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Abstract. The main aim of this paper is to prove that a Frechet space E has a continuous
norm (resp., E has the property (DN)) if and only if M(X,E): M.(X,E) holds for every
open subset (resp., I-regular compact set) X of C'.

1. Introduction

Let X be a subset of C" and ,E a sequentially complete locally convex space. A
function/ defined and holomorphic on a dense open subset Xs of X with values in
E is called meromorphic on X if it can be extended to a meromorphic function on
a neighborhood of X in C'. In the case where this holds for x*f with every
x* e E*, the dual space of E, we say that f is weakly meromorphic on X. Write
M(X,E) and M,(X,E) for vector spaces of meromorphic and weakly mero-
morphic functions on X with values in E, respectively. The main aim of the pres-
ent paper is to find necessary and sufficient conditions for which

M(X,E) :  M, (X,E) .

The case where .E is a Banach space and X is either open or compact, the
equality has been proved in [3].

By applying this results in Sec. 2, we show that (x) holds for every open set X
in C' if and only if E has a continuous norm. The case where X is compact in Cn
will be investigated in Sec. 3. We will prove that (x) holds for every Z-regular
compact set X c C' if and only if E has the property (DN).

Finally, in Sec. 4, we prove that every analytic function on an open set X c Cn
with values in a Frechet space -E having the property (DN), can be weakly analyti-
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320 Nguyen Van Dong and Le Mau Hai

cally extendedto D. An open set in c" containing x is also analytically extended
to D. The case where E* is a Baire space, the result has been established bv
Ligocka and Siciak [8].

2. Existence of a Continuous Norm on a Frechet Space

In this section, we give a necessary and sufficient condition for the existence of a
continuous nonn on a Frechet space.

Theorem l. Let E be a Frechet space. Then E has a continuous norm ifand only tf
M(X, E) : M,(x, E) for euery open subset x of C".

Proo;f Necessity:
(i) For n : l, the theorem has been proved in [4].

(ii) General case n > l. Assume E has a continuous norm. choose an increasing
fundamental system {ll . lL}Lr of continuous semi-norms on.E. without loss
of generality, we may assume ll .llr is a nonn. For each k> l, by Ep we
denote the canonical Banach space associated to ll . ll; and a4,: E - Er the
canonical map. Let f e M,(X, E).By [3], we have

ft : arf e M(X, Ep) for k > l.

As in the case n : 1. first we check that

P ( f i , ) : P ( f i )  f o r k > 1 .
For each k > 1, put

Zp : {L e Cp"-t , n-t 1r) a p(fd + n-t (t) a x1,

where z : C'\{0} -) CPn-r is the canonical map.
It is easy to see that Z1 is dense and open in CP"-t for k > I and by (i)

n-'(L) n P(fD : n-t(L) ^ P(fi) for every L e Z1,and every k > L

Hence, n-t (Zk) ̂  P(f) is dense and open in P(f) for k, j > l.
By the Baire theorem, this yields that

n-t  (z) ^ p(f i )  :  *- ,  (  0 (z-))  a pUi) :  |  (n-t(Zr) a p(f i ) )
\ k ' r  /  * r t

is dgnse in fff) forT > 1, where Z : O Zn-
Since k>r

n- ' (z) ^ P(f i )  :  n-t(z) ^ P(f i )  forT > 1,

we have

p(./j):Cr6^Wil: Qt-re) ̂F6: p(fr) forT > l.

It remains to prove the meromorphicity of f at every z0 e p(fi).
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First, consider the case where ze e RP(fi), the regular locus of P(/). We may
assume zo:0. Choose a neighborhood t/ of zs of the form U: L', such that
UoP( f )  -A ' - r  x0 ,  where  L : {zeC: lz l  <  1 } .  S ince /  i s  ho lomorph ic  on
t/\P(r) - L'-r x A*, A* : A\{0} we can write the Laurent expansion

+co

f  ( r ' , r , ) :  t  o iQ)r t ,  fo t  z :  ( t ' , t , )  €  A ' - r  x  A*,

where ai(z') are holomorphic functions on A'-1.

Since f1(zt, z,) : arf (z', z,) : I a1(a1Q'\ztn, hence,
] : - @

a 1 ( a 1 Q t ) ) : O  f o r j < n 1 .

By the injectivity of rr.r1 we have

a l Q t ) : o  f o r j < n 1 '

This means that/ is meromorphic at zs. Since codims(P(/)) > 2, where S(P(/))
is the singular locus of /, and by the Remmert-Stein theorem uOl, "f can be
meromorphically extended to X.

Sufficiency. See [4].

3. Existence of a @N)-Norm on a Frechet Space

To give a characterization of Frechet spaces having the property (DN), we recall
the following.

Let {ll . llr}L, be a fundamental system of continuous semi-norms of a
Frechet space,E. For each subset B of E, consider the general semi-norm

ll . l l i '4:* ---+ [0, ioo]

given by
l l r l l i  :  {sup lz(x)l  :  x e B}.

write l l  .  l l |  for B: (Jr: {x e E : l lxl lp < 1}.
We say that E has the property (DN) if and only if

1p 2 | Yq > | vd > 01k > r, C > 0 : l l" l l l* '  < Cllxl lpl lxl l !  for x e n (DN)

Obviously, ll . ll, it a nonn and we call it a (DN)-norm.
We say thai E has the property (O) if and only if

y p > r l , q >  r = d > 0 v k >  r , l c  >  0  , l l y l l i t * o  <  c l l . r l l i l l y l l l d  r o r  y e E * .  ( O )

The properties (DN), (o) and others were introduced and investigated by vogt
(see [13, 14, 15, etc.]). In [15], Vogt has proved that a Frechet space E has the
property (DN) if and only if every continuous linear map T : )"1(a) * -E is
bounded on a neighborhood of 0e,11 (a) for some exponent sequence a: (a"),
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H-(v):  { f  .  H(v) :  l l f l l r :  sup{ l / (x) l  :  x e
where I/(Z) is the space of holomorphic functions on V.
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t "  7 , ,

Let V be an open subset of C'. We let

with

Nguyen Van Dong and Le Mau Hai

v j  <  q \ ,

H* (V) is a Banach

H*(V), we define the equivalence

neighborhood l4t of X on which

V r , 0 < r . t )

space with the norm ll . 1;n.
Let X be a compact subset of C'. On U

V = X

relation - as follow s: .f - 9 if there exi#8Pf
f l  - ^ l

J  t w  -  c l w .
We denote by H (X) the vector space of equivalence classes and the elements of

H (X) are called germs of holomorphic functions on x . H (x) is equipped with the
inductive limit topology

H(X) :  l im ind i l - (Z) .

Now w-e. say that a compact subset x in c' is L-regular if [H(x)]- has the
property (Q).

Through the forthcoming, unless otherwise specified, we shall wite Z(h) and
Z(s,o) for h-t (0) and g-t(0) n o-110), respectively.

The main result of the section is the following:

Theorem 2. Let E be a Frechet sp_ace. Then E has the property (DN) if and only if
M(X, E) : Mr(X, E) for eu"ry L-regular compact set X in C,.

To prove Theorem 2, we first prove the following result.

lemma l. Let D be a pseudoconuex domain in c" and f a meromorphic function on
D with ualues in a sequentially complete locally connex space E. Thin for euery
relatiuely compact domain b in D, there exist holomorphic functions h : D --- E and
o : D - - - + C s u c h t h a t

"f : h/o and codim, Z(h,o) > 2 for y e b.

Froof. From the hypothesis and by [7], we canwitef : htlot, where 11 : D __+ E
and o1 : D ---+ c are holomorphic frlnctions with o1 * 0. By the compactness of 6,
there exists a neighborhood l4t of D in D such that

z(h)  ow -  0  A,  and Z(o1)  aw = (  n ,
i : l  j : l

A ; n W  * 0  a n d  $ n W  * 0  f o r i :  l , . . . , p a n d 7 :  1 , . . . , Q .

Here, Z(h1): U n, and Z(o1) : U ni are irreducible branches of Z(h) and
.  r > l  j > l

Z(ot), respectively.
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Let Aio: Bk:,4 for some 1 < ,0 < p andl 3 io 3 q.

Now, by using Cartan's theorem A, we can locally factoize ht and a1 through

common factors and finally, we can find holomorphic functions h: D -- E and

o : D ---+ C such thatf : hlo and Z(h,o) does not contain an irreduciblebranch A

of codimension 1 in W. This yields codim, Z(h,o) > 2 for y e D.

Lemma 2. Let E be a locally conl)ex space and o, B : D -- C, I : D ---+ E holo-

morphic functions on an open subset D c. C'. Assum, f4 x holomorphic on D and

codimZ(g,o) > 2. fnenlis holomorphic on D. 
o

o

Proof. Give1 zs e D. Since the local ring (9,0 of germs of holomorphic functions at

zs is factorial [6], we can write

o: oT' . .otr'

in a neighborhood U of zs such that oyot . . . t op"o are irreducible.
By the hypothesis and the equalitY

P:4'r ' - ' ' "otr. ,o t o

it follows thatf4is holomorphic at zs. on the other hand, from the hypothesis
01 p

codimZ(g,o) > 2 and Z(o) : 
!)tz(dt), 

we have codimZ(g,ot) r 2, for i:

1,. . . ,p. Hence, from the irreducibility oroot"o, we infer that Z(o1)"0 - Z(f)",.This

again implies f : f pt at zo. Hence, I it holomorphic at zs. Continuing this
n o l

process, we infer that { is holomorphic at zs.
o

Lemma 3. Let X be a L-regular compact set in C". Then X is a unique set, i.e., if

f e H(X)' flx : 0, then f :0 on some neighborhood of X'

Proof. Let (V) be a decreasing neighborhood basis of X in C'. By the hypothesis,

we have

yp 2 | iq > p, d > Tvk > q rc > o, l l f l l l*o < cllf l lol l.f l l l  Yf e H* (vr).

Using the above inequality for f", f e H- (V), it follows that

ll f ll;*o : Jllg ( ll /l|i( 
| +d) 1t t 

n

:  l im( l l  Snl t+dl /n
n + a

< rim c|t"0.f"llkllf"l l l1lr" : l lf l lollfl l l.
Hence,

vp 2 1 1e 2 p, d > 0vk > s' l l f l l)*d < l lf l lkl lf l l : Yf e H* (v),
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which implies as k + oo:

yp >_ | iq 2 p rd > 0, llfll'n*o < llfll,llfll! yf e H* (vo).
This means that X is a unique set.

Let ,E be a Frechet space with strong dual E*. The space Et, the topological
dual space of ,8, equipped with the strongest locally convex topology having the
same bounded sets as E* is called the bornological space associated to E+ and is
denoted by Ef;*.

We have the following lemma.

Lemma 4. Let E be a Frechet space and haue the property (DN). Then lE[",]- has
the property (DN).

Proof. It is known that E has the property (DN) if and only if

l p y q 1 k , c > 0 : l l  . l l n <  c r l l . l l r , + i l l  l l ,  v r > 0

or, as was shown in [14], this condition is equivalent to

1pYq1k,c  > 0 :  u l  =  cr { . f  * lu ;  vr> 0,
where Ul is the polar of t/u.

Thus,

l l"lli- :,[nn lr("-)l = 
,_.r,ffi,, ,uo lu(*.)l

1 r
< c',::A lr("-)l +;,llpry lu(x-)l : crllulli. +:ll"lli-

for all r > 0 and ue[E[o,]*.
This means that lE|",1. has the property (DN).

Lemma 5. Let E and F be Frechet spaces and let F haue the property (DN) and E
haue the property 1A). fnen euery continuous linear map-from Ff,o, into E* is
factorized through a Banach space.

Proof. Givenf t Fto, ---' E* a continuous linear map. Since every continuous linear
map which is bounded on some neighborhood of zero is factorized through a
Banach space, it suffices to find a neighborhood Z of 0 e -E such that

s u p { l l / ( a ) l l } , ' u e L Q } < w  f o r f t > 1 ,  ( l )

where { Up} is a neighborhood basis of 0 e l'.
By [16], F is isomorphic to a subspace of the space ,B O" r for some Banach

space B, where s is the space of rapidly decreasing sequences.
Since the restriction map R from [,88"r]* = B* 6ns* onto F[o, is open, it

remains to prove that (1 ) holds for S : fR.
Consider the continuous linear map A:s* -+Z(i+,,E*), the space of con-

tinuous linear maps from,B* to ,E*, inducedby g.Here, L(B*,.E-) is equipped with
the strong topology.
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Let {ll ' llr}L, be a fundamental system of semi-norms of .8.
Since,E has the property (O), it follows that

Va >  I  ) f  >  u ,  d  >  OYy>B 3C1(y)  >  0 ,

l lo l l i t*o < cr(y) l lo l l r l lo l lJ forevery oeL(B*,E*),  
(2)

where

l lo l l ;  :  sup{ l lo (u ) l l }  :  u  e  B* , l l , l l  <  l } .

Now for each k > 1, put

( - ' )
s* (k )  :  1 "  :  @, )eC-  :  l l l r l l [  :  D l ry i [ -b .  oo  l .

I  r > l  )

Since s* is bornological, we have

s- l: l*ninds'(k)

and the topology of s* can be defined by the semi-norms

l l l , l l lo: Dlry)i-b.
l > l

On the other hand, since s has the property (DN), it implies that

l p > l Y q > p V d > 0 f k > q ,  C 2 ( q , d ) > 0 ,  
( 3 )

lll"rrllll*' > cz(q,fllllejll|lll";llli for every7 > l,

where {er}} is the canonical basis of s*.
For each k > l, choose y: y(k) such that

M(k,y(k)) :  sup{ l ls(z) l l f t r ;  :  l l lz l l [  < l ]  < * .

Forp in (3) ,pu t  a :y (d  andtake p>a,d>0suchtha t (2 )  ho lds .  Us ing  d in (2)
for (3), we now check that M(q,f) < o for q > p.Indeed,letq > p.Choose k > q
and C2(q,d)>0 for which (3) is satisfied. For k, choose y:y(k) such that
M(k ,y (k ) )  <  a .

rhen for every u: (n) e4,u: Dn,rl with l l lzl l lu: I lry)l l l";t l lo < l, ro"
h a v e  i > t - '  "  i > l

lls @lli = D l, )lll,; lll,W

= D, w,t ; 11 ",, | | ro (m)" lqt^,, ",,,,,_ ] 
- 
| 1if; lil;r,l 

*

= ft^9\2)or(0, y(k))',(M(p, y(p)))# < *.-  
\cz(q,d)  /
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This inequality implies that fi and hence, g satisfies (1).

Proof of Theorem 2. Let E have the property (DN) and/ e M*(X,,8), where X is
L-regttlar compact set in C'.

By [3], for each p > l, there exists a Stein neighborhood Uo of X in C" and a
meromorphic function fp : Uo ---+ -Qo such that fol* : apf . We can suppose that
U1  =U2  r . . '  r  Up= . . . .  By  Lemma 2 .1 ,  we  can  wr i t e  f p :hp foo  where
ho : Uo ---+ Eo, oo : Uo ---+ C are holomorphic functions and oo I 0 such that

codimZ(hp,op) > 2 .

Since ar1 : col .@p, where of ; Eo ---+.Er is the canonical map, and by Lemma 3, we
have

,lho
and codimZ(aPrho,op)  2 2.

By Lemma

by

?lr, is holomorPhic for P > r
oD

We can define a linear map

h: E[* -- H(X)

f o r p  >  I ,

where

ho1x.71tl : x- (hp(z)) for x* e E] and z e (Jo and E] : E. (4) .

Obviously, Z is continuous. Since [Ej,,]* has the property (DN) (Lemma 4)
and [H(X)]- has tle property (A), by Lemma 5, we can find a neighborhood Z of
0 e E[o, such that hlWS is bounded in H(X). Hence, there existsp suchthath(W)
is contained and bounded in H*(U), the Banach space of bounded holomorphic
functions on Uo. Thus, the form

i'1t71*.1 : it('.)(t) for z e (Io, x* e E*

defines a holomorphic function 
4 

t 
,Uo 

-- .8. Since .E : lim proj Eo and fol * : @pf

for every p > l, it implies that Ll : t and hence, J' e M(X, E).
o t  l x

Conversely, by [15], it suffices to show that every continuous linear map 7
from I1(A) to .E is bounded on a neighborhood of 0 e I1(A). Consider
T* : E* - [fI(A)]. = H(I). Since T*(x*) e a(I) for every x* e E* and, hence,
we can define a map.f 1 [ + E** by

htz; ( )r,

. f  ( t )(* .)  :6 ' (7.  (x.))
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for x* e E*, z e L, and 6" is the Dirac functional defined by z,

6"(o) : o177 for o e H(L) .

It is easy to see that f(z) eE because of the o(E*,E)-continuity of f(z).
Moreover,lf e M*(4, E) . By the hypothesis, we can find a neighborhood U of A in
C and an E-valued meromorphic function g on U such that

s l t : f .

Since / is continuous on A, without loss of generality, we may assume g is
holomorphic on U and B : S(U) is bounded in E. It follows that T* is bounded
on Jl0. Put r-(Jp) : C c [H(A)]-: Thus, Z: C0 is a neighborhood of 0 eH(A)
and, T(V) c ,B00 is bounded in E. The theorem is proved.

4. Weak Extension of Analytic Functions

Theorem 3. Let X be an open subset of an open connected set D in R" and E a
Frechet space hauing the property (DN). lssanef : X ---+ E is an analyticfunction

such that uf is extended to an analytic function Q on D for all u e E*. Then f is
analytically extended to D.

Proof. It suffices to show that f is analytically extended to every x0 e AX. Take a
ne ighbo rhood  G :  I  x  . . .  x  1 ,  o f  x0  i n  D ,  whe re  I i :  l a i , b r ] ,  o ,  <  b ; ,  i : 1 , . . . , f l .

For each 0 < e < 1, consider the linear map

S,:  E[o,  -+ A(eG)

given by

s , ( r ) ( " )  :G@)  fo rueE [o , ,  xeeG,

where A(eG) is the space of analytic functions on eG.
By the uniqueness, ̂ S, has the closed graph. On the other hand, since

A(eG): l jm indr.*(w7: u1ec1

where for each neighborhood fu of eG in C", by H* (fu), we denote the Banach
space of bounded holomorphic functions on W, it follows that S, : E[o, ---+ A(eG)
is continuous.

Since

lH(eG)1. = lH@r) @" . . . @, n 1e411.
= f!(C\e/r) @" ... 6" r1C1er,;

= H(L) g" ... 6" H(L) = H(L") have the property (O)

andlE[",]. has the property (DN), we can find a neighborhood W" of eG in C'
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such that S" : Ef,o, -- H* (W") is continuous. Define a holomorphic extension

i, t W, -. lE;o,]* .

by

i,Q)@) : s,(u)(z) for z e w,, ue E[o, '

By the uniqueness, the family {f} aefines a holomorphic extensionf of f to
a connected neighborhood W of G in C". Since/(GnX) c E and E is a closed
subspace of ln;,l.,it follows that i(W) c E.

This meanJ thatf can be analytically extended to x0. The theorem is proved.

Remqrk. Consider the function /: R --+ RN which was given by Ligocka and
Siciak [8], 

\
f ( t )  :  ( - + , - - - , - | ,  ^ 2 , ' . .  l ,  t e R '

\ r + I '  l + ( n t ) '  /

This function is analytic on R\0 anduf is analytic on R for allue [RN]-. How-
ever, f is not analytic at 0 e R.

Now let X be an arbitrary Stein manifold. In [5], we have proved that if
every weakly holomorphic function with values in H(X) is holomorphic, then
fI(X) has the property (DN). Hence, in this case every pluri-subharmonic func-
tion on X, which is bounded from above, is constant (cf. [17]). However, for ana-
lytic functions, we only prove the following.

Proposition l. Let X be a connected complex space such that euery weakly analytic

function on an open set inR' with oalues in H(X) is analytic. Then euery bounded
holomorphic function on X is constant.

Proof. Otherwise, let I e H(X) such that rp * const and

s u P l P l  : l '

Consider the function/ : (-1, 1) x X --+ C given by

. 1
J \ t , z ) : - -  p  '

l - 1 - p @

It follows that/ is analytic.
First we check that/ : (-1, 1) --+ H(X) is weakly analytic.
Indeed, given p e lH(X)]. and /s e (-1, 1). Choose a compact set K in X such

that suppp c K. By the compactness of K, we can find a neighborhood U x V of

{ l s }  x  K inC 'x  X  andaho lomorph ic func t ion  g :U xV -C fo rwh ich

gl  g,  v1n11-r , r )  xx l  
:  f  |  @ x l l )n(( -1,1)  xx) '

Since f ; (J ---+ 11( Z) is holomorphic and p can be considered as an element of

lH(V)1., it follows that pf is extended holomorphically to pQ on U.
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By the hypothesis, f is analytic. However, this is impossible since the radius of
the convergence r(z) ofthe series

l _  ,  
"  

' ,  + -  
t o  

^ '  
t 6

|  -  e@- i  -  a@f  O - f f i - '  '

is ff:9@ -- 0 as z-- 0X.
However, for the case dimx: l, we have

Proposition 2. Let Z be a connected open set in C. Then H(Z) has the property
(DN) if and only if euery H(Z)-ualued weakly analytic function is analytic.

Proof. Necessity follows from Theorem 3. Conversely, by Proposition l, every
borrnded holomorphic function on _Z is constant. Hence, y@\Z): 0 where
y(C\Z) is the analytic capacity of e\Z [2]. Hence, HG\Z) o rr({0}). Then
H(z) = [H(e\z)]- : [H({0})]- = H(e\{0}) = fl(C) has the property (DN).

Acknowledgement,'[he authors wish to thank Prof. Nguyen Van Khue for helpful advice in
writting this paper.
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