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Abstract. Our recent results are surveyed on the so-called partial differential inequalities of Haar
type and their applications to stability questions concerning global solutions of the Cauchy problem
foi nonlinear partial differential equations of the first order. Several more revisions have been made
and some material are published for the first time in this paper.

1. Introduction

The purpose of this paper is to survey the most recent developments in first-order partial

differential inequality theory and their applications to stability questions concerning

global (semi)classical solutions of the nonfunctional Cauchy problem for evolution

partial differential equations. These results have been published or are being published

in]29-331. Several of them have been revised and updated. Moreover, some material are

presented here for the first time. For functional problems in hereditary setting, we refer

the reader to [3-6] and the references therein.
Let us mention that the theory of ordinary differential inequalities was originated

by Chaplygin t8l and Kamke [18], and then developed by Waiewski [36]. Its main

applications to the Cauchy problem for (ordinary) differential equations concern

questions such as: estimates of solutions and of their existence intervals, estimates of the

difference between two solutions, criteria of uniqueness and of continuous dependence

on initial data and right sides of equations for solutions, Chaplygin's method and

t This work was supported in part by the National Basic Research Program in Natural Sciences,
Vietnam.
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approximation of solutions, etc. Results in this direction were also extended to (absolutely
continuous) solutions of the Cauchy problem for countable systems of differential
equations satisfying Carath6odory's conditions. We refer to Szarski l24lfor a systematic
study of such subjects.

As for the theory of partial differential inequalities, first achievements were obtained by
Haar [16], Nagumol22l, and then by Waiewski [35]. Up to now the theory has attracted
a great deal of attention. (The reader is referred to Deimling [13], Lakshmikantham
and Leela l2Il, Szarski [24], Walter l34l for the complete bibliography.) We emphasize
here that one of its applications to the Cauchy problem for first-order partial differential
equations, vtz. theHaar-Wazewski uniqueness criterion to be quoted in Theorem2.I
next, is just for classical solutions and may only be used locally. (For more details, see
the introductory comments in Sec. 2.)The present paper provides a new method, based
on the theory of multifunctions and differential inclusions, to investigate the uniqueness
problem. This method allows us to deal with global solutions, the condition on whose
smoothness is relaxed significantly. As we shall show more concretely in Sec. 5, the
equations to be considered satisfy certain conditions somewhat like Carath6odorys;
and their global semiclassical solutions need only be absolutely continuous in the time
variable. (For this, see also 127 ,281.)

The structure of the paper is as follows. In Sec. 2 we introduce a so-called
dffirential inequality of Haar type (see (2.6) later). An estimate via initial values for
functions satisfying this differential inequality will be established (cf. (2.7)-(2.8)). As
an application, Sec. 3 gives some uniqueness criteria for global classical solutions to
the Cauchy problem for first-order nonlinear partial differential equations. In this way,
moreover, the continuous dependence on the initial data of solutions can be examined.
Section 4 concerns some generalizations to the case of weakly-coupled systems. Finally,
in Section 5 we investigate the uniqueness problem for global semiclassical solutions.

From now on, n stands for a certain positive integer, 0 < Z < *oo, and

o r 9 ( o , z ) x l R ' - { ( t , x ) :  o <  t  < 7 ,  r € l R ' ? } .

The notation 0/0x will denote the gradient (0/0x1, . . . ,0/0x). Let l.l and (., .) be the
Euclidean norm and scalar product in IR', respectively.

Denote by Lip(Q7) the set of all locally Lipschitz continuous functions u : u(t, x)

defined on S)7. Further, set Lip(t0 , T) xR') g Lip(f27) n C(t0, Z) x IR"). For every
function u : u(t, -x) defined on S27, we put

Dif(a) 
o9 

{(r, y) e Qr ; tt : u(t, x) is differentiable at (s, y)}.

We shall be concerned with the following class of Lipschitz continuous functions:

y(ar)  Ei  {u( . , . ;  e Lip(t0,7) *  R")  :  3G c [0,  z]  mes(G) -  0.

D i f ( a ) ) A r \ ( G x R " ) ) .

(Here, "mes" signifies the Lebesgue measure on Rt.) In other words, a function
u :  u ( t , x ) i n L i p ( t O , 2 )  x R " )  b e l o n g s t o  V ( a i l  i f  a n d o n l y i f  f o r a l m o s t a l l t ,
it is differentiable at any point (t, x).
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2. Differential Inequality of Haar TVpe

First, several comments are called for in connection with the following classical
Haar-Waiewski theorem.

Theorem 2.1.116,351 Let M ) 0, a > 0, Li > 0, ci < d; with2L;a < di - ci
( i  -  1 , . . . , n )  a n d

A E  { Q , x )  :  0  <  t  1 a ,  c i *  L i t .  * , .  d . ;  -  L ; t  ( l  -  1 , . . . , n ) 1 .

Let K be a compact set in {(u, p) i u eIR, p € R'} and f - f(t, x,u, p) afunction
s atisfyin g the c ondition

l f  ( t ,  x ,u ,p )  -  f  ( t ,  x ,  u ,  q ) l  = f r , l p i  -  q i l  *  M lu  -  u l  (2 . t )
i : l

for (t, x, u, p), (t, x, u, q) e A x K. Finally, Iet ut - u.r(t, x.) and u2 : uz(t, x) be

functions in Cr (L) such that

( u i G , x ) , ( 0 u 1 / l x ) ( t , x ) )  e  K  f o r  ( t , x )  €  a ,  i  : I , 2  ( 2 . 2 )

and tha t  u r (0 ,x )  :  uz (O,x )  fo r  x  e  l c t ,d t f  x  " '  x  l cn ,d r f .  I f  u1  -  u1( t ,x )  and
t'tz : u2(t, x) are firvo solutions of the equation

0 u / 3 t  t  f  ( t , x , u , 0 u f  0 r ) : 0

in L,, then u1Q, x) : uz(t, x).

Our comments will concern the Cauchy problem in the large for a general first-order
partial differential equation as follows:

3u /0 t  *  f  ( t ,  x ,  u , \u f  0x)  :  0  in  S2r ,  Q3)

u(0, x) - Q@) on {/ - 0, x e IR'}, (2.4)

wheretheHamil tonian f  -  f  ( t ,x,u,  p)  isafunct ionof ( t ,x,u,  p)  € Qr x IRl  x IRU
and Q - Q@) is a given function of x e IRn.

Assume the function,f _ f (t,x,u,p) to be locally Lipschitz continuous with
respect to (u, p) in the sense that, for any bounded set K* C gr x lRl x IRn, there
exist nonnegative numbers Lr, . . . , Ln and M such that (2.1) holds for (r, x, u, p) and
( t ,x ,u , i l  in  K* .Le tu t  -  u r ( t , x )  andu2 -  u2( t ,x )  be  two C l -so lu t ions  on  the
whole S27 of (2.3)-(2.4). Then, Theorem2.l assures the equalrty u1(t,x) - uz(t,x)
in a neighborhood of {r - 0, x € IRn} in S2r. The question arises as to whether this
equality can be extended to the entire domain Qr. It seems to us that there is no standard
procedure for joining a point (r0, 

"0) 
€ Qr to the hyperplane {t - 0, x € IR"} by

consecutively gluing pyramids of the form

A g  { Q , x )  i  a 1  1 t  1 a 2 ,  c t * L i t l x r l d . i - L i t  ( i  - L , . . . , n ) l  ( 2 . 5 )
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where

l lu( t ,  x)  l l t l  <  [ ( t ) .  [ t t  +  lx l ) lTu( t ,  x) l \x l  +  t t (x) lu( t ,  f l l ]

for almost every r e (0, T) andfor all x e W, then
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0  <  a t  <  a . 2  < 7 ,  c i  1  d i ,  0  < 2 L i a 2  <  d i  -  c r  ( i  -  1 ,  . . . , n )

so that Theorem 2.1 can simultaneously work therein. The reason is that the relations
between Lr, . . ., Ln and A are bilateral and somehow awkward. In fact, L1, . .. , L,
are to some extent overdetermined by A. Specifically, for each application of the
theorem in such a procedure, A rnust be ready-given. Thus, by (2.5), a tuple
(Lr, ..., Ln) is predetermined. However, the further condition (2.1) is needed for
( t ,x,u,p),  ( t ,x,v,q) € A x K, wi th K being a compact set  in IRl  x IR'
such that (2.2) holds. Therefore, L1 L, are necessarily Lipschitz constants with
respect to pt pn of the function f _ f (t,x,u, p) restricted to A x K. But
these constants might unfortunately become large, say, substantially greater than the
above-predetermined values Lr, ..., Ln.So we would reduce A, and hence possibly
fail to touch the hyperplane {l : 0, x € R'} in such a procedure emanating from a
point (to, *o) € Or.

All the preceding remarks suggest that we should make an attempt to develop the
theory of first-order partial differential equations. The aim of this section is to prove the
following. (We put off discussing its applications to the uniqueness problem to Secs. 3
and 5.)

Theorem 2.2. Let u : u(t,x) be afunction in V(Q7). If there exist a nonnegative

function p - p(x) Iocally bounded on W and a nonnegative function ( - l(t) in
Lr (0, T) such that

l u ( t ,  x ) l < exp lro, Io'
'l

{ . ( t )d t  
l .  

sup lz(0,  y)1,
-  

; r ;<( l+ lx l )  exp fo  t14at - t

(2.6)

(2.7)

where

C(x) 9 r.rp { lp$)l  ' ( . ( t )dr -  11. (2.8)

Remark l. We would like to call (2.6) a "differential inequality of Haar type" because
its form looks like that of Haar's differential inequality (see 124, Corollary 37.1D.

Remark 2. We show by the following example that the Lipschitz continuity of u :
u(t, x) is essential in Theorem2.2.

Let J C [0, 1] be the Cantor set, i.e., the set of all numbers of the form

*oo

t 9: 
lo,l3k (2.g)
k : l

where each cp is either 0 or 2. The set ,I is complete, nowhere dense on IRl, and is of
Lebesgue measure 0.

lyl < (1 + I '  D"*p Io
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We define a function u - w(t), which is called the Cantor ladder, in the following
way (see t14l).For / e .I given by (2.9), we take

+oo

ur1rl d9 
Dto/zo where q,Ei ckl2.
k : I

If (a, B) is an open maximal interval in (0, 1)\,f ,then a, fr e J and ur(a) : u(F). We

setfor t e (u, fr):w(t) I u(a) - w(P)_ const.Itfollows thatw - w(t)iscontinuous
on[0 ,  1 ]andtha tdw/d t  -0  a lmosteverywhere in (0 ,  1 ) .  In fac t ,dw( t ) /d t  -  0 fo r
r  e  (0 ,  1 ) \ / .

Setting u(t,x) 
di 

ur(r) for (t,.x) € S21, wo easily see that u - u(t,x) belongs to
, / ,  ,  \

c1(((0,  1) \ / )  x IRn 
)  

nr( to,  t l  , .  R')  wi th z(0,  x)  :  0,

ou(t ,  x) /ot  -  o Y ( t ,  x)  e ({0,  1) \ / )  x IRn.

The function u : u(t, x) thereby satisfies all the conditions of Theorem2.2 except for
the Lipschitz continuity. This explains why (2.7) does not hold: u(t, x) t' 0.

Proof of Theorem 2.2. For an arbitrary point (to, *0) € S2r, we must prove that

r - ^ f t o r
lu( to , r0) l  <  

"*n lc t "0 l  /  
t@dt) .  sup lu(O,  y)1.  (2.10)

1y1<(1* lxo l )  " * ,  I i  
t ( t )d t - r

LetE, -Et I  { r  € IRn :  lx l  < r} , r  > 0.  Denoteby Er(10,"0) the setof  a l l

absolutely continuous functions -x _ x(r) from 1 g 
[0, r0] into IR' which satisfy almost

everywhere in 1 the differential inclusion dx(t)/dt € But).(t+lr1r;1; subject to the
constraint xG\ : xo.

From [7, Theorem VI-13], it follows that E7(r0, 
"0) 

is a nonempty compact set in

C ( 1 ,  I R " ) . T h e s e t s  Z ( t , t o , " 0 )  I  { * @ : r ( . )  €  E r ( r 0 , r 0 ) } * d f  ( r 0 , " 0 )  d i  
{ ( z , x )  :

r € I, x e Z(r,to,*o)) arethereforecompactsetsinlRn andlR'*l,respectively,for
all t e 1. Moreover, by the converse of Ascoli's theorem, the multifunction

Z(. ,  to,  *o) ,  I  -+ IRn

ts contlnuous.

We now define a real-valued function I : g(r) on 1 by setting

s @ 9 j  m a  { l u Q , x ) l  :  x  e z ( t , t o , " o ) } .

Then according to the maximum theorem (see [2, Theorem I.4.16]), the fact that
u : u(t,x) is continuous on f(ro,x0) implies that g - g(t) is continuous on 1. In
addition. we have:

Lemma 2.3. For an arbitrary number g e (0, to), the function g - gQ) is absolutely
continuous on 10, tof.

The following assertion will also be needed.
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Lenma 2.4. We have for every t e I the inclusion

Z( t ' t0 ' "0 )  c  F , r * , r ' , ,  
exp f ,  t ( r )d t - r '  

(2 ' r r )

Proof of Lemma 2.4. For each r7 > O,let

mr(t)9 cr + lrol * ry) exp [" n1r1o, - , .
J t

The function m, : ffin(f) is absolutely continuous, positive on / with the derivative
dmr(t)/dt - -{(t). (t + mn!)). To prove (2.1t) we have only to show that

lx( r ) l  <mr( t )  Yt  e I  (2 .12)

for all x : x(t) in Er G0 , *o) and for all 4 > 0.
Since mr{to)

mn!) > lx(t)l whenever t e (t0 - 6, r0l.
Assume that(2.12) was false, so that there exists tt e 10, r0) such thatmr(t') < lx(t')|.

Setting I E: sup {r e [0, r0) : mr(t) < lx(t)l] . to, we would have:

l"(rt) l  -  m,t7r);  lx(t) l  I  f f in(r) v t  e 1tL, to1,

and
dmr( t ) /d t  -  - [ ( t ) .  ( t  +  mn?) )  <  - { ( t ) . ( r  +  l " ( r ) l )

< - ldx( t ) /d t l  <  d lx( t ) l ld t

almost everywhere in (r1, r0). On the other hand,

St' 
amr(t) 

dt > St' 
airT)l 

o,
J t t  d t  J t t  d t

if and only if

* r { to )  -  m4Gr)  -  mn{ to )  -  l * ( tL ) l  t  I r ( r0 ) l  -  l " ( r1 )1 .

Hence we obtain a contradiction. This provesLemma2.4. r

Proof of Lemma 2.3. Since u : u(t,x) is locally Lipschitz continuous in S27, there
exists a number L > 0 such that

l r ( t r  ,  x r )  -  u ( tz ,  * ' ) l  .  r (V t  -  t2 l  +  l * t  -  * ' l )

y (tr , xr), (t2, x2) e (le, tol * Rn) n f (r0, r0).

By the absolute continuity of the Lebesgue integral, Lemma 2.3 wlll be proved if we
can show that

tg(rl) - se.:rt < L[t,' - Pt +(t + t'0 ,, . 
,,[*le)dt 

."-n 
I: ut>atf 

e.,,)
v tr , t2 e lo, to1.
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Now let

s( t \  .  g( tz)  and sQ\ -  lu( t t ,  r ( /1)) l

for some x : x(t) in El (r0, 
"0). 

Since xQ\ e z(tz, to , xo), we have

0 .  g ( r1 )  -  s ( t \  -  lu ( t t ,  x? \ ) l  -  sQz)

<  lu ( t r  ,  x1 \ ) l  -  lu ( tz ,  x7 \ ) l  .  l r ( t t  ,  xQr ) )  -  u ( tZ ,  x7 \ ) l

< rfitt - Pt+ tx(rl) - xl\tf - Ll'" - a +l | #uro,ll
v r , t z l

- r ' r r  - t ' t+  [  n r r ' ( r+  w@l)d t ] .=L lV _t  t+  
, ,1 , , , , r r *

Therefore, (2.13) follows from Lemma 2.4.The proof is then complete. I

Going back to the proof of Theorem2.2, we now set

h(t>Y [ '  ,G)0, for t  € [0,  z] .
Jo

By Lemma2.4 and the definition of g - g(r), the inequality (2.10) will be obtained

if we show that

se) < s(0) .exp[c1xO) .h@] v t  e [0,  r0] .  (2.14)

For every 4 > 0, let

srl) I ;srol + nl ' '*p {[c('o) + n]'lt (,) + ,,ll

To get (2.14), it suffices to prove that

sG) < EnQ) V/ € [0,  ro] .  (2.15)

Leto(t) 9j Sr@ - g(t), where 4 is temporarily fixed. Then (2.15) is equivalent

to at(t)
at(t) > ar(O) Y t € [0, r0]. Assume this is false, so there exists t/ € (0, r0l such

that a(tt) < ar(0).
It is well known that there exists a set Gr C (0, ?) of Lebesgue measure 0 with the

property that
d h ( t ) / d t  - [ ( t )  Y t  e  ( 0 , 2 ) \ G 1 .

By the hypothesis of Theorem2.2,we find asetGz C (0, Z) also of Lebesgue measure

0suchthatQT\(GzxlRn) c Di f (z)  andthat(2.6)holdsforal l r  e (0,  Z)\Gz,x e IR' .

Since an absolutely continuous mapping preserves the measure of null sets, Lemma

2.3 implies

- " r ( r (c  nre,rot ) )  -o Yo e(o, to) ,

w h e r e G E G r U G z . S o

-rr(r(c n po, rot)) - jrqSmes(r(o nle,r't)) - o. (2-16)
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From (2.16) and the continuity of o - ro(t) on 1, we conclude that there is a number
), with

max{0, a(t')} < l < @(0) and ), e ar[0, r/]\&r(G n 10, r01).

Let

r* I inf {r € [0, //] : at(t) - r].

It is obvious that @(t*) : )., t* € (0, t')\G, and that @(t) > ), Y t € [0, /+).
Suppose

g(t*)  -  lu( t* ,  x*) l  :  g '  u( t* ,  x*) ,  e I  s igt  u( t* ,  x*)

for some x* e Z(t*, to, *o). Then one may find a function *x : *x(t) in 87110, x0; so
that A(f*) : x*. Choose a unit vector e e IRn with

I  A u  \  l a z  I
\ " , r . * ( t * , * . ) l - - l a * ( r * , " - ) l  

(2 . r7 )

The system (of n ordinary differential equations)

dv

^ ( s )  
-  ( 1  +  l y ( s ) l )  ' e

has a Cl-solution y _ y(s) on IRl satisfying the condition y (nfr.>) _ x*. Let

x1r; 
dS 

l@g1) for t e [0, Z]. Of course 1 x : x(r) is absolutely continuous on [0, T],
x( t*) :  r* ,  i111d

dx dh dy

E ( t ) :  d t ( t ) . E ( h ( t ) )  
-  t ( t ) . ( 1  +  l x ( t ) l ) . e  Y t  e  ( 0 ,  Z ) \ G 1 .

The function *x = *x(t) defined by

, . d e r I x ( t )  i f  0 < t 1 t , , ,
x x \ t ) :  

t * r ( r )  i f  r *  <  t  < f

belongs to E7(ro, ro).Hence,

x ( t )  e  Z 7 t , t o ,  x o )  Y  t  e [ 0 ,  r * ] .

This implies

e . u ( t , x ( t ) )  <  l u ( t , x ( t ) ) l  <  s ( t )  _  g a ( t )  -  @ ( t )  <  g n ( t )  - L  ( 2 . 1 9 )

for all r e [0, r*). Besides that,

e .u ( t * ,x ( t * ) )  -  lu ( t * ,x * ) l  :  ge)  -  g r ( t * )  -  co( t * )  -  g r ( t * )  - ) " .  (2 . .1g)

Furthermore, since /* e (0, Z)\G,we see that:

(i) u : u(t, x) is differentiable at (t*, x*),
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(ii) x - x(t) is differentiable at /* with
d x .

* ( t . )  
-  [ ( t + ) '  ( 1  +  l x * l )  ' e ,

(iii) Sn : gr(t) is differentiable ail* with

ds-

ff <t.> - [c (.r0) + n] . lt(,.) + nl . sr(t*) .

So it follows from (2.18)-(2.19) that

d r  . . . ' t t  d R n ,

El' 'u(t,"(/)) l  l , : ,  z ; ;( t .) '
Consequently,

Hence,
0 u .  . ,  I  0 u .  . \

e  .  
; ( t * ,  

x*)  t  ( ( t * ) ( l  *  lx* l )  ' \e '  e  '  
axQ* '  

x*) l

=  [c("0)  + n] ' l t1)  + ' i ]  '  l lu( t * ,x*) l  *  r '1 .

Because 4 > O and,l. > 0, the last inequality together with (2.I7) imply

l#u., '.)l > rG) ftt * l".l) ' 
l#r'., '.)l * c@o) 'tu(t*' ".)l] ' Q'20)

On the other hand, since x* e Z(t*, to, *o),Lemma 2.4 yields

l x * l  <  ( t  *  lx ' l )exp [ "  n( r )or -  1  <  (1  +  lx ' l )exp [ '  n1r1o,  - r .
- 

Jt* Jo

Therefore, the formula (2.8) gives C(*o) Z ll.t(x*)1, which shows that (2.20) contradicts
(2.6).It follows that there exists no / e [0, r0] withro(tt) < ar(0). Thus, a(t) > ar(0) >

0 for all r e [0, r0]; the inequality (2.15) is thereby proved. This completes the proof of

' #(,*, *(r-))+ (#u.r,' #(r., "rr.y;)
= [c ( "0)  +  n ] . l t ( r . )  + ' i ]  .  g r ( t * ) .

Theorem2.2.

3. Uniqueness of Globat Classical Solutions to the Cauchy Problem

The advantage of Theorem 2.2, as we have mentioned in the introduction, is that it

allows us to discuss the so-called g lobal semiclassical solutions,which are just absolutely

continuous in time variable, for first-order nonlinear partial differential equations with

time-measurable Hamiltonian. This will be taken up in Sec. 5, where an answer to a

problem of Kruzhkov [20] is given. In the present section we restrict ourselves to the

caseof C1-solutions, dealingwith some applications of TheoremZ.2to stabilityquestions

concerning the Cauchy problem in the large for partial differential equations of the first

order. Even in this "classical case", using the a priori estimate (2.7)-(2.8) of Theorem

2.2,wefindsomenewuniquenesscriteria(posedontheHamiltonianf - f (t,x,u, p))

for global Cl-solutions of (2.3)-(2.4). Criteria of continuous dependence on initial data

for such solutions may also be obtained. Let us flrst repeat the definition of solutions to

be considered.



10 Tran Duc Van, Nguyen Duy Thai Son, and Le Van Hap

Definition, A function u - u(t, x) in cr (ail n c(t0, T) x IR') rs cailed a gtobal
Cr -solution to the Cauchy problem (2.3)-(2.4) if it satisfies (2.3) everywhere in {27 and
(2.4) for all x e R".

As was shown in the introductory comments of Sec. 2, for the uniqueness of global
Cl-solutions, the following result may be invoked instead of Theorem2.l.

Theorem 3.L. Suppose f - f (t, )(, u, p) satisfies the following condition: there exist
nonnegative numbers L, M such that

l f  ( t , x , u , p )  -  f  ( t , x , u , e ) l  <  L ( l  +  l x l ) l p  -  q l *  M l u  -  u l  ( 3 . 1 )

f o r a l l  ( t , x , u , p ) ,  ( t , x , u , q )  e  O r  x  I R l  x  W . I f  u 1  -  u r ( t , x )  a n d u z :  u 2 ( t , x )  a r e
global Cr -solutions to the problem (2.3)-(2.4), then ur!, x) : u2(t, x) in f|ar.

Proof. Consider the functionu : u(t,x) ! utT,x) - u2(t,.r). Then u(0,x) = 0.
Furthermore, by (3.1) and the definition of global C1-solutions, we have

l o u .  . l  l ^ ,  o u t  . \  ,  o w  . l
lAr , ' t ) l  l f  

( t ,  * ,ut( t ,  x) ,  tG,"))  
-  f  ( t ,  * ,u2(t ,  x) ,  #<r, .>) l

l \ u r  \ u c  I<  L ( r  +  l x l )  l i ( r , x )  
-  

a x ( t , x ) l +  
M l u l ( t , x )  - u 2 Q , x ) l

-  L( t+ t r  t )  l#u," ,  |  *  Mtu( t ,  x) l

for all (t,x) € Or. Now it follows from Theorem 2.2thatu(t,x): 0 in Q7. This
proves the theorem. I

The next sharpening (and its corollary) of Theorem 3.1 will give some useful
uniqueness criteria for global C1-solutions with bounded derivatives.

Theorem 3.2. Suppose f - f (t,x,u, p) satisfies the following condition: for any
compact sets K1 c Rl, K2 C lFtn, there exist a nonnegative numbe, L *, and a
nonnegativefunctiofl l trxt,rz: ltrxr,rz@)locallyboundedonW suchthat(3.1)withL*,
afld &*r*r@) in place of L and M, respectively, holdsfor all (t, x,u, p), (t, x, v,q) i
or x Kr x K2. If u1 - ur(t,x) and u2 - uz(t,x) are global cr-solutions to the
problem ( 2. 3 ) - ( 2.4 ) with

l o u i

,,,:i3n, li('' ")l = +* (j : r'2)'

then u1(t, x) : i lz(t, x) in f)"r.

Proof. Letu - u(t,r) be as in the proof of Theorem 3.1 and let

d e r  l | u i .  . l'= 
Effiu,:y3r. l#u'')l 

+oQ' Kzgit cw' Lder Lrz, Q'2)
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x k  E :  e k , k )  x  . . .  x  ( - k , k )  c  R . '  ( k  -  1 , 2 , . . . ) .

t? tlmes

For an arbitrarily fixed Tt e (0, Z) , we consider the sequence t Pk )ilj of the following
parallelepipeds:

P k v -  ( o , T ' ) x x k  - { { t , x ) :  o <  t  1 T ' ,  x e x k l .

obviously ,  Pr  c  P2 c. . .  c  Pk c. . .  and- . { " -  - {2r , .Next , take

"o 
9 r,rg4 mix, lu1G,x)1, Kf I  [-ro ,  ,sft ]  c IRl.

j : l '2  u,x)eFk

We now define a function p - p(x) by setting

t t ( x ) y I r - ' ' ( x )  
x  e x t '

I  F * o * r , * , ( r )  i f  x  e  Y k + t  \ X k  ( f o r  k : 1 , 2 . . . ) .

It follows that p, - t-t(x) is locally bounded on IRn. Moreover, (3.2)-(3.5) together with
the hypothesis of the theorem imply

l \ u I | , ^ " | u t

l ;U,r) l  l f  
( , ,  * ,  u1(t ,  x) ,  #( , , ' ) )  

-  f  ( t ,  x ,  u2(t ,  x) ,  #<, , . l ) l
< L(r+ lx l )  lYu,D 

-  
#Q, x)  

|  
+ r t " l  lu t l ,  x)  -  uz| ,  x) l

l a u  I
L( r  +  l "  l )  

|  *  
( t ,  x ) l+  w@)lu( t ,  x )  |  in  Q7, .

(We may check this inequality first for (t , x) in Pr, and then for (t, x) in each pk+t \Pr.)
Theorem 2.2 thercfore shows that u(t, x) = 0 in O7,. Since Tt e (0, Z) is arbitrarily
chosen, the conclusion follows. r

Corollary 3.3, Let f - f (t, x, u, p) belong to Cr(Or x IRl x R") and be such that
thefunction 

v: v(t, p)g:,,,,,r.xg"*, 
1# 

(t,x,u, p)/(r+ rrr)l

is finite and continuous on [0, Z] x IRn. If u1 - u1(t, x) and u2 - uz(t, x) are global
Cr -solutions to the Cauchy problem (2.3)-(2.4) with

l o u i

,,,ii3n, l#(''')l = +* (j : r'2)'

then u1(t ,  x)  :  u2(t ,  x)  in {27.

1 1

(3.3)

(3.4)

(3.s)
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Proof. For any convex compact sets K1 C IRl , Kz C IRU we see, by assumption, that

L "^ 
V- mix v(t, p) ( *oo,^2 

o,De[o,TlxK,

and that the function

& *,,*, - trr rr,,., (t) I I-n4T - - ly(t , x, u, Dl
( t , u .p )e lo .T l xK lx  Kz  I  du  I

is continuous, and hence locally bounded on lR'. It is easy to check that (3.1) with 2.,
a , rd&*r , * r ( " r ) inp laceof  Zand M, respec t ive ly ,ho lds forany  ( t , x ,u ,p ) , ( t , x ,u ,q )  e
f,2r x Kr x K2.The corollary thereby follows from Theorem 3.2. r

We conclude this section with the following result of continuous dependence on initial
data for global Cl-solutions. (Here the continuity is with respect to the topology of
uniform convergence on compact sets.)

Theorem3.4. Suppose f  -  f ( t ,x,u,p)sat isf iesthecondi t ion(3.1) inTheorem3.I .
Let ui - uj(t, x) (i - 1,2) be global Cr -solutions to the equation (2.3) with the initiat
conditions

ui(O, x)  :  Qi@) on {r  -  0,  x e IRn},

where Qj : Qi@) (j : 1,2) are givenfunctions of class C0 onR'. Then

lur(t ,  x) - u2(t,  x) l  < exp(Mt) .  sup l fr j)  -  Qzj) l
; y ;< ( l+ l x l )  exp ( I t ) -1

for all (t, x) € S)r.

The proof of this theorem will be left to the reader.

4. Generalizations to the Case of Weakly Coupled Systems

We now examine how the case of systems of first-order partial differential inequalities or
equations can be treated by the preceding method. Let m be a positive integer. Consider
the class

V* (sz i l 9  Y (o r )  x  . . .  x  V (Qr ) .
m times

Each element of V* (Or) is therefore a vector function, namely,

u  :  u ( t ,  x )  :  ( u t ( t ,  x ) ,  .  .  . ,  u m ( t ,  x ) )

from O7 c pn*l into IR- such that a; : uiQ,x) belongs to V(Q7) for every
j  e  { 1 ,  . . . , m 1 .

First, the following result may be proved in much the same way as Theorem2.2.
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Theorem 4,1. Let u _ u(t, x) be a vector function in V* (Or). If there exist a
nonnegative function LL : 1t (x) Iocally bounded on R" and a nonnegative function
4 - [.(t) in Lt (0, f) such that

l0u1G, x) / } t l  <  t ( t ) .  [ t t  +  lx l ) l \u1Q, x) /0x l

* p,(x) 
o1T,^lup(t,  f l l f  ( i  :  r ,  . , . ,m)

for almost every t e (0, T) andfor all x eIF..", then

max lu1(t, x) | <
j : l ' " ' 'm

r f t . . l
exp fclx) l^ tO>atl .  sup , ,T*_ lu1(0,t)1,

Jo r  
1 r ;< ( l * l x l )  exp  l l  uaa ,  - tJ : t " " 'm

where C(x) is given by the formula (2.8).

Proof. For an arbitrary point (t0, *0) € Or, we must prove that

m: lx  w; f to . "0 ) l  .
j : | " " , m '  "  

'

f  
^ ' o

' *p fct"ol /" 
( ' ( t)dt]  

ryr51r*lx0,, l l l / ,  t( t)dt_t irr,* lu1(0' 
i l '  

@.2)

Let us continue using the notations 1 I [0, tof, Er(to,*o), Z(.,t0,x07, h1.1, G1
introduced in the proof of Theorem2.2 and then define

s@ Ei 
oryy *sk Q)

(4.1)

(4.3)

for/ e ^I,where

g k G ) H - *  l l u r , Q , x ) l  ;  x  e  z ( t , t o , x \ l  ( k  - 1 , . . . , f f i ) .  ( 4 . 4 )

It follows from Lemma 2.3 that, for any number 0 e (0, r0), each function gk : gk Q)
is absolutely continuous on 10, tol and so is the function g - gQ). Moreover, they are
all continuous on the whole 1. Still as in the proof of Theorem2.2, we see that (4.2) wlll

be obtained if we can show that (2.14) holds. To this end, settin g @(t) Y SrQ) - SQ),
with 4 > 0 temporarily fixed and

gr(t) I lrrol + n]-.*p {[c("0) + n]. ln<t> + n,l l ,

we need only claim that a(t) > @(0) (- n > 0) for t e I. On the contrary, suppose
there exists tt e (0, r0l with o(t') < al(0).

By the hypothesis of the theorem, one finds a set G2 C (0, Z) of Lebesgue measure
0 such that

Ar\(Gz x Rn) Cnf:rDlf(uD (4.s)
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and that (4.1) is satisfied for any t € (0, T)\Gz, t € IRn. From the above, it follows that

(2.16) still holds where G 
dg 

Gr U Gzihence, there is a number.l. with

max{O, a(t')} < ), < a(0) and }. e ar[O, t/]\ar(G n [0, /0]).

Now take

(0, r)\G ) /* 
dg 

inf {r e 10, t ' l  : ro(t) - r}

and 1 < j < m suchthat

g(t*) - gi G*) - luj(t*, x*\ : e .ui(t*, xx), e 9 rign uj(t*, x*) (4.6)

for some x* e Z(t*, to, *o). Next, choose a unit vector e e IR' with

(,,, Yr,.,'.)) -l#,*,'.rl (4.7)

Finally, let y - y(s) be an lRn-valued function continuously differentiable on IRI

suchthat t (h1t .1):  r , r  ard dy/ds -  (1+ ly l ) .e,andletx(r)  
d9 

y@@)fort  e [0,  Z] .
Analysis similar to that in the proof of Theorem2.2 shows that

€  .u j ( t , x ( t ) )  <  lu j ( t ,  x ( t ) ) l  <  s ( / )  -  ga( t )  -  o ( t )  <  gn( t )  -  ^ .

for all r e [0, r*), and that

e .u j ( t* ,  x( t*))  -  lu j ( t* ,  x*) l  -  g(r*)  :  gr( t*)  -  a( t*)  -  gr( t*)  -  L.

Consequently,

*l ' .uiG,"('))] l,:,. - fr<,.>.
This would give

l | u ,  I
l - ; i ( t * ,x*) l  >  l ( t * ) .
l d t  I

>  [ ( t * ) '

ftt * l'.t) ' lYu., ".)l * c(x'; ' o51T,^tur,Q*, '.)t]

ftt * l"-l) ' \Yr,.,".)l 
+ lpc(x*)l ' o!?f,*lur,(t*, '.)l],

a contradiction with (4.1). The proof is therefore complete. I

Remark. Theorem 4.1 can be used to investigate the stability of global solutions to
the Cauchy problem for weakly-coupled systems, i.e., systems of first-order partial
differential equations of the form

0 u 1 / 0 t  *  f i Q , x , u , | u i / 0 . r )  -  Q  i n  O 7  ( i  :  I , . . . , f f i ) ,

u(0,  x)  -  (Or(r) ,  .  .  . ,  Q^@)) on {r  -  0,  x e IRn}.

(4.8)

(4.e)
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The systems (4.8)-(4.9) xe of special hyperbolic type because each equation contains
first-order derivatives of only one unknown function. Since (classical) solutions of
elliptic equations do not depend continuously (with respect to the topology of uniform
convergence on compact sets) on initial data, theorems of the non-stationary type that we
have studied in this paper cannot be expected to apply to partial differential equations or
inequalities of elliptic type. (First results on second-order partial differential inequalities
of parabolic and hyperbolic types were obtained by Nagumo and Simoda [23] and by
Westphal 1371.)

For our next discussion, we need to extend the notion of comparison equation given
in Szarski l24lto the Carathdodory case. Consider an ordinary differential equation

1 1 1 t  :  p ( t , w ) , (4.10)

where the functi on p - p(t, w) is defined on D1 
ui (0, *oo) x [0, *oo) - {(t, w) :

t > 0, u > 0).The following Carath6odory conditions are always assumed.

(1) For almost every r e (0, *oo), thefunction [0, *oo) ) w + p(t, w) is continuous.

(2) For each u € [0, *oo) , the function (0, *oo) > t > p(t, w) is measurable.

(3) For any r e (0, +oo), there exists afunction mr : mr(t) in Llo"(0, *a) with

l p ( t , w ) l < m , ( t )  V u  e  [ 0 , r ]

for almost every r e (0, *m).

In this situation we call (4.10) a Carathdodory dffirential equation on D1. A solution
of t tonaninterval  I  C (0,+oo),  wi th int /  + A, means afunct ion w -  w(t)  > 0
absolutely continuous on each compact interval J C I (absolutely continuous on I for
short) such that

w'  ( t )  -  p( t ,  w(t))

almost everywhere in 1. We refer to Coddington and Levinson [9] for what concerns
the local existence of a solution of (4.10) through any given point (r0, ,0) e intD-'.
Moreover, every such solution can be extended (as a solution) over a [eft, right] maximal
interval of existence.

Definition. A Carath6odory dffirential equation (4.10), with p(t, w) > 0 on D',
p(t, 0) : O for almost all t > 0, will be called a comparison equation if w - w(t)
is in every interval (0, y) the only solution satisfying the condition lim w(t) - g.

Remark. Let !. - (.(t) be a nonnegative function Lebesgue integrable on each bounded
in te rva l  (0 ,y )  CIR,  ando -o (w)  a func t ionof  c lassC[0 , *oo)suchtha to(0)  -9 ,

o(w) > 0 as u.r > 0, and ft1t1o1w))dw : *oo for every 6 > 0. Then (cf. 124,
Example 14.21)

1 5

and
: 0

y1' :  ( .( t)o (w) (4.rr)
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is a comparison equation. In fact, assume the contrary that (4.11) admits a nonzero

solution w - u(t) on some interval (0, y) with lim w(t) - 0. Letting u.'(0) 9r 0, from

this we easily find a nonempty subinterval (tr,t2l of (0, y) such that w(tr) - 0 and
w(t) > 0 for all t e (tr , tzf.It follows that

tw( t2 l  du  f  
, '  u , ( t )  f , '

|  _: : :__ I  __r_+dt_ t  Kt)dt  (*oo,
l o  o ( u )  J t ' o ( w ( t ) )  J t '

a contradiction. Therefore, (4.11) must be a comparison equation. Motivated by this fact,
we propose the following:

Proposition 4.2. Leto - o(w) be of class C[0, *oo), andl. - {(t) > 0be Lebesgue
integrable on each bounded interval (0, y) clF.with,fo** (.(t)dt : *oo.
(l) If (4.11) is a comparison equation, then so is the equation

' t i l '  : o (w). (4.r2)

(ii) Corwersely, under the conditionessint [.(t)

equation, then so is (4.11).

Proof.

> 0, if moreover (4.12) is a comparison

(i) Letwr -- rrr(r)beasolution of @J2)onsomeinterval (0,yr)withlim wr1t1 -9.

Find a number y2 > 0 such that

v7 : fo" 
n{r)or- (4.r3)

Setting w2 G) I , t (ft l.6at), *" see that u)2 : w2 Q) is a solution of (4.1 1)
on (0, y2) with 

lyor'(r) 
- 0. By assumption, w2(t) = 0 on (0, y21. Hence,

wr G): 0 on (0, yr). This shows that (4.t2) is a comparison equation.
(ii) Let (0, *m)

1D2 : w2 Q) be a solution of (4.I1) on some interval (0, y2) with lim w21t1 - g.

First, define a number yr > 0 by (a.13). Then setting wr Q) Y *2@<r>),we also
see that u)r : wrG) is a solution of (4.12) on (0, y1; with,ts rt G) - 0 (cf. [13,
Proposition 3.a(c)l). The rest of the proof runs as before. I

In the sequel, for each function g - g(t) defined and continuous in a certain interval
(0, r0), let Pr denote the open set {/ e (0, r0; : g(t) > 0}. Here is an elementary
property of comparison equations:

Proposition 4.3. Let (4.10) be a comparison equation and g - g(t) a given function
a b s o l u t e l y c o n t i n u o u S o n S o m e i n t e r v a l ( 0 , r 0 ) s u c h t h a t , t 5 3 s ( r l <

g'(t) < p(t, g(t)) almost everywhere in Pr. Then gG) < 0 for all t e (0, r0).
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Proof. On the contrary, suppose there exists r1 e (0, /0) with ,l I gQL) > 0. Setting

g(0) 
dg,f !6s(r l  

andt2 
d3r 

sup{r  € [0, /1)  :  g( t )  -  0] ,  we seethat0 .  t2 .  t r ,

gQ\ - 0 and (t2, tr) C Ps. Hence, by assumption,

g'(t) < p(t, sQD almosteverywhercin (t2,tr). (4.14)

Now take

^ , .  ,  de f  I  o ( t ,max{o ,g( r ) } )  I f  t2  < t  1 to ,  u . '>  max{O,8( r ) } ,
b G , w ) = { ' ' '  . ,  ^  ^r \ - ' * '  

I p Q , w )  r f  t 2 < t 1 t o , 0 < r l < m a x { O , g ( / ) } .  
\ - - - - l

The above-mentioned Carath6odory conditions (1)-(3) are clearly satisfied for p :

bQ,w) on (t2,r0) x [0, *oo). Let w - w(t) be a solution through (tr, url; of (4.10)

with p in place of p, andlet (r3 ,lf c Q2, ttl be its left maximal interval of existence.

We next claim that
(0 <) w(t) < g(t) Y t e (t3 , trf .

Assume (4.16)is false. Then one would find a nonempty interval (ra

that
w( t )  >  sQ)  v t  e  ( t4 , ts ) ,

with
wQ\ -  sQ5).  (4.18)

It follows from (4.14)-(4.15) and (4.17) that gt(t) < p(t, 7QD : hQ, w(t)) - wt(t)

almost everywherc tn (t4 , ts). Thus (4.18) implies that g(r) > w(t) for all t e 1ta , ts\,

which contradicts (4.17). So (a.16) must hold.
We proceed to show that t3 : t2.In fact, if (0 <) t2 . t3, then (4.15) together with

Carath6odory's condition (3), where r 
di 

max{S(r) : t e lt3, trfl,prove that the limit

)yrr(r) 
exists and is finite. Hence, w - w(t) could be extended (as a solution of (4.10)

with p in place of p) over an interval (t6, tr\ ) V3, /11, which is impossible.
Finally, (4.15)-(4.16) shows that w - w(t) is indeed a solution through 7tr, wt) of

(4.10) on (t2,r11 with 
ly,*<rl 

- gQ\ - 0. settrng w(t) 
ui 

0 fot r e [0, t2f, we

obtain a nonzero solution of (4.10) on (0, r1) which tends to 0 as t goes to 0. Thus we

arrive at a contradiction. This completes the proof. r

We can now combine the method of Sec. 2 wtth the technique of Carath6odory

comparison equations and prove the following.

Theorem 4.4.  Let  u :  u( t ,x)  be avectorfunct ioninV^(Or) wi thui(O,x) = 0
(/ : 1 m) , and (4. 10) a comparison equation. If there exists a nonnegative function
(. - (.(t) in Lt (0, f ) such that

(4.16)

, f)  c (r3, r1) such

(4.r7)

l0u1Q ,  x)  l \ t l  <  L( t ) ( r  + lx  l )  '  l |u i  ( t  ,  x)  l \x l
+ p( t ,  

o I?L^1u1,( ,  
x) l )  ( i  :  r ,  .  .  .  ,  f f i ) (4.re)

f o r a l m o s t e v e r y  r  e  ( 0 ,  T )  a n d f o r a l l x  e I R 3 , t h e n u l ( t , x ) : 0 i n A r U  -  1 , .  . . , m ) .
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For an arbitrary point (to, *o) € S2r, it suffices to prove that

lu i?o, "o) l  -  o .

Proof.

Moreover,

max
j : 1  , . . . , m

(4.20)

(4.22)

(4.24)

We shall continue using the notations I 
di 

[0, r0], Er(r0, xo), Z(., t0, x0), h(.), Gr
introduced in the proof of TheoremZ.Z (and also, of Theorem 4.I) and letting g - gQ),
go = gk G) be as in @.T-@.4). Obviously, (4.20) will be obtained if one can verify that
gQ\: 0. Sinca I : g(r) is a nonnegative function absolutely continuous on (d, rol,
with lim g(t) - 8(0) : 0 (by assumption), Proposition 4.3 shows that we need only

claim that
g'(t) < p(t, g(t)) almost everywhere in (0, r0). (4.21)

By the hypothesis of the theorem, one finds a set G2 C (0, Z) of Lebesgue measure
0 such that (4.5) and (4.I9) are fulfilled for arry t € (0, Z)\G2, x € IRn. Assume
without loss of generality that g - gQ) is differentiable at any point of (0, /0)\G, where

GEGr UG2.Nowfixanarbi t rarypointr*  e (0, /0) \Gandtake L < j  < z suchthat
(4.6) holds for some x* e Z(t*, t0, *0). Next, choose a unit vector e e W satisfying
(4.7).Let y - y(s) be an IRn -valued function continuously differentiable on IRI such

that y(nfr .>) :  x* anddy/ds :  (1 + ly l )  .e,  andletx( t )EJ y lng; forr  e [0,  Z] .
Of course (see the proof of Theorem2.2), x : x(t) is absolutely continuous on [0, f],
x( t , ) :  - r4,  and

dx

EQ) 
-  ( . ( t ) .  (1 + lx( t) l )  .  e v t  e (0,  r) \c.

x ( t )  e  Z1t , to ,  xo1 Y t  e [0 ,  r * ] .

This together with (4.3)-(4.4) implies

e . u j ( t , x ( t ) )  < l u j ( t , x ( t ) ) |  .  g i ( t )  <  s Q )  f o r a l l  r  e  [ 0 , r * ) .  ( 4 . 2 3 )

Besides that, by (4.6),

e .  u j ( t* ,  x( t*))  -  lu j ( t* ,  x*) l  :  gt  ( r*)  :  g( t*) .

Therefore, since r* e (0, /0)\G, it may be deduced from (4.23)-(4.24) that

s' Q) = *1, . u, (t, *(Dfl,-,.

Consequently, by (4.6)-(4.7), (4.19) and (4.22), we conclude that

Finally, because G has measure 0 and /* e (0, /0)\G is arbitrarily chosen, (4.21) must
hold. This completes the proof. I

s, G) < e . (0u1e*, x*) f0t, . (#(t*), e 
*(r*, "rr.;;)

< lSuj ( t * ,  x*) /0 t l  -  ( . ( t * ) (L *  lx* l )  . l |u i ( t * ,  x*) /0x l

S o( t* ,  o IT,* lwG*,  
r* ) l )  :  p( t * , lu i ( t * , " - ) l )  :  p( r* ,s( / - ) ) .
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Theorem 4.5. Let u : u(t , x) be a vector function in Vm (Or) with ui (0, x) = 0 (7 -

1, . . . , m), and (4.12) be a comparison equation. If there exist a nonnegative function
LL - p(x) locally bounded onW and anonnegativefunction [ : (.(t) in Lr(0, T) such
that
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(s.1)

lou1Q, x) /ot l  < r ( t )  f t r  + t " t l  .

+ tt(x)o(, ry*

l0u1( t ,  x) / }x l

l u r ,Q , " ) l ) ]  U -  1 ,  .  . ' r m ) (4.2s)

f o r a l m o s t e v e r y  r  e  ( 0 ,  T ) a n d f o r a l l x  e I F J , t h e n u i ( t , x ) : 0 i n A r  ( j  : 1 , ' . . . , m ) .

Proof. For an arbitrary point (to, *o) € S)r, it suffices to prove (4.20). Let us continue
using the method (and notations) introduced in the proof of Theorem 4.4.We may extend
thefunction,( - t(t)overthewhole(0, *oo)andassum":jj*fl(/) > 0.Thenby@.25)

(instead of (4.19)) we get

8'G) < CT(t)o(s(r)) almost everywhere in (0, l0)

(instead of @.2I)) for some positive constant C.By Proposition4.2(11),the Carath6odory
differential equation

y1t :  Cl(t)o (u)

is also a comparison equation. Thus (4.20) is straightforward as before.

5. Uniqueness of Global Semiclassical Solutions to the Cauchy Problem

The present section is in principle a continuation of the previous three. However, it was
actually originated in the following problem posed by Kruzhkov [20].

Let aCl-functio n e) : a(t, x) satisfy in the strip lI7 
uS 

tO, Zl x IRl the inequality

l | a ( t , x ) /7 t l  5  N l |a ( t , x ) lqx l ,  N_  co rS t .  )  0 ,

and the initial condition

a ( 0 , x ) = 0  o n  { r - 0 ,  x e R . 1 } . (s.2)

Then it is easy to show (cf. Haar-Waiewski's Theorem 2.1) that a(t, x) : 0 in flr.
Therefore, the Cauchy problem for the first-order nonlinear equation

0 u / 0 t + f ( 0 u / A x ) : 0 ,
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where f - f (p) is of class Ct (Rt), cannot have more than one solution in fl7, say, in
the class of Cl-functions with bounded derivatives. As Kruzhkov already remarked, the
same conclusion may be drawn without appeal to the differentiability of a - o(t, x)
(respectively, of the solution) or the validity of (5.1) (respectively, of the equation) at
the points in any given finite union of straight lines {/ - const., x e IR} C lI7. The
following question arises naturally: to what extent can the condition on the smoothness of
o : ot(t, x) and on the validity of inequality (5.1) in the entire strip fI7 be weakened?
For example, the Cauchy problem for the equation 0u/0t -f (3ul3x)2 :0 with the
zero initial condition u(0, x) : 0 has a continuum of piecewise smooth solutions

in fl7, such as zo - ttaG,x) I -i"{O,ulxl - u2t}, cv - const. > 0. Note that
each function ar - Lta(t, x) satisfies the corresponding inequality l0at/\tl < al\ro/0xl
almost everywhere in fl7. Therefore, it is interesting to find intermediate classes (as
wide as possible) between Ct (llr) and Lip(IIr), in which only the zero function
can simultaneously satisfy (5.1) and (5.2).These questions can be generalized to the
multi-dimensional case.

The study of this problem suggests that we should single out the widest class between
the class of continuously differentiable functions and the class of Lipschitz continuous
functions in which the Cauchy problem for a first-order nonlinear partial differential
equation has a unique global solution.

Our discussions in this section make an appeal to Theorems 2.2, 4.I, 4.4,4.5. The
condition on the validity of inequality (2.6) is clearly much weaker than that of (5.1)
in the entire domains of the coffesponding functions under consideration. Moreover, it
should be noted (see Sec. 1) that

ct(ai l  n c( [0,  z)  x IRn) c y(or)  c Lip([0,  z)  x IRn).

The smoothness requirement on functions in V(Q7) is really weak enough: roughly
speaking, these functions need only be absolutely continuous in time variable. By the
previous sections, the class y(Ar) would be nominated as best candidate for our
discussion concerning the above questions for the Cauchy problem (2.3)-(2.4). We
therefore arrive at the following definition of generalized solutions:

Definition. A function u. : u(t, x) in V (Ar) is called a global semiclassical solution
to (2.3)-(2.4) if it satisfies (2.3) for all x € W and almost all t € (0, Z) and if
u(0, x) - Q@) for all.r € IRz.

Here,theinitial dataQ - Q@) isagivencontinuousfunctiononlR'.TheHamiltonian

f - f (t , x, u, p) is always assumed to be measurable in r € (0, Z) and continuous in
(x, u, p) € IR' x lRl x IRn. In this section, we investigate the uniqueness of the above
global semiclassical solution. Further, an answer to Kruzhkov's problem will be given.

The easy proof of the following uniqueness criterion will be left to the reader.

Theorem 5.1. Suppose f - f (t,x,u, p) satisfies thefollowing condition: there exist
a nonnegative function p - p(x) locally bounded on Rn and a nonnegative function
4 - ,\t) in Lt (0, Z) such that

l f  ( t , x , u , p )  -  f  ( t , x , u , q ) l  <  l ( t ) . t ( l  +  l x l ) l p  -  q l +  p ( x ) l u  -  u l l  ( 5 . 3 )
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€ IRn x IRl x W. If
solutions to the Cauchy

for almost every t  € (0,  f )  and for al l  (x,u,  P),(x,u,q)
ur - urQ, x) and u2 : u2(t, x) are global semiclassical
problem (2.3)-(2.4), then u1(t, x) : uz(t, x) in V-r.

Remark. Condition (5.3) is satisfied if and only if for some positive function (. - I(t)

in Lr(O, r), the function

gr x IRl  x IR'  )  ( t ,  x,  u,  p)  > f  ( t ,  x,u,  p)  / l l . ( t ) ( l  + lx l ) l

is Lipschitz continuous with respect to p uniformly in (t,x,u) € Qr x lRl, and is

Lipschitz continuous with respect to z uniformly in (t, x, p) e (0, Z) x X x IRn for

every compact set X C IR" (i.e., uniformly globally in (t, p) and locally in x).

A useful uniqueness criterion for global semiclassical solutions with essentially
bounded derivatives is given by the next sharpening.

Theorem 5.2. Suppose f - f (t,x,u, p) satisfies the following condition: for any

compact sets K1 C IRI , KZ C IFtn, there exist a nonnegative function .t*, : l.*r(t) in

Lr(0,7) and a nonnegative functiofl Fxr.rz : ltrrt,xz@) Iocally bounded onIF{ such
that (5.3) with {.*, and &*r,*, in place of (. and p, respectively, holds for almost every
t  € .  (0 ,  Z )  andfor  a l l  (x ,u ,p ) , (x ,u ,q )  €  IR 'x  x  Kr  x  K2.  I f  u1  -  u r ( t , x )  and
uz : u2Q, x) are global semiclassical solutions to the problem (2.3)-(2.4) with

l \ u i  .  I

;:i:l lr,l iQ,')l 
. +* (i : r,2),

then u1(t, x) : uz(t, x) in f,2r.

Remark. If f - f (t, p) depends only on t, p andis of class Cl on [0, Z] x IRn, then
the condition of Theorem 5.2is satisfied. In this case Theorem5.2 solves the problem

of Kruzhkov (see Corollary 5.4later).

To prove Theorem 5.2,we need the following:

Lemma 5.3. Let t - rlr (x) be a locally Lipschitz continuous function of x onN . If it

is dffirentiable in the whole Rn , then

t \ t b  t  t | t h . , t
e s s s u p l * ( x ) l  -  s u p  l * ( " ) l  ( ;  -  1 , . . . , n ) .

xeR.n- |  dJi I  r6pn I dJl I

Proof. Fix any i e {1, . . . , n}.It suffices to treat the case when

d e f  |  0 t  . '  , l'' : t::ilypla", (x.)l < +oo.

Let us write x : (x',x;) instead of x : (xt, . . ., xn),where

* '  Y  ( x t ,  .  .  . ,  x i - I ,  x i + 1 ,  . . . ,  x n ) .
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Then for almost all (with respect to the (n - l)-dimensional Lebesgue measure)
x/ € IR'-l, we have

u 0{r rl
l l  ( x ' . . ) l l
l l  3 x ;  

'  ' l l l m 1 p t y <  s i .

Since the function V(x' ,.) is absolutely
that

continuous on each bounded segment, it follows

lrl, (x' , *|1 - ,1, (x' , *?)l - I',' #(x'' x)dx' I s '' l*l - *71 (s.4)

for almost all (with respect to the (n - l)-dimensional Lebesgue measure) 
"r 

. pn-l

and for all x!, *? e IRl. From the continuity of ,b - ,/r(x) and from (5.4), we conclude
that

It@', *|1 - r lr(* ', *I l  = silx,r - xl l

for all 1x', x;r),1x', xf) e IR,. Therefore,

t \ i l r  I

l*(-) |  = ' '

for all r € IRa. This proves the lemma. r

Proof of Theorem 5.2. According to the definition of V(O7), Lemma 5.3 shows that

sup  |  !g , " ) l  : . r r rup l  Y< , , *> l  ( /  -  1  ,2 ;  i  -  1 , .  . . ,n )
_xeR, I d.t i  I  xeRn t dXi I

for almost allt e (0, Z).Taking the essential supremum over r e (0, Z), we find that

ess sup sup | ! g ,") | : ess sup lY <, , *>1.
t e ( O , T )  x e R ' l d r i  |  ( t , x ) e g r t  o x i  I

Consequently, by assumption,

d e f  l \ u i ,
r :- max esssup sqp l:(t, r)l *oo. (5.5)

j : | , 2  re (6 , r )  xeRn  I  dx

LetXkbeasin(3.3); KzEiE, CfR'; l(.) $-j txz(.).Foranarbitrari lyfixed Tt e (0,7),

we consider the sequence {Pk}fI of the following parallelepipeds:

p k q 9 : ( o , T ' ) x x k  - { { r , x )  :  o <  t  < T ' ,  x e x k l .

Continue using (3.4). Then the functiorr 1t" - 1t (x) glen by (3.5) is locally bounded on
IR'.
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We now consider the function u : u(t,x) E ur(t,x) - uz(t,x). Of course,

u(0, x): 0. Moreoveq in view of (5.5), the hypothesis of the theorem implies

t \ u  |  |  \ u r .  | u z .

l#u,") l  l f  { r ,  * ,  u1(t ,  x),  #r, , t ))  
-  f  ( t '  x,  u2(t ,  x),  #0, *>>l

< r(t). ftr + ',Dl*(t, x) - YQ, x) | + ,r' l tu{t , x) - uzQ' ') l]

- r.(t) ltr + r;t)l#Q, x) | +,rr'l @Q, fltf

for all x e IR' and for almost all r € (0,7'). Therefore, Theorem 2.2 shows that

u(t,'x): 0 in O7,. Since Tt e (0, Z) is arbitrarily chosen, the proof is complete. r

Corollary 5,4. Let f : f (t,x,u,p) be measurable in t € (0, f), continuous in

x € IR',anddffirentiablein(u,p) e R.t xIR' suchthat,foranycompactsetK CIF{,

the function

f  *  :  I . ( t )dg r  + sup l {U,  x ,  u,  p)  l (L + l "  l )  |
1x ,u ,p )eN xR ' r  xK  I  dP  I

is Lebesgue integrable on (0, T), and the function

D * : v *(x, d tr:ess sup *n I g (t, x, u, p) I l .  -() l
re (o,r i  pek I  ou I

is locally bounded onlF{, x IRl. If ut : u1Q,x) and u2 : uz?,x) are global

semiclassical solutions to the Cauchy problem (2.3)-(2.4) with

ess sup lY <, ,") |  .  +oo (r - 1,2),
f t , " l e o i ' l  3 x '  

' l

then utQ, x)  :  uz(t ,  x)  in f27.

Proof. Let us introduce the notation

t t r  r , ,x2(")  
d9 

: :p,u 
_,(x,  u)

for any convex compact sets K1 C IRl , Kz C IRn. Then it is easy to check that (5.3)

with (.*, zrrd ltr*r,*, in place of (. and pc, respectively, holds for almost every t e (0, T)

and fof all (x , u, p), (x, I), q) e Rn x Kr x Kz. The corollary thereby follows from

Theorem 5.2. I

We leave it to the reader to prove the following criterion of continuous dependence

on initial data for global semiclassical solutions.



24 Tran Duc Van, Nguyen Duy Thai Son, and Le Van Hap

Theorem 5.5. suppose f -  f  ( t ,x,u, p) satisf ies (5.3).Letui - uj(t ,x) ( j  -  r ,z)
be global semiclassical solutions to (2.3) with

ui(0, x) : Q:@) on {r : 0, r € IR'?},

where Qj : Qi@) U : I,2) are givenfunctions continuous onlF(". Then

lur|, x) - u2Q,r) | < exp[c1x; [ '  ng1hr1 . sup lQ11D - Qz0)1,-  
Jo Jy;<( l+lx l )  "* ,  IJ{ t )dr-r

C(x) being defined in (2.8).

Remark I. The example in Remark2 following Theorem 2.2 shows that the Lipschitz
continuity of functions in the class V (Ail also plays an essential role in the definition
of global semiclassical solutions. The zero solution aside, this example gave no other
global semiclassical solution to the Cauchy problem

0 u / 0 t  - 0  i n  S ) 1 ,

u ( O , x ) - Q  o n  { r - 0 ,  x e  I R " } .

Remark 2. Consider the Cauchy problem

0u/0 t  - f  (0u /0x)z  :0  in  {0  <  r  <  T ,  x  €  R1} ,

u(0,  x)  -  Q on { t  - -  0,  x e R1}.

By definition, if u : u(t, x) is a global semiclassical solution to the problem, then
for almost every t e (0, f), the function u(t,.) is differentiable on IRl. Obviously,
(5.6)-(5.7) has a continuum of global solutions in the class of Lipschitz continuous
functions, such as (see Fig. 1)

u ) . , e : u ) " , e ( t , * ) o g { 0 .  ,  ^ .  
i f  o < t < T - e '

I  m i n { 0 ,  L l x l - x 2 ( t  -  Z * e ) }  i f  T  -  e  K t  < 7 ,

wherel > 0, 0 < e <'Z.Forl.> 0, thedifferentiabil ityof thefunction u)., '(t,.)fails
somewhere (atx - t),(t -T + e) and atx:0)if andonlyif rbelongstotheinterval
Q - e, T), whose Lebesgue measure is precisely e (positive but as small as we please).
Thus, the zerc function ul,e : uo,e(t, x) (i.e., f. - 0) is the unique global semiclassical
solution to (5.6)-(5 .7) in the class of functions with essentially bounded derivatives (cf.
the remark following Theorem 5.2).

The results in this section can be generalized to the case of weakly coupled systems
(4.8)-(4.9) by the use of rheorems 4.1, 4.4,4.5. Here, the initial data Q - Q(x) -
(Qt@),...,Q*(x)) is a given vector function continuous on IRa. Each Hamiltonian
fi : fi(t, x, u, pr) is always assumed to be measurable int < (0, Z) and continuous in
(x, u, pt) e IR' x IR' x IR,. First, we give the definitionl25,33l of global semiclassical
solutions for the problem.

(s.6)

(s.7)
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Fig. 1.

Definition . A vector function u : u(t, x) in V^ (Qr) is called a global semiclassical

solution of G.ry-G.q if it satisfies (4.8) for all x e W and almost all t e (0, Z) and if

u(0, x) - Q@) for all -r € IR".

We can now formulate some stability results for global semiclassical solutions of the

problem (4.8)-(4.9) and leave the proofs to the reader'

Theorem 5.6. Suppose fj : f i(t,x,u, pi) (i : 1,... ,m) satisfy the conditions as

follows: there exist a nonnegative function LL - p(x) locally bounded on W and a

nonnegative function '( : ('(t) in Ll(0, T) such that

l f i ( t ,x,  u,  p i )  -  f iQ,x,  u,  q i ) l  < [ ( t )  '  t (1 + lx l ) lp]  -  qt  |  *  pt(x)  
o1T.* lw 

-  ur l l

(s.8)

for almost every t e (0,7) andfor all (x,u, pi), (x,t),qi) e IRn x IR- x IRn (,/ :

1, . . .  ,m).  Let  u -  u( t ,x) ,  f i :  f i ( t ,x)  be global  semiclassical  solut ions to (4.8)with

the follow in g c orre s p ondin g initial c onditions :

u (O,x )  -  Q(x) ,  f i (O,x )  -  6@) on  { /  -  0 ,  x  e  IR ' } ,

where e : Q@), 6 - O@) are givenvectorfunctions continuous onN. Then

mrx lu j ( t ,  x)  -  f i i ( t ,  x) l  =
j : I ' " ' 'm

f n t ' , , r t

"*p 1c1"1 | 
t 1'1at I tup max l2ij) - Qi 0)1,'  

Jo l1y;<11+lr l ) ; , (  r .G)dt-r i : r ' " ' 'm

C(x) being defined in (2.8).

25

x : ) " ( t - T l e )

Ux,,Q, x) : ) ' l.rl - Xz(t - T * e)t

x : - ) . ( t - T ' l t )
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Corollary 5.7. Suppose f1 : f j(t,x,u, pi) ( j _ 1,... ,m) satisfu the conditions
(5.8). If u : u(t, x) and u -- u(t, x) are global semiclassical solutions to the Cauchy
problem (4.8)-(4.9), then u(t, x) : u(t, x) in {27.

Theorem 5.8. Let (4.10) be a comparison equation. Suppose f1 _ fj(t,x,u,pt)
(i : 1, ... ,m) satisfu the following conditions: there exists a nonnegative function
( - (.(t) in Lt (0, Z) such that

l f iQ ,x ,u ,  p t )  -  f iQ ,x ,u ,e r ) l  <  l ( t ) ( l  *  l . r l ) l p r  -  q i l +  pQ,o !? I , * l uo  -  rn l )

for  a lmost every r  e (0,  T) andfor al l  (x,u,pi) ,  (x,u,qi)  e IR, x IR. x Rn ( ,1 :
1,.. ' . ,m). If u : u(t,x) and u - u(t,x) are global semiclassical solutions to the
Cauchy problem (4.8)-(4.9), then u(t, x) : u(t, x) in Q7.

Theorem 5.9. Let (4.12) be a comparison equation. Suppose that f1 : fj (t , x, u, pi )
(j _ 1,... ,m) satisfy the following conditions: there exist a nonnegative function
p - tL(x) locally bounded onRn and a nonnegative function [. : (.(t) in Lr (0, T) such
that

-  f i ( t , x , u , q J ) l  <

lpi  -  qi l  + tr(x)o (oryT.*t"r,  -  ,r , l ) ]

for almost every r e (0, T) andfor all (x,u,pi), (x,t),qi) e IR, x IR- x Rn (,1 :
1,... ,m). If u : u(t,x) and u : u(t,x) are global semiclassical solutions to the
Cauchy problem (4.8)-(4.9), then u(t , x) : u(t, x) in {27.

6. Concluding Remarks

The global existence and uniqueness of generulized solutions for convex Hamilton-
Jacobi equations were well studied by several methods: variational method [10], method
of envelopes [1], vanishing viscosity method [15, 19, . . . ], etc. The global theory
for non-convex Hamilton-Jacobi equations has recently been considered by Crandall,
Evans, Lions, and Ishii UI,12, 17 , . .. ], etc. They have introduced the notion "viscosity
solutions" to define generalized solutions and characterized their properties. By these
contributions, the global existence and uniqueness of generalized solutions have been
established almost completely. However, it should be noted that viscosity solutions of
partial differential equations are, as regular as possible, in general just continuous. They
may therefore contain singularities. So what kinds of phenomena would appear when we
extend the classical (local) solutions? In such a procedure, we must go back (for this, see
126l) to the Haar lemma. Of course, furthermore, the a priori estimates from the lemma
(or something like it) are of much interest from various points of view.
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