
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Theorem 2. Assume that F(x) is an e-two-sifud exponetial distribution function.
Then we haue

i(G6;Fo) < max{ +,ffi}, (e)
where T(e) is number mentioned in ( la).

Theorem 3. Assume that F(x) is an e-two-sided exponential distribution function
with the number T(l in (1a) satisfying condition z(e): o(u-") for some u>0

when e -+ 0. Then

P(G,lp;Fo) < Ktu" - K2e.lne, (10)

where K1 > 0, Kz > 0 are constants independent of e-

These theorems follow from applying Lemmas I and 2.
Considering the stability of Theorem l(b), we get the following two theorems:

Theorem 4. Assume e pQ) is an e-two-sided exponential distribution function with

0 < e < plq. Then we haue

),(F:Fo\.  -"*{  ==:-- ' -=l^ } .  ( l l )' \ '  ' ^u ' '  l z (p  -  qe) '  JFT(e)  ) '

where T(e) is a number mentioned in ( Ib).

Theorem 5. Assume G^n(x) is an e-two-sided exponential distibution function with

the number T(e) in (1b') satisfying condition T(e) : O("-") for some a > 0 (when

e --.0). Then

p@; Fo) 3 Hr eo - H2elne , (12)

where H1 ) 0, Hz > 0 are some constants independent of e-

The proofs of Theorems 4 and 5 are based on Lemmas I and 3.
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