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Abstract. Our recent results are surveyed on the so-called partial differential inequalities of Haar
type and their applications to stability questions concerning global solutions of the Cauchy problem
for nonlinear partial differential equations of the first order. Several more revisions have been made
and some material are published for the first time in this paper.

1. Introduction

The purpose of this paper is to survey the most recent developments in first-order partial
differential inequality theory and their applications to stability questions concerning
global (semi)classical solutions of the nonfunctional Cauchy problem for evolution
partial differential equations. These results have been published or are being published
in [29—33]. Several of them have been revised and updated. Moreover, some material are
presented here for the first time. For functional problems in hereditary setting, we refer
the reader to [3—6] and the references therein.

Let us mention that the theory of ordinary differential inequalities was originated
by Chaplygin [8] and Kamke [18], and then developed by Wazewski [36]. Its main
applications to the Cauchy problem for (ordinary) differential equations concern
questions such as: estimates of solutions and of their existence intervals, estimates of the
difference between two solutions, criteria of uniqueness and of continuous dependence
on initial data and right sides of equations for solutions, Chaplygin’s method and
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approximation of solutions, etc. Results in this direction were also extended to (absolutely
continuous) solutions of the Cauchy problem for countable systems of differential
equations satisfying Carathéodory’s conditions. We refer to Szarski [24] for a systematic
study of such subjects.

As for the theory of partial d1fferent1a1 inequalities, first achievements were obtained by
Haar [16], Nagumo [22], and then by Wazewski [35]. Up to now the theory has attracted
a great deal of attention. (The reader is referred to Deimling [13], Lakshmikantham
and Leela [21], Szarski [24], Walter [34] for the complete bibliography.) We emphasize
here that one of its applications to the Cauchy problem for first-order partial differential
equations, viz. the Haar—-Wazewski uniqueness criterion to be quoted in Theorem 2.1
next, is just for classical solutions and may only be used locally. (For more details, see
the introductory comments in Sec. 2.) The present paper provides a new method, based
on the theory of multifunctions and differential inclusions, to investigate the uniqueness
problem. This method allows us to deal with global solutions, the condition on whose
smoothness is relaxed significantly. As we shall show more concretely in Sec. 5, the
equations to be considered satisfy certain conditions somewhat like Carathéodorys;
and their global semiclassical solutions need only be absolutely continuous in the time
variable. (For this, see also [27, 28].)

The structure of the paper is as follows. In Sec. 2 we introduce a so-called
differential inequality of Haar type (see (2.6) later). An estimate via initial values for
functions satisfying this differential inequality will be established (cf. (2.7)~2.8)). As
an application, Sec. 3 gives some uniqueness criteria for global classical solutions to
the Cauchy problem for first-order nonlinear partial differential equations. In this way,
moreover, the continuous dependence on the initial data of solutions can be examined.
Section 4 concerns some generalizations to the case of weakly-coupled systems. Finally,
in Section 5 we investigate the uniqueness problem for global semiclassical solutions.

From now on, n stands for a certain positive integer, 0 < T < 400, and

Qr O 1) xR ={(t,x) : 0<t<T, x e R").

The notation 3/9x will denote the gradient (3/9x1, ..., d/0x,). Let |.| and (., .) be the
Euclidean norm and scalar product in IR”, respectively.
Denote by Lip(€27) the set of all locally Lipschitz continuous functions u = u(z, x)

defined on Q. Further, set Lip([0, T') x ]R") = Llp(QT) NC([0, T) x R™). For every
function # = u(z, x) defined on Qr, we put

Dif() & {(s, y) € Qr : u = u(t, x) is differentiable at (s, y)}.

We shall be concerned with the following class of Lipschitz continuous functions:

V(Qr) € {u(., ) e Lip([0, T) x R") : 3G C [0, T] mes(G) = 0.
Dif(u) O Qr\(G x R™)).

(Here, “mes” signifies the Lebesgue measure on IR'.) In other words, a function
u = u(t,x) in Lip([0, T) x IR") belongs to V(Qr) if and only if for almost all ¢,
it is differentiable at any point (¢, x).
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2. Differential Inequality of Haar Type

First, several comments are called for in connection with the following classical
Haar-Wazewski theorem.

Theorem 2.1. [16, 35] Let M > 0,a > 0, L; > 0, ¢; < d; with2L;a < d; — ¢;
i=1,...,n)and

A x) :0<t<a, ci+Lit<xi<di—Lit G=1,...,n)).

Let K be a compact setin{(u,p) : u € R, pe R"}and f = f(¢t, x,u, p) afunction
satisfying the condition

n
|f @, x,u, p) — ft.x, 0,9 < Y _Lilpi — il + Mlu = v| @1

i=1

for (t,x,u, p), (t,x,v,q) € A x K. Finally, let uy = u1(t, x) and uy = us(t, x) be
functions in C'(A) such that

(u;(t, x), (9u;/3x)(t,x)) € K for (t,x) €A, j=1,2 22)

and that uy1(0,x) = uz(0, x) for x € [c1,d1] X -+ X [cn, dn]. If u1 = u1(t, x) and
uz = ua(t, x) are two solutions of the equation

ou/dt + f(t,x,u,0u/ox) =0
in A, then ui(t, x) = u(t, x).

Our comments will concern the Cauchy problem in the large for a general first-order
partial differential equation as follows:

du/ot + f(t,x,u,d0u/ox) =0 in Qr, 2.3)

u(0,x) =¢(x) on {r=0, x e R"}, 2.4)

where the Hamiltonian f = f (¢, x, u, p) is a function of (¢, x, u, p) € Qr x R! x R"
and ¢ = ¢ (x) is a given function of x € R".

Assume the function f = f(¢,x,u, p) to be locally Lipschitz continuous with
respect to (#, p) in the sense that, for any bounded set K* C Qr x R! x R”, there
exist nonnegative numbers Li, ..., L, and M such that (2.1) holds for (¢, x, u, p) and
(t,x,v,q) in K*. Let uy = ui(¢,x) and up = uz(t, x) be two C!-solutions on the
whole Q7 of (2.3)—(2.4). Then, Theorem 2.1 assures the equality u; (¢, x) = ua(t, x)
in a neighborhood of { = 0, x € IR"} in Q7. The question arises as to whether this
equality can be extended to the entire domain Q. It seems to us that there is no standard
procedure for joining a point (9, x% e Qr to the hyperplane {r = 0, x € IR"} by
consecutively gluing pyramids of the form

A (Gx) car<t<ay, i+ Lit<xi<di—Lit (i=1,....n)}) (2.5)
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where
O<ai<ar<T,c<d,0<2Liax<di—¢; (i=1,...,n)

so that Theorem 2.1 can simultaneously work therein. The reason is that the relations
between Ly, ..., L, and A are bilateral and somehow awkward. In fact, L1, ..., L,
are to some extent overdetermined by A. Specifically, for each application of the
theorem in such a procedure, A must be ready-given. Thus, by (2.5), a tuple
(L, ..., Ly) is predetermined. However, the further condition (2.1) is needed for
(t,x,u,p), (t,x,v,q9) € A x K, with K being a compact set in R x R”"
such that (2.2) holds. Therefore, L1, ..., L, are necessarily Lipschitz constants with
respect to pi, ..., pn of the function f = f(¢, x,u, p) restricted to A x K. But
these constants might unfortunately become large, say, substantially greater than the
above-predetermined values Ly, ..., L,. So we would reduce A, and hence possibly
fail to touch the hyperplane {+ = 0, x € IR"} in such a procedure emanating from a
point 2, x%) € Qr.

All the preceding remarks suggest that we should make an attempt to develop the
theory of first-order partial differential equations. The aim of this section is to prove the
following. (We put off discussing its applications to the uniqueness problem to Secs. 3
and 5.)

Theorem 2.2. Let u = u(t, x) be a function in V (Q27). If there exist a nonnegative
Sunction u = u(x) locally bounded on R" and a nonnegative function £ = £(t) in
LY(0, T) such that

|9u(t, x)/0t] < £(t) - [(1 + [x])|9u(t, x)/3x| + u(x)|u(, x)|] (2.6)

for almost every t € (0, T) and for all x € R", then

t
jute, 0] < exp [ @) f (o] sup_ L@y, @7
0 |y|5(1+|x|)expf0 2(r)dz—1

where

I
co) Lsup{lu)l < i<+ idex [ ewar-1). @)

Remark 1. We would like to call (2.6) a “differential inequality of Haar type” because
its form looks like that of Haar’s differential inequality (see [24, Corollary 37.1]).

Remark 2. We show by the following example that the Lipschitz continuity of u =
u(t, x) is essential in Theorem 2.2.

Let J C [0, 1] be the Cantor set, i.e., the set of all numbers of the form
def i
N (2.9)
k=1

where each ¢y is either O or 2. The set J is complete, nowhere dense on IR!, and is of
Lebesgue measure 0.
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We define a function w = w(t), which is called the Cantor ladder, in the following
way (see [14]). For ¢ € J given by (2.9), we take

+o00
w(t) e Zsk/Zk where & &f cr /2.
k=1
If («, B) is an open maximal interval in (0, 1)\ J, then r, 8 € J and w(a) = w(B). We

setforf € (o, B): w(t) = w(a) = w(B) = const. It follows that w = w(r) is continuous
on [0, 1] and that dw/dt = 0 almost everywhere in (0, 1). In fact, dw(¢)/dt = 0 for
t € (0, H\J.

Setting u (¢, x) = w(t) for (¢, x) € 1, we easily see that u = u(¢, x) belongs to
c! ('((0, D\J) x ]R") N C([0, 1] x R") with u(0, x) = 0,

du(t,x)/dt =0 V(t,x) € ((0, D\J) x R".
The function u = u(z, x) thereby satisfies all the conditions of Theorem 2.2 except for

the Lipschitz continuity. This explains why (2.7) does not hold: u(¢, x) s 0.

Proof of Theorem 2.2. For an arbitrary point #°, x%) € Qr, we must prove that

tU
ju(@®, 20)] < exp[ () / et sup u(©, y)l.  (2.10)
0
° yl+ixDexp f @)di—1

Let B, = B, = o {x e R" : |x| <r},r > 0. Denote by =;(t°, x°) the set of all

absolutely continuous functions x = x(¢) from I et [0, to] _i_l’_ltO IR" which satisfy almost
everywhere in I the differential inclusion dx(¢)/dt € Bg).(14x(r))) Subject to the
constraint x(z%) = x9.

From [7, Theorem VI-13], it follows that ¥ 1@ x% isa nonempty compact set in
C(I, R"). Thesets Z(z, %, x%) & {x() : x() € £, x9} and T (¢, x%) & {(z, x)
tel, x € Z(r,1% x°)} are therefore compact sets in R” and R"*!, respectlvely, for
all ¢ € I. Moreover, by the converse of Ascoli’s theorem, the multifunction

Z(,1%x%: [ ~> R"

is continuous. ]
We now define a real-valued function g = g(¢) on I by setting

g(t) & max {lu(t, 0| : x € Z@t, 1, x).

Then according to the maximum theorem (see [2, Theorem 1.4.16]), the fact that
u = u(t, x) is continuous on I'(z, x%) implies that g = g(¢) is continuous on 7. In
addition, we have:

Lemma 2.3. For an arbitrary number 6 € (0, t%), the function g = g(t) is absolutely
continuous on [0, to].

The following assertion will also be needed.
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Lemma 2.4. We have for every t € I the inclusion

Z¢,1°x% cB (2.11)

(A+ixDexp [ £rydr—1

Proof of Lemma 2.4. For each n > 0, let

[0
my@®) & 1A + 150 + 1) exp/ T = 1,
t

The function m, = m,(¢) is absolutely continuous, positive on I with the derivative
dmy(t)/dt = —£(2) - (1 4+ m,(?)). To prove (2.11) we have only to show that

x(®)| <my(t) Vtel (2.12)
for all x = x(¢) in T;(¢°, x°) and for all n > 0.
Since m,(t% > |x° = |x(t°)|, there exists a number § € (0,7°) such that
my,(t) > |x(t)| whenever ¢t € (° — 8, °].

Assume that (2.12) was false, so thatthere existst’ € [0 1% such thatm, (t') < |x(t')|.
Setting 1 sup {t &os ' my(t) < |x(t)|} < 1% we would have:
()] = my(eh); 1x@)| < my(@) Yt € (¢, 1,

and
dmy(0)/dt = —£(t) - (1 +my(1)) < —L@) - (1 + |x()])

< —|dx@)/dt| < d|x@)|/dt

almost everywhere in (¢!, £°). On the other hand,
* dm, () * dlx ()]
1
dt dt
,[1 dt - [l dt

my(t%) — my(eh) = my (2% — 1x(@H| > (x| — |x(Y)].

if and only if

Hence we obtain a contradiction. This proves Lemma 2.4. [ |

Proof of Lemma 2.3. Since u = u(t, x) is locally Lipschitz continuous in 7, there
exists a number L > 0 such that

(', x') —u@?, x| < L' = 2]+ 1x' — 57
V', xY), ¢ x?) e (19, %1 x R) N0, x0).
By the absolute continuity of the Lebesgue integral, Lemma 2.3 will be proved if we

can show that

lg(tl)—g(t2)|fL[Itl—t2|+(l+|x0|). / e(t)dt-exp/ e(t)dt]
[

[t1,22]

(2.13)
vel 2 e[, 9.
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Now let
gt > g(t®) and gt") = lu(t', x(t"))]
for some x = x(¢) in £;(t%, x°). Since x(t?) € Z(t?,1°, x°), we have
0<gth)—gth = lu@t!, x| — gt
< lu(@!, x| = u@ x@@)] < @', x@") —u @, x@)|
1_ 22 1 2y — 1_ .2 ﬂ{
< L[|t' — 2+ 1x(Y - x( )|]—L[|t t 1+‘ / — (t)dt”
[£1,£2]
< L[ltl — 2+ f o - (1+ Ix(t)l)dt].
[

Therefore, (2.13) follows from Lemma 2.4. The proof is then complete. |

Going back to the proof of Theorem 2.2, we now set

def

t
h(t) =f L(r)dt for te[0,T].
0

By Lemma 2.4 and the definition of g = g(#), the inequality (2.10) will be obtained
if we show that
g(t) < g(0) -exp[C(x®) - k()] V¢t €[0,2°]. (2.14)

For every n > 0, let

gn(®) £ [¢(0) + 7] - exp [[C(xo) +n]-[re) + nt]}.
To get (2.14), it suffices to prove that

g(®) < g,(t) VYt el0,:° (2.15)

Let w(t) et gn(t) — g(t), where n is temporarily fixed. Then (2.15) is equivalent
to w®) > 0 V¢t € [0, t%]. Obviously, w(0) = n > 0. We shall show that
w() > o) Vvt € [0, t%]. Assume this is false, so there exists ¢’ € (0, t%] such
that w(t') < w(0).

It is well known that there exists a set G; C (0, T) of Lebesgue measure 0 with the
property that

dh(t)/dt =£(@) VYt e (0,T)\G;.

By the hypothesis of Theorem 2.2, we find aset Gz C (0, T) also of Lebesgue measure
0 such that Q7\ (G2 x R") C Dif(x) and that (2.6) holds forall z € (0, T)\G2, x € R".
Since an absolutely continuous mapping preserves the measure of null sets, Lemma
2.3 implies
mes((G N[6,1°)) =0 V6 € ©.1°),

where G &ef G1 U G3. So

mes((G N[0, 1°])) = gj{‘I})mes(w(G ne, ) =o. (2.16)
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From (2.16) and the continuity of @ = w(¢) on I, we conclude that there is a number
A with
max{0, w(t)} < A < @(0) and A € w[0, ¥ N\w(G N[0, £°]).

Let

t Zinf {r €[0,7] : o) =A}.

It is obvious that w(t,) = A, ¢, € (0, )\G, and that w(z) > A V¢ € [0, t,.).
Suppose
def .
8(ts) = lu(te, x2)| = & - u(te, x), & = signuty, x.)

for some x, € Z(t, t°, x°). Then one may find a function * = *x(¢) in £;(¢°, x°) so
that *x (#,) = x,. Choose a unit vector e € IR" with

ou ou
<e, & — (t4, x*)> =— ‘—(t*, 55-5)) | 2.17)
ox 0x

The system (of n ordinary differential equations)
d
2 =1+Iy6)) e
ds

has a C'-solution y = y(s) on R! satisfying the condition y(h(t)) = x.. Let

x(t) & y(h(®)) for t € [0, T1. Of course, x = x(¢) is absolutely continuous on [0, T],
x(t:) = x4, and

dx dh dy L ‘ i
E(t)=zt-(t)-£(h(t))—f(t) (I+[x@D-e Ve (0 T)\Gy.

The function ,x = .x(¢) defined by

@ det [ x(8) if 0<t<uy,
FO= ey Ha<e<e

belongs to X; (9, x%). Hence,
x(t) € Z@t,1%,x% Vrel0,4]
This implies
e-ut,x@) < |u@, x(®)| < g@) = gp(t) —w(t) < gy(t) — 1 (2.18)
for all ¢ € [0, t,). Besides that,
& - uty, X(8)) = |u(t, x| = g(t:) = gn(ts) — (i) = gy(t.) — A. (2-i9)
Furthermore, since ¢, € (0, T)\G, we see that:

(1) u = u(t, x) is differentiable at (¢, x.),
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(ii) x = x(¢) is differentiable at , with
dx
E(t*) =L(t) - (L + |x]) - e,

(i) g, = g,(¢) is differentiable at #, with

d :
%(r*) = [CG® + 1] - [66) +n] - (2.

So it follows from (2.18)—(2.19) that

dﬁt-[s : u(t,x(t))] |t > %ftﬁ(t*)-

=1,

Consequently,
ou dx ou
£ E(t*’ x(t*))+<3t_(t*)’ g~ a(t*, x(t*))>

> [CG®) +n] - [£@) +n] - g,
Hence,

ou ou
& — (b, X)) + L) (1 4 |x4]) - (e: Ermm—=i(ty. X0l
at ax

> [C(x®) + 7] - [€@) + 0] - [, 2] + A1
Because n > 0 and A > 0, the last inequality together with (2.17) imply

> £ - [(1+ 1))

M o)+ €O - e, w0l 220
0x

au t )
a1 %y Xx

On the other hand, since x, € Z (¢, 19, x0), Lemma 2.4 yields

22 14
X < 1+ |x0|)expf Lrydr—1< 1+ Ixol)exp/ L(t)dt — 1.
1 0

Therefore, the formula (2.8) gives C (x9%) > |u(x.)|, which shows that (2.20) contradicts
(2.6). It follows that there existsno ¢’ € [0, O] with w(¢') < w(0). Thus, @(t) > @(0) >
0 for all ¢ € [0, £°]; the inequality (2.15) is thereby proved. This completes the proof of
Theorem 2.2. |

3. Uniqueness of Global Classical Solutions to the Cauchy Problem

The advantage of Theorem 2.2, as we have mentioned in the introduction, is that it
allows us to discuss the so-called global semiclassical solutions, which are just absolutely
continuous in time variable, for first-order nonlinear partial differential equations with
time-measurable Hamiltonian. This will be taken up in Sec. 5, where an answer to a
problem of Kruzhkov [20] is given. In the present section we restrict ourselves to the
case of C!-solutions, dealing with some applications of Theorem 2.2 to stability questions
concerning the Cauchy problem in the large for partial differential equations of the first
order. Even in this “classical case”, using the a priori estimate (2.7)—(2.8) of Theorem
2.2, we find some new uniqueness criteria (posed on the Hamiltonian f = f (¢, x, u, p))
for global C!-solutions of (2.3)—(2.4). Criteria of continuous dependence on initial data
for such solutions may also be obtained. Let us first repeat the definition of solutions to
be considered.
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Deﬁmtlon. A function u = u(t, x) in C1(Qr) N C([0, T) x R") is called a global
C-solution to the Cauchy problem (2.3)—(2.4) if it satisfies (2.3) everywhere in Qr and
(2.4) for all x € IR".

As was shown in the introductory comments of Sec. 2, for the uniqueness of global
C!-solutions, the following result may be invoked instead of Theorem 2.1.

Theorem 3.1. Suppose f = f(t, x, u, p) satisfies the following condition: there exist
nonnegative numbers L, M such that

|f x,u,p) — ft,x,0,9)l < LA+ |xD)|p — gl + M|u — v] (3.1

forail (t,x,u, p), (t,x,v,q) € Qr x R x R Ifu; = u; (¢, x)andur = uy(t, x) are
global C'-solutions to the problem (2.3)—(2.4), then ui (¢, x) = us(t, x) in Q7.

Proof. Consider the function ¥ = u(t, x) = ui(t, x) — uz(t, x). Then u(0, x) = 0.
Furthermore, by (3.1) and the definition of global C!-solutions, we have

) 0 d
Ia—i‘(t,x) = ‘f(t,x, uy (t, x), %(t, ) = £t x, uzt, 1), %(t,x))
<Ld 4+ | (t %) — ‘f(t,x) + Mus (2, x) — ua(t, %)
= ]} —"‘(t,x) + Mlu(t, x)|
ox

for all (¢, x) € Q7. Now it follows from Theorem 2.2 that u(z, x) = 0 in Q7. This
proves the theorem. [

The next sharpening (and its corollary) of Theorem 3.1 will give some useful
uniqueness criteria for global C!-solutions with bounded derivatives.

Theorem 3.2. Suppose f = f(t,x,u, p) satisfies the following condition: for any
compact sets K; ¢ R!, K; C R", there exist a nonnegative number L, and a
nonnegative function pu xyms = (x) locally bounded on R" such that (3.1) w:th L,
and p, . (x) in place of L and M, respectively, holds for all (¢, x, u, p), (t, x, v, q) ¢
Qr x Ky x Kp. If uy = u1(t,x) and uy = uy(t, x) are global C'-solutions to the
problem (2.3)—(2.4) with

% ¢, %)

<400 (j=1,2),
ax

sup
(t,x)eQr

then uy(t, x) = us (¢, x) in Qr.
Proof. Letu = u(z, x) be as in the proof of Theorem 3.1 and let

du
Litn)| < 400, K ¥ B c R, f shiguton sapng)

pof max sup
0x

i=L2 (¢ x)yeQr
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X k) x-x (kD CRY (k=1,2,...). (33)

n times

For an arbitrarily fixed T’ € (0, T), we consider the sequence { Pk };“;"1’ of the following
parallelepipeds:

PO T)x Xk ={t,x) : 0<t<T, x e x*}.

+o00
Obviously, P! c P2 c...c P¥ c... and U PF = Qr. Next, take
¥ k=1

s < max max |u;(t,x)l, K Lk, s cRL (3.4)

J=12 (4 0)eP"
We now define a function x4 = p(x) by setting

et e, (x) e,

n(x) € { 3.5)

P, @) ifx € XX (fork =1,2...).

It follows that & = p(x) is locally bounded on IR”. Moreover, (3.2)—(3.5) together with
the hypothesis of the theorem imply

9
a—':(t,x) = ‘f(t Sl (t Al e 2 ( %))
< LA +Ix)) %(nx) ) o e B )~ )
53 ox
= L1+ |x|) g—:(t,x) + wx)|u, x)| in Q7.

(We may check this inequality first for (¢, x) in P!, and then for (¢, x) in each P¥+1\ P¥ )
Theorem 2.2 therefore shows that u(z, x) = 0 in Q7. Since T’ € (0, T) is arbitrarily
chosen, the conclusion follows. [

Corollary 3.3. Let f = f(t, x,u, p) belong to C'(Qr x R! x IR") and be such that
the function

def 0
v=1(tp) = sup ‘g—(hx,u,l’)/(1+IXI)
(x,u)eR*xR! | 0P

is finite and continuous on [0, T] x R". If u; = u1(t, x) and uy = uy(t, x) are global
C-solutions to the Cauchy problem (2.3)—(2.4) with

a .
2t x)

sup ax

(t.x)eQr

<400 (j=1,2),

then uy(t, x) = uy(t, x) in Q.
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Proof. For any convex compact sets K1 C R!, K, C IR” we see, by assumption, that

= max v(t, p) < +o0,
(¢,p)el0,T1x K,

and that the function

def

P,y = Mg, (X) =

= ax
(t,u,p)el0,T1x K xK; ou

y—(r,x, u, p)’

is continuous, and hence locally bounded on IR”. It is easy to check that (3.1) with s,
and K, x, (x) in place of L and M, respectively, holds for any (¢, x, u, p), (¢, x,v,q) €
Qr x Ki x K;. The corollary thereby follows from Theorem 3.2. ]

We conclude this section with the following result of continuous dependence on initial
data for global C'-solutions. (Here the continuity is with respect to the topology of
uniform convergence on compact sets.)

Theorem 3.4. Suppose f = f(t, x, u, p) satisfies the condition (3.1) in Theorem 3.1.
Letuj = uj(t,x) (j =1, 2) be global C L_solutions to the equation (2.3) with the initial
conditions

uj(0,x) = ¢j(x) on {t=0, x e R"},

where ¢; = ¢;(x) (j = 1, 2) are given functions of class C° on IR™. Then

|y (2, x) — ua(t, x)| < exp(Mt) - sup 191(y) = $2(¥)]
lyl<(+Ix]) exp(Lr)~1

forall (t,x) € Q.

The proof of this theorem will be left to the reader.

4. Generalizations to the Case of Weakly Coupled Systems

‘We now examine how the case of systems of first-order partial differential inequalities or
equations can be treated by the preceding method. Let m be a positive integer. Consider

the class

Vi) € VQr) x -+ x V(Qr).

m times

Each element of V" (Q7) is therefore a vector function, namely,
u=u(t,x) =W, x),...,uy(t, x))
from Q7 c R™! into IR™ such that uj = u;(t,x) belongs to V() for every

jef{l,...,m}
First, the following result may be proved in much the same way as Theorem 2.2.
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Theorem 4.1. Let u = u(t, x) be a vector function in V™(Qr). If there exist a
nonnegative function p = p(x) locally bounded on IR" and a nonnegative function
£=£(t) in L' (0, T) such that

[Qu;(z, x)/0t| < £(2) - [(1 + |xD|0u;(z, x)/0x|
+ue) max Jurt, 0l G=1,....m) 1)

Sfor almost every t € (0, T) and for all x € R", then

max |u;(t, x)| <
j=1,...m

t
exp[C(x) f e(r)dr]- sup max |u;(0, y)l,
0 ‘ j=1,...m
lyl<(+ixD exp [ €(z)dr—1

where C(x) is given by the formula (2.8).

Proof. For an arbitrary point (t°, x°) € Qr, we must prove that

.....

tO
exp [C(xo) / e(r)dt] : sup max u;0, )]
° plzareen [ a1’ " (4.2)
Let us continue using the notations I = [0, %], £;(%, x%), Z(., 2%, x%), h(.), G4
introduced in the proof of Theorem 2.2 and then define

gty & max 0 4.3)

for ¢t € I, where
g 0) L max {Jux 2, x)| : x € 24, 1%, %) k=1,....m). (@.4)

It follows from Lemma 2.3 that, for any number 6 € (0, t°), each function g* = g*(r)
is absolutely continuous on [6, £%] and so is the function g = g(t). Moreover, they are
all continuous on the whole I. Still as in the proof of Theorem 2.2, we see that (4.2) will

be obtained if we can show that (2.14) holds. To this end, setting () = gn(t) — (@),
with n > 0 temporarily fixed and

gn) E [g(0) + ] -exp {[CG®) + ] - [h) + me]},

we need only claim that w(t) > w(0) (= n > 0) for ¢ € I. On the contrary, suppose
there exists ¢’ € (0, 9] with w(¢') < w(0).
By the hypothesis of the theorem, one finds a set G, C (0, T) of Lebesgue measure
0 such that
Qr\(Gz x R") c N Dif(u) 4.5)
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and that (4.1) is satisfied for any ¢ € (0, T)\G2, x € R". From the above, it follows that
(2.16) still holds where G gef G1 U G?y; hence, there is a number A with

max{0, »(¢)} < A < @(0) and A € w[0, *T\w(G N0, 1°]).

Now take
©,T\G 51, Linf {t € [0,1'] : w(t) = 1}

and 1 < j < m such that
: def .
gt) =gl (t) = [uj (B, x| = € - uj(ty, x4), € = sign u; (Z«, Xx) (4.6)

for some x,, € Z(ts, 12, x%). Next, choose a unit vector e € R” with

ou;
€ (s, Xx) ) = —
<e £ P (t, x )>

Finally, let y = y(s) be an IR"-valued function continuously differentiable on R!

such that y(h(t,)) = x, and dy/ds = (1+]yl) -, andlet x(t) & y(h(2)) for € [0, T.
Analysis similar to that in the proof of Theorem 2.2 shows that

ou

—](t*, Xy)
X

: ! @.7)

g-uj(t,x() < uj(t, x@)| < g(t) = gn(t) —@(?) < gn(1) —

for all ¢ € [0, ¢,), and that

€ uj(ty, x(12)) = |uj(ts, x:)| = g(8) = gn(t) —o(ty) = gy(ts) — A.

Consequently,

i[s : uj(t,x(t))] ‘ > d‘%(z‘*).

dt

=1

This would give

Ju;
> £(t) - I:(l + I-x*l) ’ ’{xi(t*, X4)

ou;
‘a—tj(t*,x*) +C(x0) -kmaXmluk(t*, x*)l]

.....

+lu(xe)] - max |uk(t*,x*)|],
k=1 m

.....

a 4
> £(t) - [(1 + |xal) - ‘%(u,x*)

a contradiction with (4.1). The proof is therefore complete. [ ]
Remark. Theorem 4.1 can be used to investigate the stability of global solutions to
the Cauchy problem for weakly-coupled systems, i.e., systems of first-order partial
differential equations of the form

du; /3t + f;(¢, %, u, 9u;/0x) =0 inQr (j=1,...,m), (4.8)

u(0,x) = (41(x), .., pm(x)) on{r =0, x € R"}. 4.9)
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The systems (4.8)—(4.9) are of special hyperbolic type because each equation contains
first-order derivatives of only one unknown function. Since (classical) solutions of
elliptic equations do not depend continuously (with respect to the topology of uniform
convergence on compact sets) on initial data, theorems of the non-stationary type that we
have studied in this paper cannot be expected to apply to partial differential equations or
inequalities of elliptic type. (First results on second-order partial differential inequalities
of parabolic and hyperbolic types were obtained by Nagumo and Simoda [23] and by
Westphal [37].)

For our next discussion, we need to extend the notion of comparison equation given
in Szarski [24] to the Carathéodory case. Consider an ordinary differential equation

w = p(t, w), (4.10)

where the function p = p (¢, w) is defined on D -] 0, +00) x [0, +00) = {(t, w) :
t > 0, w > 0}. The following Carathéodory conditions are always assumed.

(1) Foralmosteveryt € (0, +00), the function [0, +00) 3 w — p(t, w) is continuous.
(2) Foreach w € [0, +00), the function (0, 4+00) > t > p(t, w) is measurable.

(3) Foranyr € (0, +00), there exists a function m, = m,(t) in Llloc(O, +00) with

lo@, w)| <m;(t) Ywe][0,r]

for almost every t € (0, +00).

In this situation we call (4.10) a Carathéodory differential equation on D4 . A solution
of it on an interval I C (0, +00), with int/ # @, means a function w = w() > 0
absolutely continuous on each compact interval J C I (absolutely continuous on I for
short) such that

w'(t) = p(t, w(t))

almost everywhere in I. We refer to Coddington and Levinson [9] for what concerns
the local existence of a solution of (4.10) through any given point (z°, w®) € intD,.
Moreover, every such solution can be extended (as a solution) over a [left, right] maximal
interval of existence.

Definition. A Carathéodory differential equation (4.10), with p(t, w) > 0 on D4 and
p(t,0) = 0 for almost all t > 0, will be called a comparison equation if w = w(t) =0

is in every interval (0, y) the only solution satisfying the condition lin(l) w() =0.
P

Remark. Let £ = £(¢) be a nonnegative function Lebesgue integrable on each bounded
interval (0, y) C IR, and o = o(w) a function of class C[0, +o0) such that o (0) = 0,
o(w) > 0as w > 0, and fg(l/a(w))dw = +oo for every § > 0. Then (cf. [24,
Example 14.2])

w = £(@)o(w) 4.11)
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is a comparison equation. In fact, assume the contrary that (4.11) admits a nonzero

solution w = w(¢) on some interval (0, y) with liII(l) w(t) = 0. Letting w(0) ) 0, from
t—

this we easily find a nonempty subinterval (¢!, 1] of (0, ¥) such that w(t!) = 0 and
w(t) > 0forallz € (¢, #2]. It follows that

w(t?) dv at 12 w’(t) i 12

a contradiction. Therefore, (4.11) must be a comparison equation. Motivated by this fact,
we propose the following:

Proposition 4.2. Let 0 = o(w) be of class C[0, +00), and £ = £(t) > 0 be Lebesgue
integrable on each bounded interval (0, y) C R with f0+°° L(t)dt = +o0.
(i) If(4.11) is a comparison equation, then so is the equation

w =o(w). (4.12)

(i) Conversely, under the condition essinf £(t) > 0, if moreover (4.12) is a comparison
+€(0,+00)

equation, then so is (4.11).

Proof.
(i) Letw! = w!(¢) be asolution of (4.12) on some interval (0, y ) with lirr(l) wl(@) =0.
t—

Find a number 2 > 0 such that

2

yl= /y £(t)dr. (4.13)
0

Setting w?(z) ] w!(fy £(r)d), we see that w? = w?(¢) is a solution of (4.11)
on (0, yz) with lirr(l) w?(t) = 0. By assumption, w?(¢) = 0 on (0, yz). Hence,
t—>
wl(t) =0on (0, y1). Tl}is shows that (4.12) is a comparison equation.
(i) Let (0, +00) o t +— £(¢) be the inverse of (0,4+00) > t fot £(t)dt, and
w? = w2(¢) be a solution of (4.11) on some interval (0, y2) with ]jn%) w?(t) = 0.
t—

First, define a number yl > 0 by (4.13). Then setting wl(r) & w? (é(t)), we also

see that w! = w!(¢) is a solution of (4.12) on (0, y') with tlin(l) wl(r) = 0 (cf. [13,
—

Proposition 3.4(c)]). The rest of the proof runs as before. [ |

In the sequel, for each function g = g(¢) defined and continuous in a certain interval

(0, 19), let P, denote the open set {r € (0, 1% : g@) > 0}. Here is an elementary
property of comparison equations:

Proposition 4.3. Let (4.10) be a comparison equation and g = g(t) a given function
absolutely continuous on some interval (0, %) such that liII(l) g(®) =< 0 and that
t—

g' () < p(t, g(t)) almost everywhere in P,. Then g(t) < 0 forallt € (0, 19).
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Proof. On the contrary, suppose there exists t! € (0, %) with w! gk g(tl) > 0. Setting
g(0) & lim g(r) and 2 ¥ supl{t € [0,4)) : g(t) = 0}, wesee that 0 < 2 < ¢!,
t—

g(¢?) = 0and (t2,¢') C P,. Hence, by assumption,

g') < p(t, g(r)) almost everywhere in L (4.14)
Now take
t, max{0, g(z if 2 <t <1° w > max{0, g},
KS(t,w)dg{p( ©.50) it 2 0 (0, 5)) 445
p(t, w) if <t <t”, 0 <w < max{0, g()}.

The "above-mentioned Carathéodory conditions (1)-(3) are clearly satisfied for 6 =
p(t, w) on (2, %) x [0, +00). Let w = w(t) be a solution through (¢!, w') of (4.10)
with 4 in place of p, and let (3, #1] C (#2, t!] be its left maximal interval of existence.
‘We next claim that

O <) w() <g@t) Yte@, '] (4.16)

Assume (4.16) is false. Then one would find a nonempty interval (¢4, £°) C (2, #!) such
that
w() > gt) Vte (@ 1), (4.17)

with
w(’) = g(@°). (4.18)

It follows from (4.14)—(4.15) and (4.17) that g'(¢) < p(t, g(®)) = p(t, w(®)) = W' ()
almost everywhere in (¢4, #5). Thus (4.18) implies that g(z) > w() for all € (¢4, ¢5),
which contradicts (4.17). So (4.16) must hold.

We proceed to show that 1> = £2. In fact, if (0 <)#? < £3, then (4.15) together with

Carathéodory’s condition (3), where r e max{g(¢) : t € [t3, t']}, prove that the limit

lim3 w(t) exists and is finite. Hence, w = w(¢) could be extended (as a solution of (4.10)
t—>t

with p in place of p) over an interval (%, t11 O [£3, t'], which is impossible.
Finally, (4.15)—(4.16) shows that w = w(z) is indeed a solution through (¢!, w') of

(4.10) on (12, 1'] with lim w(t) = g(t?) = 0. Setting w(r) & 0 for 1 € [0, 2], we
t—t

obtain a nonzero solution of (4.10) on (0, 1) which tends to 0 as ¢ goes to 0. Thus we
arrive at a contradiction. This completes the proof. [ ]

We can now combine the method of Sec. 2 with the technique of Carathéodory
comparison equations and prove the following.

Theorem 4.4. Let u = u(t, x) be a vector function in V™ (Qr) with u;(0,x) = 0
(j =1,...,m), and (4.10) a comparison equation. If there exists a nonnegative function
£ =£(@t) in L0, T) such that

|0u; (¢, x) /0] < £(@)(L + |x]) - |0u;(t, x)/9x|
+p(t,k=nllaxm|uk(t,x)|) G=1,...,m) (4.19)

for almost everyt € (0, T) and forallx e R", thenu(t,x) =0inQr(j =1,...,m).
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Proof. For an arbitrary point (t°, x°) € Qr, it suffices to prove that

max |u;(t°, x%)| = 0. (4.20)
j=l,...m

We shall continue using the notations I & [0, £°], 3;(2, x°), Z(., 2%, x°), h(.), Gi
introduced in the proof of Theorem 2.2 (and also, of Theorem 4.1) and letting g = g(¢),
g* = g*(t) be as in (4.3)~(4.4). Obviously, (4.20) will be obtained if one can verify that
g% = 0. Since g = g(t) is a nonnegative function absolutely continuous on (0, #°],
with th_r)r(l] g(#) = g(0) = 0 (by assumption), Proposition 4.3 shows that we need only
claim that ‘
g'(®) < p(t, g(t)) almost everywhere in (0, £°). (4.21)

By the hypothesis of the theorem, one finds a set G2 C (0, T) of Lebesgue measure
0 such that (4.5) and (4.19) are fulfilled for any 7 € (0, T)\G>, x € IR”. Assume

without loss of generality that g = g(¢) is differentiable at any point of (0, t°)\ G, where

G € G, U G,. Now fix an arbitrary point #, € (0, 7°)\G and take 1 < j < m such that

(4.6) holds for some x, € Z(ty, t°, x°). Next, choose a unit vector ¢ € R” satisfying
(4.7). Let y = y(s) be an IR"”-valued function continuously differentiable on R! such

that y(A(z,)) = x, and dy/ds = (1+ [y]) - e, and let x(t) & y(h(z)) for ¢ € [0, T].
Of course (see the proof of Theorem 2.2), x = x(¢) is absolutely continuous on [0, T],
X(t4) = X, and

j—f(t) =Lt)-(1+|x@)|)-e Yte @ I\G. (4.22)

Moreover,
x(t) € Z@t, 1%, x%) Ve[, 1]

This together with (4.3)~(4.4) implies
£-uj(t, x() < |u;(t, x())] < g/ (1) < g(¢) forall ¢ €[0,1,). (4.23)
Besides that, by (4.6),
£ it X(t)) = Ui (o %) = g7 (1) = g(t:). (4.24)

Therefore, since ¢, € (0, t%)\G, it may be deduced from (4.23)—(4.24) that

g = 2w, 20

=t,

Consequently, by (4.6)—(4.7), (4.19) and (4.22), we conclude that

? dx ou;
g'(t) < & (Quj(ty, x.)/08) + <Z(t*)’ s - a—x’(t* x(t*))>
< 10uj (B, x4) /08| — L(t:)( + |xx]) - [u; (24, x4) /0x|

Finally, because G has measure 0 and z, € (0, tO)\G is arbitrarily chosen, (4.21) must
hold. This completes the proof. [ ]
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Theorem 4.5. Letu = u(t, x) be a vector function in V™ (Qr) withu;(0,x) =0 (j =
1,...,m), and (4.12) be a comparison equation. If there exist a nonnegative function

i = u(x) locally bounded on R" and a nonnegative function £ = £(t) in L0, T) such
that

100 2, x)/3¢] < £O[(L+ Ix]) - 18u; 2, x)/x]

+u@o( max @ D)] G=1....m @25

foralmost everyt € (0, T) andforallx € R", thenu;(t,x) =0inQr (j=1,...,m).

Proof. For an arbitrary point (z°, x9) € Qr, it suffices to prove (4.20). Let us continue
using the method (and notations) introduced in the proof of Theorem 4.4. We may extend
the function £ = £(¢) over the whole (0, +00) and assume essinff(¢) > 0. Thenby (4.25)

te(0,+00)
(instead of (4.19)) we get
g (t) < CL(t)o(g(r)) almost everywhere in (0, °)
(instead of (4.21)) for some positive constant C. By Proposition 4.2(ii), the Carathéodory

differential equation

w' = Ce(t)o(w)

is also a comparison equation. Thus (4.20) is straightforward as before. [

5. Uniqueness of Global Semiclassical Solutions to the Cauchy Problem

The present section is in principle a continuation of the previous three. However, it was
actually originated in the following problem posed by Kruzhkov [20].
Let a C!-function @ = w(z, x) satisfy in the strip [T oy [0, T] x R! the inequality
0w (2, x)/3t] < N|dw(t,x)/dx|, N = const. >0, G0
and the initial condition

0©0,x)=0 on {r=0, x e R'}. (5.2)

Then it is easy to show (cf. Haar—Wazewski’s Theorem 2.1) that w (¢, x) = 0 in I17.
Therefore, the Cauchy problem for the first-order nonlinear equation

du/dt + f(du/dx) =0,
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where f = f(p) is of class C' (IR'), cannot have more than one solution in I17, say, in
the class of C'-functions with bounded derivatives. As Kruzhkov already remarked, the
same conclusion may be drawn without appeal to the differentiability of w = w (¢, x)
(respectively, of the solution) or the validity of (5.1) (respectively, of the equation) at
the points in any given finite union of straight lines {#+ = const., x € IR} C IIr. The
following question arises naturally: to what extent can the condition on the smoothness of
® = w(t, x) and on the validity of inequality (5.1) in the entire strip [T7 be weakened?
For example, the Cauchy problem for the equation du /3t + (du/dx)*> = O with the
zero initial condition #(0, x) = 0 has a continuum of piecewise smooth solutions
in Iy, such as uy = wuy(t, x) 2 min{0, @|x| — &?t}, « = const. > 0. Note that
each function w = u, (¢, x) satisfies the corresponding inequality |dw/3t| < «|dw/dx|
almost everywhere in I17. Therefore, it is interesting to find intermediate classes (as
wide as possible) between C 1(I'IT) and Lip(Il7), in which only the zero function
can simultaneously satisfy (5.1) and (5.2). These questions can be generalized to the
multi-dimensional case.

The study of this problem suggests that we should single out the widest class between
the class of continuously differentiable functions and the class of Lipschitz continuous
functions in which the Cauchy problem for a first-order nonlinear partial differential
equation has a unique global solution.

Our discussions in this section make an appeal to Theorems 2.2, 4.1, 4.4, 4.5. The
condition on the validity of inequality (2.6) is clearly much weaker than that of (5.1)
in the entire domains of the corresponding functions under consideration. Moreover, it
should be noted (see Sec. 1) that

Cl(Qr)NC((0,T) x R") C V(Qr) C Lip([0, T) x R™).

The smoothness requirement on functions in V(2r) is really weak enough: roughly
speaking, these functions need only be absolutely continuous in time variable. By the
previous sections, the class V(27) would be nominated as best candidate for our
discussion concerning the above questions for the Cauchy problem (2.3)—(2.4). We
therefore arrive at the following definition of generalized solutions:

Definition. A function u = u(t, x) in V(Q2r) is called a global semiclassical solution
to (2.3)—(2.4) if it satisfies (2.3) for all x € R” and almost all t € (0,T) and if
u(0, x) = ¢(x) for all x € R".

Here, the initial data ¢ = ¢ (x) is a given continuous function on IR". The Hamiltonian
f = f(@t, x,u, p)is always assumed to be measurable in ¢ € (0, T') and continuous in
(x,u, p) € R* x R! x IR”. In this section, we investigate the uniqueness of the above
global semiclassical solution. Further, an answer to Kruzhkov’s problem will be given.
The easy proof of the following uniqueness criterion will be left to the reader.

Theorem 5.1. Suppose f = f(t, x, u, p) satisfies the following condition: there exist

a nonnegative function p = p(x) locally bounded on IR" and a nonnegative function
£ = £(t) in L'(0, T) such that

|f@ x,u, p)— f@ x,v,9)| <€) - [A+|xDIp — gl + pn(x)[u — v]] (5.3)
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for almost every t € (0,T) and for all (x,u, p), (x,v,q) € R" x R! x R If
ur = u1(t,x) and ur = uy(t, x) are global semiclassical solutions to the Cauchy
problem (2.3)—(2.4), then u(t, x) = us(t, x) in Q.

Remark. Condition (5.3) is satisfied if and only if for some positive function £ = £(t)
in L1(0, T), the function

Qr x IRI x R" > (I,X, u, P) = f(t’x9u’ P)/[e(l)(l + |x)]

is Lipschitz continuous with respect to p uniformly in (¢, x,u) € Qr X R!, and is
Lipschitz continuous with respect to u uniformly in (¢, x, p) € (0,T) x X x R" for
every compact set X C R” (i.e., uniformly globally in (¢, p) and locally in x).

A useful uniqueness criterion for global semiclassical solutions with essentially
bounded derivatives is given by the next sharpening.

Theorem 5.2. Suppose f = f(t,x,u, p) satisfies the following condition: for any
compact sets K1 C R!, K; C R", there exist a nonnegative function Ly, =44, @) in
L'(0, T) and a nonnegative function K x, = B, x, (X) locally bounded on R" such
that (5.3) with £, and p, ., in place of € and ., respectively, holds for almost every
t € (0,T) and for all (x,u, p), (x,v,q) € R" x K1 x Ka. If u1 = u1(t, x) and
uy = us(t, x) are global semiclassical solutions to the problem (2.3)—(2.4) with

8 "
esssup i(t,x)‘ <400 (j=1,2),
(t,x)eQy' 90X

then ui(t, x) = uy(t, x) in Qr.

Remark. If f = f(t, p) depends only on ¢, p and is of class C 1on [0, T] x IR", then
the condition of Theorem 5.2 is satisfied. In this case Theorem 5.2 solves the problem
of Kruzhkov (see Corollary 5.4 later).

To prove Theorem 5.2, we need the following:

Lemma 5.3. Let = ¥ (x) be a locally Lipschitz continuous function of x on R". If it
is differentiable in the whole R", then

] b
ess sup l(x) = sup —w(x)‘ @ir=ml =. ¥, n).
xeR” Xi xeRr | 0X;
Proof. Fixany i € {1, ..., n}. It suffices to treat the case when
a «
i o ess sup —ﬂ(x) < +00.
xeR" Xi
Let us write x = (x/, x;) instead of x = (x1, ..., x,), Where

/def
x = (-xla e Xi—1s Xit1s ---,xn)~
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Then for almost all (with respect to the (n — 1)-dimensional Lebesgue measure)
x' € R"1, we have

[y =
Bx, L (R!)

Since the function v (x’, .) is absolutely continuous on each bounded segment, it follows
that

x?
" a
WO x) =@ Dl = | | oG] <sibd —xF (5.4)
x; 1

for almost all (with respect to the (n — 1)-dimensional Lebesgue measure) x’ € IR"~!
and for all xil, xi2 € IR!. From the continuity of ¥ = ¥ (x) and from (5.4), we conclude
that

[y (s x}) = v, %D < silx} — x|

for all (x', x}), (x', x?) € R". Therefore,

‘g—;//i(X)\ <si

for all x € R”. This proves the lemma. [ ]

Proof of Theorem 5.2. According to the definition of V (€27), Lemma 5.3 shows that

”f_'(z,x)‘ G = 120l T 2

sup 9%
i

xeR”

(t x)| = esssup
ax; xeR*

for almost all ¢ € (0, T). Taking the essential supremum over ¢ € (0, T), we find that

esssup sup —(t Xx)| = esssup —(t x)’
1€(0,T) xeR" (t.0)e ! 0%i
Consequently, by assumption,
ou;j
r 3 max ess sup sup = (5 x)| < +o0. 5.5)
J=12 1¢(0,T) xeR" | 0%

Let X*beasin (3.3); K; & B, c R"; £(.) £ ¢, (). Foranarbitrarily fixed T’ € (0, T),

we consider the sequence {Pk} | of the followmg parallelepipeds:

PFE O T x X ={¢t,x) : 0<1<T, xeX}

Continue using (3.4). Then the function u = w(x) given by (3.5) is locally bounded on
R".
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We now consider the function u = u(z, x) = ui(t,x) — ur(t, x). Of course,
u(0, x) = 0. Moreover, in view of (5.5), the hypothesis of the theorem implies

d 9 9
‘3_1:(t’ )C)‘ = }f(t,x, ul(t, x)7 —au_l(t’ x)) - f(t,x, uZ(t’x)? 'ﬂ(t’x))‘
e ox
d 9
<2 [+ 10| 5260 = S2@ 0|+ uln @, %) - ut, )]

= 0@ - [+ D[ SE 0] + e )]

for all x € IR" and for almost all t € (0, T’). Therefore, Theorem 2.2 shows that
u(t,x) = 0in Qp . Since T’ € (0, T) is arbitrarily chosen, the proof is complete. ]

Corollary 54. Let f = f(t,x,u, p) be measurable in t € (0,T), continuous in
x € R", and differentiable in (u, p) € R! x R" such that, for any compact set K C R",
the function

0,1+ sup
(x,u, p)eR*XRIxK

d
a—f(t, x, u, p)/(1 + |x])
p

is Lebesgue integrable on (0, T), and the function

def
v, = v, (x, u) = esssup sup
1€(0,T) pek

a
L prre )

is locally bounded on R" x RL. Ifu; = ui(t,x) and up = uy(t,x) are global
semiclassical solutions to the Cauchy problem (2.3)—(2.4) with

ou;
esssup'—](t,x)‘ <+o0 (j =1,2),
(t,x)EQT

then u1(t, x) = uy(t, x) in Q7.

Proof. Let us introduce the notation

def
K, x, (X) = sup v (x,u)
uek,

for any convex compact sets K1 C R!, K> c R". Then it is easy to check that (5.3)
with £, and u, . in place of £ and u, respectively, holds for almost every ¢ € (0, T)
and for all (x, u, p) (x,v,q) € R" x K; x K». The corollary thereby follows from
Theorem 5.2. ]

We leave it to the reader to prove the following criterion of continuous dependence
on initial data for global semiclassical solutions.
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Theorem 5.5. Suppose f = f(t, x, u, p) satisfies (5.3). Let Wy =it ) =l 2)
be global semiclassical solutions to (2.3) with

u;(0,x) = ¢;(x) on {t=0, x € R",

where ¢; = ¢;(x) (j = 1, 2) are given functions continuous on IR". Then

lui(t, x) —ua(t, x)| < CXP[C(JC)/0 £(r)dr] - sup |#1(y) — 2,

YIsU+kDexp [} erydz—1
C(x) being defined in (2.8).

Remark 1. The example in Remark 2 following Theorem 2.2 shows that the Lipschitz
continuity of functions in the class V (27) also plays an essential role in the definition
of global semiclassical solutions. The zero solution aside, this example gave no other
global semiclassical solution to the Cauchy problem

du/ot =0 in Q,

u(0,x)=0 on {r=0, x e R"}.

Remark 2. Consider the Cauchy problem
du/dt + (du/dx)> =0 in {0<t<T, x e R}, (5.6)

u(0,x)=0 on {t=0, x € R!}. (5.7)

By definition, if u = u(z, x) is a global semiclassical solution to the problem, then
for almost every ¢t € (0, T), the function u(z,.) is differentiable on IR!. Obviously,
(5.6)~(5.7) has a continuum of global solutions in the class of Lipschitz continuous
functions, such as (see Fig. 1)

def [ O if0<t<T-—g¢g,
Uje =ux,5(t,x) = . 2 .
min{O, Alx| —A“(t —T +¢e)} if T—e<t<T,

where A > 0, 0 < & < T. For A > 0, the differentiability of the function u 1e(t, ) fails
somewhere (at x = £A(f — T + ¢) and at x = 0) if and only if 7 belongs to the interval
(T — &, T'), whose Lebesgue measure is precisely € (positive but as small as we please).
Thus, the zero function uo . = uo (¢, x) (i.e., A = 0) is the unique global semiclassical
solution to (5.6)—(5.7) in the class of functions with essentially bounded derivatives (cf.
the remark following Theorem 5.2).

The results in this section can be generalized to the case of weakly coupled systems
(4.8)~(4.9) by the use of Theorems 4.1, 4.4, 4.5. Here, the initial data ¢ = ¢(x) =
(91(x), ..., Ppm(x)) is a given vector function continuous on IR”. Each Hamiltonian
fi=fitx u, p’) is always assumed to be measurable in z € (0, T) and continuous in
(x,u, p/) € R* x R™ x R". First, we give the definition [25, 33] of global semiclassical
solutions for the problem.
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f ' |
Uy olt,x)=0

x=AMt—T +¢)

U ot x) = Mx| = A% — T + &)t
e

Uslt,x) =0 Q(r —T+5¢)

Fig. 1.

Definition. A vector function u = u(t, x) in V™ (Qr) is called a global semiclassical
solution of (4.8)—(4.9) if it satisfies (4.8) for all x € R”" and almost all t € (0, T) and if
u(0, x) = ¢ (x) forall x € R".

We can now formulate some stability results for global semiclassical solutions of the
problem (4.8)—(4.9) and leave the proofs to the reader.

Theorem 5.6. Suppose f; = fi(t, x, u, pj Y (j = 1,...,m) satisfy the conditions as

follows: there exist a nonnegative function . = w(x) locally bounded on R" and a
nonnegative function £ = £(z) in L' (0, T) such that

eeey

(5.8)
for almost every t € (0, T) and for all (x, u, p)), (x,v,¢)) e R* xR" xR" (j =
1,...,m). Letu = u(t, x), i = i(t, x) be global semiclassical solutions to (4.8) with

the following corresponding initial conditions:
10, x) = $(x), 10, x) = ¢(x) on {t=0, x eR"},
where ¢ = ¢ (x), ¢ = $(x) are given vector functions continuous on R". Then
max Iuj(ta x) - ﬁ](t9 x)l =<
j=1,..m
t A
ewce [ emar] s max 160) = 0l
0 =QHaDexp [ t@de—17"

C(x) being defined in (2.8).
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Corollary 5.7. Suppose f; = fi(t,x,u, pPY(ji=1,...,m satisfy the conditions
(3.8). If u = u(t, x) and v = v(t, x) are global semiclassical solutions to the Cauchy
problem (4.8)—(4.9), then u(t, x) = v(t, x) in Q.

Theorem 5.8. Let (4.10) be a comparison equation. Suppose fi =G x,u, p’)
(j = 1,...,m) satisfy the following conditions: there exists a nonnegative function
€ = £(t) in LY(0, T) such that

|fi (&, x,u, p) — fi(t, x, v, ¢))| < LA + [x]|p — g7 | + "(”ki‘?

for almost every t € (0, T) and for all (x,u, p/), (x,v,¢’) e R" x R" x R" (j =
L...,m). Ifu = u(t,x) and v = v(t, x) are global semiclassical solutions to the
Cauchy problem (4.8)—(4.9), then u(t, x) = v(t, x) in Qr.

Theorem 5.9. Let (4.12) be a comparison equation. Suppose that fi =i, x,u, p/)
(J = 1,...,m) satisfy the following conditions: there exist a nonnegative function
u = pu(x) locally bounded on R" and a nonnegative function £ = £(t) in L'(0, T) such
that ) )

|fj(t, x,u, p) — fi(t, x,v,9")| <

.....

for almost every t € (0, T) and for all (x,u, p’), (x,v,¢’) e R” x R" x R" (j =
L....m). Ifu = u(¢,x) and v = v(t, x) are global semiclassical solutions to the
Cauchy problem (4.8)—(4.9), then u(t, x) = v(t, x) in Q.

6. Concluding Remarks

The global existence and uniqueness of generalized solutions for convex Hamilton—
Jacobi equations were well studied by several methods: variational method [10], method
of envelopes [1], vanishing viscosity method [15,19, ...], etc. The global theory
for non-convex Hamilton-Jacobi equations has recently been considered by Crandall,
Evans, Lions, and Ishii [11, 12, 17, ... ], etc. They have introduced the notion “viscosity
solutions” to define generalized solutions and characterized their properties. By these
contributions, the global existence and uniqueness of generalized solutions have been
established almost completely. However, it should be noted that viscosity solutions of
partial differential equations are, as regular as possible, in general just continuous. They
may therefore contain singularities. So what kinds of phenomena would appear when we
extend the classical (local) solutions? In such a procedure, we must go back (for this, see
[26]) to the Haar lemma. Of course, furthermore, the a priori estimates from the lemma
(or something like it) are of much interest from various points of view.
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