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Abstract. The main aim of this paper is to prove that a Frechet space E has a continuous
norm (resp., E has the property (DN)) if and only if M(X, E) = M,,(X, E) holds for every
open subset (resp., L-regular compact set) X of C”".

1. Introduction

Let X be a subset of C” and E a sequentially complete locally convex space. A
function f* defined and holomorphic on a dense open subset X, of X with values in
E is called meromorphic on X if it can be extended to a meromorphic function on
a neighborhood of X in C”. In the case where this holds for x*f with every
x* e E*, the dual space of E, we say that f is weakly meromorphic on X. Write
M(X,E) and M, (X,E) for vector spaces of meromorphic and weakly mero-
morphic functions on X with values in E, respectively. The main aim of the pres-
ent paper is to find necessary and sufficient conditions for which

M(X,E) = M,(X,E). (%)

The case where E is a Banach space and X is either open or compact, the
equality has been proved in [3].

By applying this results in Sec. 2, we show that (x) holds for every open set X
in C" if and only if E has a continuous norm. The case where X is compact in C”
will be investigated in Sec. 3. We will prove that () holds for every L-regular
compact set X < C" if and only if E has the property (DN).

Finally, in Sec. 4, we prove that every analytic function on an open set X = C”*
with values in a Frechet space E having the property (DN), can be weakly analyti-
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cally extended to D. An open set in C” containing X is also analytically extended
to D. The case where E* is a Baire space, the result has been established by
Ligocka and Siciak [8].

2. Existence of a Continuous Norm on a Frechet Space

In this section, we give a necessary and sufficient condition for the existence of a
continuous norm on a Frechet space.

Theorem 1. Let E be a Frechet space. Then E has a continuous norm if and only if
M(X,E) = M, (X,E) for every open subset X of C".

Proof. Necessity:

(i) For n =1, the theorem has been proved in [4].

(if) General case n > 1. Assume E has a continuous norm. Choose an increasing
fundamental system {|| - ||, }7-, of continuous semi-norms on E. Without loss
of generality, we may assume || - ||; is a norm. For each k > 1, by E; we
denote the canonical Banach space associated to || - ||, and wy : E — Ej the
canonical map. Let f € M, (X, E). By [3], we have

fe=wrfe M(X,E) fork>1.
As in the case n = 1, first we check that

P(fr)=P(fi) fork>1.
For each k > 1, put

Zy={LeCP"":n" (L)n P(fi) #n (L) n X},

where 7 : C"\{0} — CP"~! is the canonical map.
It is easy to see that Z is dense and open in CP"~! for k > 1 and by (i)

(L) P(fi) =7 (L) nP(fy) for every L e Z; and every k > 1.

Hence, 77! (Z;) n P(f;) is dense and open in P(f;) for k, j > 1.
By the Baire theorem, this yields that

k=1 k>1

n~YZ) N P(ff) = ﬂ_l( N (Zk)> N P(f) = () (=7 (Zk) 0 P(f)))
is dense in P(f;) for j > 1, where Z = () Z.
Since k=1
7N (Z)mP(f) =7 (2) A P(f) forj>1,
we have
P(fj) = (=1 (Z) 0 P(fj)) = (x(Z) n P(f1)) = P(fi) forj=1.

It remains to prove the meromorphicity of f at every z € P(f1).
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First, consider the case where zo € RP(f1), the regular locus of P(f;). We may
assume zo = 0. Choose a neighborhood U of zy of the form U = A", such that
UnP(fi) = A" x 0, where A={zeC:|z| <1}. Since f is holomorphic on
U\P(f1) = A" ! x A*, A* = A\{0} we can write the Laurent expansion

+00

f(@,z) = Z aj(z')z, forz=(z',2,) e A"! x A*,

j=—o0

where a;(z') are holomorphic functions on 5 i
+oo

Since fi (2, 22) = @1/(2/,25) = 3. 1(a)(z'))2), hence,
J=—00
wy(a;j(z")) =0 forj<n;.
By the injectivity of w; we have

aj(z'y =0 forj<m.

This means that f is meromorphic at zg. Since codim S(P(f)) > 2, where S(P(f))
is the singular locus of f, and by the Remmert-Stein theorem [10], f can be
meromorphically extended to X.

Sufficiency. See [4].

3. Existence of a (DN)-Norm on a Frechet Space

To give a characterization of Frechet spaces having the property (DN), we recall
the following.

Let {||-|l,}e, be a fundamental system of continuous semi-norms of a
Frechet space E. For each subset B of E, consider the general semi-norm

|1l : E* = [0, +c0]
given by .
llul|p = {sup |u(x)| : x € B}.
Write || - ||; for B= Uy = {x€ E : ||x]|; < 1}.
We say that E has the property (DN) if and only if
P>1¥g>1¥d>03k>1, C>0:|x|;* < Clx| x| forxe E (DN)

Obviously, || - ||, is 2 norm and we call it a (DN)-norm.
We say that E has the property (Q) if and only if

Vp>13¢>13d>0Vk>1,3C>0: |y|l;'* < CllylzIyl;? for y e E*. (Q)

The properties (DN), (Q) and others were introduced and investigated by Vogt
(see [13, 14, 15, etc.]). In [15], Vogt has proved that a Frechet space E has the
property (DN) if and only if every continuous linear map T : 41(a) — E is
bounded on a neighborhood of 0 € 4;(«) for some exponent sequence = (ay),
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where

Ai{e) = {(éj) e C”® :Zlfjlr“f <o Vrl0<r< 1}.

j=1
Let V' be an open subset of C”. We let
H*(V)={feHWV): |fly =sup{|f(x)| : xe V} < 0},

where H(V) is the space of holomorphic functions on V. H*(V) is a Banach
space with the norm | - ||,,.
Let X be a compact subset of C”. On VUX H®(V), we define the equivalence

relation ~ as follows: f ~ g if there exis%gpzln neighborhood W of X on which
Slw =9lw.

We denote by H(X) the vector space of equivalence classes and the elements of
H(X) are called germs of holomorphic functions on X. H (X) is equipped with the
inductive limit topology

H(X) =limind H*(V).

Now we say that a compact subset X in C" is L-regular if [H(X)]" has the
property (Q).

Through the forthcoming, unless otherwise specified, we shall write Z (h) and
Z(g,0) for h=1(0) and g=1(0) n 6! (0), respectively.

The main result of the section is the following:

Theorem 2. Let E be a Frechet space. Then E has the property (DN) if and only if
M(X,E) = M,,(X,E) for every L-regular compact set X in C".

To prove Theorem 2, we first prove the following result.

Lemma 1. Let D be a pseudoconvex domain in C" and f a meromorphic function on
D with values in a sequentially complete locally convex space E. Then for every
relatively compact domain D in D, there exist holomorphic functions h : D — E and
o : D — C such that

S =h/c and codim, Z(h,6) >2 for ye D.

Proof. From the hypothesis and by [7], we can write f = h, /o1, where by : D — E
and o1 : D — C are holomorphic functions with a1 # 0. By the compactness of D,
there exists a neighborhood W of D in D such that

p q
Zm)nWe< )4 and Z(o))nW < |) B
=1 j=1
with
AinW#0 and BnW#§ fori=1,....,pandj=1,...,q.

Here, Z(h) = | 4; and Z(o1) = |} B; are irreducible branches of Z(h;) and
i3 j>1

Z(a1), respectively.
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Let 4, = Bj, == Aforsome 1 <ip <pand1< jo<gq.

Now, by using Cartan’s theorem A, we can locally factorize #; and g1 through
common factors and finally, we can find holomorphic functions #: D — E and
o : D — C such that f = &/c and Z(h, o) does not contain an irreducible branch 4
of codimension 1 in W. This yields codim, Z(h,a) > 2 for y € D.

Lemma 2. Let E be a locally convex space and o, :D — C, g: D — E holo-
morphic functions on an open subset D = C". Assume éag is holomorphic on D and

codimZ(g,0) = 2. Thenf—j is holomorphic on D.

Proof. Given zj € D. Since the local ring O, of germs of holomorphic functions at
zq is factorial [6], we can write
g = O-'lnl .. a';np
in a neighborhood U of zj such that oy
By the hypothesis and the equality
Ba _Bg -

O' -.-o'
o o ! o

w1 Op;, are irreducible.

mp

Pe is holomorphlc at zg. On the other hand, from the hypothesis
o1

codim Z(g,0) >2 and Z(o UZ 61), we have codimZ(g,0;) =2, for i=

it follows that —

l,...,p. Hence, from the 1rredu01b111ty of a1, , we infer that Z(a1),, = Z(B),,. This
again implies f = f,01 at zp. Hence, o_ﬁ is holomorphic at zg. Continuing this
1

process, we infer that é is holomorphic at zj.
o

Lemma 3. Let X be a L-regular compact set in C". Then X is a unique set, i.e., if
feH(X), fly =0, then f = 0 on some neighborhood of X.

Proof. Let (V) be a decreasing neighborhood basis of X in C". By the hypothesis,
we have

Yp213g2p, d>0Vk2q3C>0:(fI;" < CIfISl; ¥ € H(V,).
Using the above inequality for /", f € H*(V}), it follows that
I+d _ 4: n(l+d)\1/n
1715+ = lim (1 £10)
1 nnl+d l/n
= gim (| /"11*)
< lim (1 el 1) = 1A -
Hence,

Vp=13g>p, d>0Vk=q: £ < fILISNE Vf e H2(V),
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which implies as k — co:
Vp213¢2p3d>0: |f, " <SS ¥ e H (V).

This means that X is a unique set.

Let E be a Frechet space with strong dual E*. The space E’, the topological
dual space of E, equipped with the strongest locally convex topology having the
same bounded sets as E* is called the bornological space associated to E* and is
denoted by E .

We have the following lemma.

Lemma 4. Let E be a Frechet space and have the property (DN). Then [E} " has
the property (DN).

Proof. It is known that E has the property (DN) if and only if
1
Ip Vq 3k, C>0:||-||qur||-||k+;||-||p Vr>0
or, as was shown in [14], this condition is equivalent to
1
IpVYgIk, C>0:U) < CrU,?+;U1? Vr>0,

where U] is the polar of Uj.
Thus,

luly = sup u(x")]<  sup |u(x*)|
x el x‘eCrU£+l/rUl?

* 1 *ok 1 *k
< Cr sup |u(x®)| +— sup |u(x*)| = Crljullg" + = [|ul|,
x*eU} rx*EU,? 'S
forallr >0and ue[E; "
This means that [E; ]* has the property (DN).

Lemma 5. Let E and F be Frechet spaces and let F have the property (DN) and E
have the property (Q). Then every continuous linear map from F,. into E* is
factorized through a Banach space.

Proof. Given f : F} — E* a continuous linear map. Since every continuous linear
map which is bounded on some neighborhood of zero is factorized through a
Banach space, it suffices to find a neighborhood V of 0 € E such that

sup{|fW)||; :ue U’} <o fork>1, (1)

where { Uy} is a neighborhood basis of 0 € F.

By [16], F is isomorphic to a subspace of the space B &, s for some Banach
space B, where s is the space of rapidly decreasing sequences.

Since the restriction map R from [B®, s|* ~ B* ®, s* onto F}, is open, it
remains to prove that (1) holds for g = fR.

Consider the continuous linear map §:s* — L(B*, E*), the space of con-
tinuous linear maps from B* to E*, induced by g. Here, L(B*, E*) is equipped with
the strong topology.
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Let {||- I, }°° be a fundamental system of semi-norms of E.
Since E has the property (Q), it follows that

Yo>13>0a,d>0Vy>p3C(y) >0,

* * 2
Il < GOl ol for every o e L(B", E¥), g
where
lolls = sup{llo()llz : ve B, |lvll < 1}.
Now for each k > 1, put
s*(k) = {u = (1) € C* : [lullle = D lmli™* < 00} -
jz1
Since s* is bornological, we have
= lilxcninds’(k)
and the topology of s* can be defined by the semi-norms
aalll, = > Imsli~*.
j=1
On the other hand, since s has the property (DN), it implies that
EIp>1Vq2de>03k2q, Cy(q,d) > 0, 3)

1+d * x4 .
> Ca(g, d)lllef lllellleflll, for everyj>1,

where {e}} is the canonical basis of s*.

For each k > 1, choose y = y(k) such that

Mk, y(k)) = sup {[|4(u)ll ) : Mullly <1} < 00

For p in (3), put o = y(p) and take f > a, d > 0 such that (2) holds. Using 4 in (2)
for (3), we now check that M (g, f) < co for g > p. Indeed, let ¢ > p. Choose k > ¢
and C)(q,d) > 0 for which (3) is satisfied. For k, choose y = y(k) such that
M(k,y(k)) < o0

Then for every u = (1;) € Uy, u = }_ n;¢; with |||u|||q =3 In;l |||e;|||q <1, we
have j=1 jzl

lgGalz < D Inlllle *|||,,”ﬁ|e*lll”ﬂ

j=1
ot (GO 1D l] P 1506 ] ™
< 2 lnllle (G llne,nlk] l TefT,

L

G\ " el o
s(m) Mk, 90 (M (p, ¥(p))) < co.
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This inequality implies that § and hence, g satisfies (1).

Proof of Theorem 2. Let E have the property (DN) and f € M,,(X, E), where X is
L-regular compact set in C”.

By [3], for each p > 1, there exists a Stein neighborhood U, of X in C" and a
meromorphic function f, : U, — E, such that f,|; = w,f. We can suppose that
UynUy>- - >U,>---. By Lemma 2.1, we can write f, = h,/g, where
hy : U, — E,, 0 : U, — C are holomorphic functions and g, # 0 such that

codim Z(h,,0,) > 2.

Since w; = w!.wp, where wf : E, — E; is the canonical map, and by Lemma 3, we
have

H
Ay b _ 2% and codim Z(wlhy,,0,) > 2.
ap f Op

By Lemma 2, it follows that
oL |y, is holomorphic for p>1.
Op

We can define a linear map
h:E; — H(X)
by

g = (ﬂ)ilp forp>1,
where
itp(x*)(z) = x"(hp(z)) forx*eE; andze U, and E; = E*(UI?) .

Obviously, # is continuous. Since [Ej,]* has the property (DN) (Lemma 4)
and [H(X)]" has the property (€2), by Lemma 5, we can find a neighborhood W of
0 € Ej;, such that A(W) is bounded in H(X). Hence, there exists p such that A(W)
is contained and bounded in H*(U,), the Banach space of bounded holomorphic
functions on U,. Thus, the form

h(z)(x*) = h(x*)(z) for ze U,, x* e E*
defines a holomorphic functioniiz : Up — E. Since E = lim proj E, and f,|y = w, f
for every p > 1, it implies that-aE = f and hence, f € M(X,E).
lLix

Conversely, by [15], it suffices to show that every continuous linear map T
from H(A) to E is bounded on a neighborhood of 0e H(A). Consider
T*: E* — [H(A)]" = H(A). Since T*(x*) € H(A) for every x* € E* and, hence,

we can define a map f : A —» E** by
f(@)(") = 6:(T*(x7))
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for x* € E*, z € A and 4, is the Dirac functional defined by z,
0.(0) =a(z) foroe H(A).

It is easy to see that f(z) € E because of the o(E*, E)-continuity of f(z).
Moreover, f € M, (A, E). By the hypothesis, we can find a neighborhood U of A in
C and an E-valued meromorphic function g on U such that

glz=r1-

Since f is continuous on A, without loss of generality, we may assume g is
holomorphic on U and B = g(U) is bounded in E. It follows that 7* is bounded
on B%. Put T*(B%) = C = [H(A)]" Thus, ¥ = C? is a neighborhood of 0 € H(A)
and T(V) = B% is bounded in E. The theorem is proved.

4. Weak Extension of Analytic Functions

Theorem 3. Let X be an open subset of an open connected set D in R" and E a
Frechet space having the property (DN). Assume f : X — E is an analytic function

such that uf is extended to an analytic function uf on D for all uc E*. Then f is
analytically extended to D.

Proof. 1t suffices to show that f is analytically extended to every x° € 6X. Take a
neighborhood G = I} x --- x I, of x¥ in D, where I; = [a;, b)), a; < b;, i=1,...,n.
For each 0 < & < 1, consider the linear map

S, : Ef,, — A(zG)
given by
Se(u)(x) = uf(x) forue E; ., xeeG,

where A(eG) is the space of analytic functions on &G.
By the uniqueness, S; has the closed graph. On the other hand, since
A(G) = lim ind H® (W) = H(¢G)
WleG

where for each neighborhood W of ¢G in C", by H® (W), we denote the Banach
space of bounded holomorphic functions on W, it follows that S; : E; — A(eG)
is continuous.

Since

[H(eG))" = [H(eh) @, - ©x H(eh)]'
~ H(C\eh) &, -+ & H(C\el,)
~ HA) ®, -+ ®, H(A) = H(A") have the property (Q)
and [E},]" has the property (DN), we can find a neighborhood W, of ¢G in C"
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such that S, : Ef, — H®(W,) is continuous. Define a holomorphic extension
f; : WE 314 [El):or]* -
by
[ W) = S,(u)(z) forzeW,, uek,.

By the uniqueness, the family { 1.} defines a holomorphic extension fof fto
a connected neighborhood W of G in C”. Since f(GAX) < E and E is a closed
subspace of [E}, ], it follows that f(W) < E.

This means that f can be analytically extended to x°. The theorem is proved.

Remark. Consider the function f : R — RN which was given by Ligocka and
Siciak [8],

~1 1
f(y= (1+12""71+(nt)2"”>’ teR.

This function is analytic on R\0 and uf is analytic on R for all u € [R"]*. How-
ever, f is not analytic at 0 € R.

Now let X be an arbitrary Stein manifold. In [5], we have proved that if
every weakly holomorphic function with values in H(X) is holomorphic, then
H(X) has the property (DN). Hence, in this case every pluri-subharmonic func-
tion on X, which is bounded from above, is constant (cf. [17]). However, for ana-
lytic functions, we only prove the following.

Proposition 1. Let X be a connected complex space such that every weakly analytic
function on an open set in R" with values in H(X) is analytic. Then every bounded
holomorphic function on X is constant.

Proof. Otherwise, let ¢ € H(X) such that ¢ # const and
suplp| =1.
X

Consider the function f : (—1,1) x X — C given by

1
f (tv Z) = 2
R

1-9(z)
It follows that f is analytic.

First we check that f : (—1,1) — H(X) is weakly analytic.

Indeed, given e [H(X)]" and to € (—1,1). Choose a compact set K in X such
that supp # < K. By the compactness of K, we can find a neighborhood U x V of
{to} x K in C" x X and a holomorphic function g : U x ¥ — C for which

g| UxV)n((-1,1)xX) f|(U><V (-1,1)xX)"

Since § : U — H(V) is holomorphic and x can be considered as an element of
[H(V)]*, it follows that uf is extended holomorphically to ug on U.
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By the hypothesis, f is analytic. However, this is impossible since the radius of
the convergence r(z) of the series

: 12 4 ©
1@ (1-p@P (=e@p

is /|l —g(z)] - 0asz — dX.

However, for the case dim X = 1, we have

Proposition 2. Let Z be a connected open set in C. Then H(Z) has the property
(DN) if and only if every H(Z)-valued weakly analytic function is analytic.

Proof. Necessity follows from Theorem 3. Conversely, by Proposition 1, every
bounded holomorphic function on Z is constant. Hence, y(C\Z) =0 where
»(C\Z) is the analytic capacity of C\Z [2]. Hence, H(C\Z) ~ H({0}). Then
H(Z) ~ [H(C\Z)]" ~ [H({0})]" = H(C\{0}) = H(C) has the property (DN).
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