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Abstract. In this paper, the solvability of linear multipoint BVPs for DAEs is studied. It will
be shown that if multipoint boundary conditions are stated properly, then the bounded
linear operator generated by a multipoint BVP is continuously invertible. Otherwise, it is a
Noether operator of a negative index. A formula representing general solutions of linear
multipoint BPVs for transferable DAEs is obtained.

1. Introduction

This paper is motivated by a series of works of Mérz and her colleagues on two-
point BVPs for DAEs (see [1,2] for an exhaustive bibliography) and Sweet’s
results on multipoint BVPs for ODEs [3,4]. It is also closely related to our papers
on nonlinear BVPs at resonance [5-8]. It will be proved that Mirz results remain
true for regular multipoint BVPs. In irregular cases, our results are essentially new,
even for two-point BVPs. On the other hand, when DAEs are regular implicit
ODEs, we obtain again Sweet’s results.

As is well known, DAEs arise in various applications, especially in describing
dynamical processes with constraints.

In some cases, it may be of interest to consider more general boundary con-
ditions than endpoint ones for DAEs.

We shall omit all discussions concerning motivation for the problem studied
below. Further examples and comments can be found in the literature (see [1-4,

9.

*Sponsored by Vietnam National Fundamental Research Program under contract
No.1.3.6.



348 Pham Ky Anh

We are interested in the following linear multipoint BVP for a transferable
differential algebraic system:

A(D)X' (1) + B(tyx(t) = q(t), T eJ:=[t, T], (1)
I'x=y, (2)

where A4, Be C(J,IR"™") are continuous matrix-valued functions, ge C:=

C(J,R"),ye R" and T : C — R” is a bounded linear operator.

By the Riesz representation theorem, there exists a matrix-valued function of
bounded variation # € BV (J, R"*") such that I'x = LZ dn(1)x(t).
In the remainder of this section, we state some known facts about transferable

DAE:s (see [1, 2)).

The DAE (1) is called transferable if:

(1) There exist continuously differentiable projector-functions P, Q € C!(J, R™")
so that P(f) = I — Q(t), Q*(t) = O(¢), Im Q(r) = Ker A(¢) for all t e J.

(2) The matrix G:= A + BQ is nonsingular for all teJ. Denote Q,(¢) :=
Q)G (O)B(1); B(t)=1-Qt); S(t):={¢eR":B(t)¢ eImA(t)}. The
transferability implies the decomposition IR” = S(r) @ Ker 4(¢). Moreover, Q;
is a projection onto Ker A(t) along S(1).

Since Ax' = APx' = A(Px)' — AP'x, we should ask for solutions of (1)
belonging to the Banach space

x:={xeC:PxeC'(J,R")}

with the norm [|x|| := [|x||,, + ||(Px)'llos-
It has been proved that y is invariant with respect to the choice of the projector
functions P, Q. Let Y be the fundamental solution matrix of the ordinary IVP:

Y = (P'B—PG™'BYY, Y(t)=I,
and X be the fundamental solution matrix, whose columns belong to y, satisfying:
AX' + BX =0, P(t)(X(t)—1)=0.

It holds that X (¢) = B{t)Y(t)P(ty), and Im X (r) = S(¢), Ker X (1) = Ker A(t).
Finally, a solution of the IVP:

Ax' 4+ Bx =gq, P(to)(x(to) — x0) =0

can be represented by:

x(t) = X(t)xo + X (1) JI YN (s)P(s)h(s)ds + Q(1) G~ ()q(2), (3)

L)
where h(t) := P(t)(I + P'(£))G 1 (£)q(2).
2. Regular Multipoint BVPs for DAEs

Denote the so-called shooting matrix LOT dn(1)X(¢) by D and let

Ry :=ImT = {JT dn(f)x(t) : x e C} = R",

4]
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Theorem 2.1. The BVP (1), (2) has a unique solution for any q € C and y € Ry if and
only if the shooting matrix D satisfies conditions:

Ker D = Ker A(1), (4)
ImD = %,. (5)

Proof. Consider an operator & : % — % := C x %y, generated by multipoint
BVP (1), (2) such that:

Lx
Fx = , where Lx := Ax' + Bx.

I'x
The norm of (q) € C X A is defined as (Z) “ = |lg|l, + 7], and | - | denotes
an arbitrary no:m of R”. Clearly, . is a bounded linear operator and
Ker & = {X(t)xo : x0 € Ker D}. (6)
Now observe that the inclusions:
KerA(ty)) « KerD, ImD < %, (7

hold triviaily.
First suppose (4) and (5) are satisfied. Then from the fact that Ker X (z) =
Ker A(%) and relations (4), (5), (6), it follows that Ker & = {0}, i.e., & is injec-

tive. By virtue of (3), (5) and using the definition of %;, we have V ‘; eEY,
y— [o dn(X(0) { Y71 ()h(s)ds — [ dn(t)Q()G~(1)q(t) € Ry = Im D
Consequently, we can find xp € R” such that

T t

T
Y~ (5) P(s)h(s)ds — j dn(0 Q)G (Dq(1).

4

Dxy =~ | an(®x( |

4] Iy

Putting

t

x(1) == X ()xo + X(t)J YL (s) P(s)h(s)ds + QG ()q(r)

fo

we get Lx = g and I'x = y. From the last relations, it implies that

Fxi= <q> (8)
Y

Thus, & is a surjective operator. The well-known Banach theorem ensures that %
possesses a bounded inverse and the unique solution of (8) satisfies estimate:

llxll < K(llglle; + 171)- ©)

Now let & be continuously invertible. For any xp € Ker D, we define x(¢) =
X(f)xp then Lx=0 and I'x =Dxp or ¥x=0. The unique solvability of
(8) implies that x(r) = X(t)xp =0 or xp € Ker X(¢) = Ker A(5). Combining (7)
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with the last inclusion, we get Ker A(#) = Ker D. Further, for an arbitrary

0
). This means
b4
that x = X(¢)xp, and y=Tx = Dxg, hence, yeImD. From (7) it implies

Ro =Im D. Q.E.D.

v € Ao, there exists a unique solution x, such that Zx = (

As a direct consequence of Theorem (2.1), we obtain the following result on
the solvability of the DAE (1) with the multipoint BVP:

m
I'x = ZD,‘X([,') =7, (10)
i=1
where fp<tj <t < - <ty <T and D;e R”" (i=1,..., m) are given con-

stant matrices.

Corollary 2.1. The BVP (1), (10) is uniquely solvable on ¥ fenr any g€ C and

yeIm(Dy, Ds,..., Dy) if and only if the shooting matrix D =%, D;X (¢;) has the
properties: il

Ker D = Ker A(t); Im D =Im(Dy, Dy,..., Dy).

3. Irregular Multipoint BVPs for DAEs

In this section, the solvability of (1), (2) in irregular cases, where conditions (4), (5)
are not fulfilled, is studied. Consider a bounded linear operator % acting from %
into % := C x R".

Let dim Ker 4(ty) = v, dimKer D = p and {w?}] be an orthonormal basis of
Ker 4(ty) = Ker D. We extend {w?}] to an orthonormal basis of KerD, i.e.,
(w?)ij‘.’ =dy, (i,j=1,..., p), where in what follows the superscript 7 will
denote “transpose vectors or matrices. Then {w?}? 41 1s a basis of KerDu

(Ker A(1y))" and

Ker & = {X(t)xo : xo € Ker D n (Ker A(%))"}. (11)
0

i

We define vector-valued functions ¢;(¢) = X ()w

(i=v+1,..., p) and a column
matrix ®(¢) = ((pv-i-](t), s ,(DP(Z) e RV

Lemma 3.1. The vector-valued functions ¢;(t) are linearly independent, hence, the
Gram matrix M := LOT ®T (1)®(t)dt is nonsingular. Further,

Ker ¥ = {®(f)a: a e RP 7’}

» P
Proof Let > «;9; = 0andputxo = Y a;w?, then we have X (¢)xo = 0. Clearly,

i=v+1 i=v+1
xo € Ker A(to) n D n (Ker A(t))™", therefore, xo = 0. The linear independence of
{w?}., implies that o; =0 (i=v+1,...,p). The remaining statements are

obvious. Q.E.D.



Multipoint Boundary-Value Problems . .. 351

Now we define a bounded linear projector % : & — & by:

T
(Ux)(1) = D()M ™! J @7 (5)x(s)ds.
Io
Lemma 3.2. (1) %* = %, Im U = Ker #.

2% = Ker% @ Ker Z.

Proof. For an arbitrary x € Z, putting a := M~! ftoT &7 (2)x(t)dt, we have Ux =
®(t)a. Therefore, %*x = U (®a) = D(H) M~ ( Ir (DT(s)(D(s)ds)a — O() M~ Ma =
O(ta = Ux.

Further, for any x € %, #x = ®(t)ae Ker &#, hence, In% < Ker #. Con-
versely, if x € Ker &, then x(f) = ®(f)a and %x = ©()M ' Ma = ®(t)a = x(1).
Thus, xeIm% or Im% = Ker &Z.

Now suppose x € Ker & nKer%, then 0 = %x = x. Observe that, for every
xeZ, o =UxeIm¥ =Ker? and ¥ := x — p ¢ Ker#, we come to the de-
composition ¥ = Ker#% @ Ker Z. Q.E.D.

Lemma 3.3. The inclusion (Z) e Im & holds if and only if, for every w € Ker DT,

T T
wly — J wldnf — J wldnQG~'g =0, (12)
I fp
where f (1) Ito (s)h(s)ds and h = P(I + P')G~'q

Proof. Clearly that <q) eIm.%, if and only if there exists x € Z, such that
7

Fr= (q)’ ie.,
Yy

t
x(t) = X(£)xo + X(t)J Y~ (s)h(s)ds + Q1) G~ (1)q () (13)
fo
and
T T
y = Dxo + J dn(0)f (1) + J dn()Q(r)G ™ (1)q(1). (14)
fy fo
Since Dxp € Im D = (Ker DT)l, for every w € Ker DT, (14) implies that
T T
wly = wTJ dnf + WTJ dnQG~q. Q.ED.
o 4]
Denote by {w;}? an orthonormal basis of Ker D7, ie., wl w; =6; (i,j=1,..., p).

For a given (q> e® :=C x R", we define a bounded linear projector ¥ :
7
% — % given by the formula:
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where
T

T
wldnf — | wTdn@G'q (i=1,....p). (15)

4}

Cz':W,'TV—J

Iy

Lemma 34. (1) ¥2 =, Ker¥ =Im £.
2) ¥ =ImZ¥PIm7".

Proof. Since

q q 0
/1/‘2 = V P = P . 5
b Z CiW; Z Ciw;
i=1 i=1

where
AL
Ci=w E gwi=¢ (i=1,...,p)
j=1

it follows that ¥2 = .

p
If (q) e Ker 7, then > ¢;w; =0, hence, ¢; =0 (i =1,..., p).
I4 i=1

P
For an arbitrary w € Ker DT, we have w = 3 «; w;, therefore
2 ) 3

i=1

T T »
wly— J wldnf — J wldnQGq = Zai ¢ =0.
i=1

Iy to

It follows from Lemma 3.3 that i

7
(3) € Im ¥, then by Lemma 3.3, ¢;, =0 (i=1,..., g), hence,

() (o)) on (s

Thus, Im .¢ < Ker 77, therefore, Ker ¥" = Im %#.
Now suppose (q) €Im.ZnIm¥, then there exists (ql) € % such that

(©)() o ”
()= (0)-(2)-+(2)-()

Taking any (q) € % and defining ¢; (i = 1,..., p) by (15), we get
4

( i ):V(q) elmv¥".
Yoeiw; Y

) elm Z, or Ker¥" = Im.%. Conversely, if
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v = )
<V—Zciwi ZE,‘W,‘

T T
c‘,-:wiT(y—chwj)—J wdeqf—J wldnQG lg=ci—c¢;=0

iy o

Further,

where

(i=1,...,p).
It ‘means ( Zq: ) eKerv =Im.%¥. Thus, the decomposition & =
Y= 2_CiWi
Im % @& Im ¥ is proved. Q.E.D.

Now we are able to state the main result of this paper.

Theorem 3.1. (1) £ : & — % is a bounded linear Noether operator and
Ind & = dimKer & — codimIm ¥ = —dim Ker 4(%).
(2) Multipoint BVP (1), (2) with given data g € C, y € R” is solvable if and only if:

T T
#(r- [, anf - | anos1a) = (16)
wi
where " = | : |, f(t) =X(¢?) jtz Y~(s)P(s)h(s)ds and h = P(I + P')G'q.
Wy
(3) 4 general solution of (1), (2) can be represented as:
x(1) = X (1)(Xo + #o0) + £ (1) + Q()G ' ()q(1) + ®(t)a, (17)
where Wo = (W, |, ..., wd) and
T T
X0 = D! (y - Jl dnf — Jt anG_1q>. (18)

Further, D is a restriction of D onto Im DT,

0= —M"! jT O7 ()X (%0 +1 (1) + Q)G ()g(1)ds

to

and a is an arbitrary vector of R,

Proof. By Lemmas 3.1 and 3.4, Ker & is a (p — v)-dimensional subspace, Im % is
closed and codimIm ¥ = dimIm ¥~ = dim Ker D7 = dim Ker D = p. Thus, % is
a Noether operator with Ind ¢ = dimKer #— codmIm ¥ = (p—v) - p=-v=
—dim Ker A(#). Further, relation (16) follows directly from (12) and Lemma 3.3.

Now let £ be a restriction of & onto Ker #. Since % is a one-to-one and onto
mapping from Ker#% to Im.%, the Banach theorem ensures that % possesses
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a bounded inverse. For any (Z) eIm ¥, there exists xe % such that
GpA= (q) Decomposing x into a sum of X € Ker# and % € Ker.#, we have
y :

% = ®(f)a where a is an arbitrary vector of R?~¥ and ¥x = #%.
Further, form (13), it follows that X = X (#)xo + z(¢), where

t

2(t) = X(t)J Y~ P(s)h(s)ds + Q(1) G~ (£)q(2).

to
By virtue of (14)

T
Dxo = y—J dn(8)z(t) € Tm D.

t

Since xp = Xp + %o, where %o € ImD7, % € KerD, it implies that D%, = y—
[T dn(1)z(2). 1t leads to (18).

Observing that x € Ker %, we get0 = %(X (¢)xo + z(t)) = % (X ()Xo + X (£)Xo +
z(2)) = 0or U X ()% = —U(X ()Xo + z(1)).

)
As %y e Ker D, % = > o; w?, it follows that

i=1

X(5)% = X(1) ( zp: o w?) = i o; 9; = D(t)a,

i=v+1 i=v+1

therefore,

The last relations imply that

=M J ®7 (5)(X (s)%o + z(s))ds.

fo

If there are two vectors «, & € IR”™" such that ®(f)a = ®(¢)a for all ¢ e J, then
o7 (1)®(1)o = T (1)®(t)a, and hence, Ma = Ma, therefore, a = a. Thus, xp =
P
Yo+ Y a;wY + %o, with an arbitrary X € Ker A(#), and
i=y+1
p
X)) =X()xo+z(t) = X(t){)"co + Z o w?} + z(2).
i=v+1
We arrive at (17). Q.E.D.

When A(t) is nonsingular, i.e., v =0, & is a Fredholm operator (of index 0)
and we obtain Sweet’s results {3, 4].
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4. Examples

Consider equation (1.1) with given data

| T =42 1 —(1+¢ 22+2
A=10 1 —-t|, B=]0 -1 t—1 |, (19)
0 0 0 0 0 1

J:=1[0,1] and g € C(J,R?).
The boundary conditions are given by

J; x1(s)ds =y, J; x2(8)ds = p,. (20)
By definitions, we can find:

0 00 1 0 0 1 —t 2+t
o=[00 ¢|, P=]0 1 —t]|, G:=4+BQ=]|0 1 —t-1],
001 0 0 0 0 0 1

1 ¢+ 0
G'=|01 t+1|, Q:=0G'B=0Q, PR=P,
00 1
0 0 O 1 -1 2241t
P=|00 -1), PR=0, PG'B=|0 1 t
00 0 0 0 0

The fundamental solution matrix Y satisfies the following equation:

-1 1 22—

Y=]10 -1 —t Y, Y0)=1I,
0 0 0
_therefore,
et temt 2t—1-2024(1—1)e!
Y()=1 0 ¢! l—t—e! ]
0 0 1
hence,
et tet 0
X)) =B YHPO)=| 0 ' 0
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Boundary conditions (20) can be written as

Lx= j 010 x(t) |dt=1 7,
0
0 00 x3(2) 0

The shooting matrix in this case is of the form

: 1 00 et te7t 0 l—el! 1-2¢1 0

D= J 0190 0 e!t 0 |dt= 0 1—el! 0
0

0 0 O 0 0 0 0 0 0

Obviously,
Ker D = Ker A(0) = Span {(0,0,1)"}.
ImD = & = Span{(1,0,0)7,(0,1,0)7}.
According to Theorem 2.1, BVP (1), (2) with data (19), (20) is uniquely solvable

for any g € C(J,R?) and y,, y, e R.
Now suppose we are given another multipoint boundary condition:

1
J xi(s)ds=y;, (i=1,2,3), ie., dn=1Idt (21)
0

In this case, the shooting matrix D remains the same as before, but Im D ~ R?,
A = R3, hence, Theorem 2.1 cannot be implemented. Note that

fo—tet (P—t+1)e -1

¥ (i) 2]l =sH 1—(1—1)e

e

0 0 1
and
==t 0 0
DP'=|1-2" 1-¢! 0],
0 0 0

we have Ker DT = Span {(0,0,1)"}.
Let w? = (0,0, 1). It is easy to show that fol wldnf = 0, where

=X J; Y~ Y(s5)P(s)h(s)ds and wT J; dnQGlq = J; g3 (1)dr.

Thus, by Theorem 3.1, the necessary and sufficient condition for the solvability
of BVP (1), (2) with data (19), (21) and ge C(J,R?), y = (yl,yz,y3)T eR3 is
Jo a3(t)at = ys.
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Finally, let us consider Eq. (1) with given data (19) and a three-point boundary
condition:

1
D x(0) + sz(f) + D3 x(1) =7, (22)
where
1 0 0 0 0 0 e 0 0
Di=| 0 -1 0}, D,=]|0 e 0], D;=|0 0 0
0 0 0 0 0 1 0 0 1

The shooting matrix is of the form

010

1
D=D1X(0)+D2X(§)+D3X(1): 000
000

In this case all conditions of Theorem 2.1 are not fulfilled. Indeed,
Ker D = Span {(1,0,0)”, (0,0,1)"} # Ker 4(0) = Span {(0,0,1)”},
Im D = Span {(1,0,0)7} # % = R>.

According to Theorem 3.1, the three-point BVP with data (19), (22) is solvable for
ge C(J,R®) and y e R3 if, and only if, for any w e Ker DT = Span {(0, 1,0)T,
(0,0,1)"} we have

Ty = (D19(0) + Dag (3) + Daa(D), 23)

where
g9(r) = X(1) J YN s)P(s)(I + P'(5)) G (s)q(s)ds + Q(1) G~ (1)q(0).

‘Taking w= (0,1, O)T and w = (0,0, l)T, respectively and using (23), we get

y,=elg, (%) -920), 7 =g3 (%) +g3(1).

A simple computation shows that g3(¢) = ¢3(¢) and g»(¢) = 1g3(t) + ¢! jé e qa(s)ds.
Thus, we come to the following necessary and sufficient conditions for the solv-
ability of the above-mentioned three-point BVP;

1

1, (1N [ !
n=3 et g3 (5) + J;es‘h(s) ds, y3=q3 (E) +q3(1).
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4. Concluding Remarks

(1) The result of this paper can be applied to the investigation of nonlinear multi-

point BVPs for transferable DAEs: f(x', x,t) = 0, foT dng(x(r),t) =0.
(2) Most of the results described here can be extended to higher index DAE:s.
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