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Abstract. In this paper, we introduce an efficient algorithm for linear programming problems
which is based on the concept of a cone of maximal volume. From each vertex of a polytope X
we construct a cone of maximal volume. The cone can be found after not more than m - n times
of changing a consequent inequality.

1. Introduction

Since its appearance in 1947 (see [3]), the simplex method has become the main tool
for solving linear programming problems. The popularity of this method is explained by
various reasons, among which is its effectiveness and its simple understanding in both
algebraic and geometric formulations. Only after Khachian's polynomial time ellipsoid
method was published [8] did it become more clear that there may be algorithms which
are better than the simplex method. This is significant, stimulating the research for
new methods. Considerable progress has been made since 1984 when Karmarkar l7)
suggested another polynomial time algorithm, which claimed to be fast in practice.
Karmarkar's project algorithm solves a linear programming problem after O (nZ) steps
with O (n3) operations per step. After the Karmarkar method was published, a number of
authors such as Anstreicher and Bosch [1], De Ghellinck and Vial [4], Gay [5], Gonzaga

[6], Renegar [9], Todd [10], Ye and Kojima [11] proposed a variant of Karmarkar's
algorithm with a reduced complexity. Nevertheless, it is seemly for us that a variant of
Karmarkar's algorithm has reached its limited complexity. On the other hand, we think
that the systems of linear inequalities could give better properties for finding an optimal
solution to the linear programming problem.

Assume that n < m ate positive integer numbers. Let X be a nonempty polyhedral
compact set (polytope) of R' given by a system of linear inequalities

(1 )
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Consider the following linear programming problem (P):

Here, c is a row vecto r tn R, 

{cx I x € x}'

In this paper we present a new method in solving problem (P). In Sec. 2 we introduce the
conception of cones of maximal volume and the way to construct them as a key for solving
problem (P). In fact, we describe the relation between the cone of maximal volume and
the subsystem of linear inequalities of X. From each vertex of X we can construct a cone
of maximal volume by not more thanm -n steps of changing consequent inequalities. In
Sec. 3 we present the algorithm and some computational results are illustrated in Sec. 4.

2, Cones of Maximal Volume and Their Construction

There is no loss of generality if we suppose that runk (a; , i : 1, ..., m) : n and it does
not contain a redundant inequality, and that ai, i : 1, ..., n rs n linearly independent
vectors.

Let us consider the svstem

( a i , x )  1 b i ,  i  - -  l '  " ' '  f l '  ( 2 )

and its corresponding homogeneous system

(a i ,  x )  <  0 ,  i  :  I ,  . . . ,  n .  (3 )

Let K be the set of solutions of the system (3), then K is a polyhedral cone.

Definition l. A linear inequality (at, x) < 0 is called a consequent inequality of the
system (3) if (an, x) < 0for all x e K.

Definition 2. The cone K is called cone of maximal volume if (at ,.r) S 0 is not a
consequent inequality of the system (3) for all k e {n + l, ..., ml.

From [2] we have the following property of a consequent inequality.

Theorem L. The linear inequality (ap, x) < 0 is a consequent inequality of the system
(3) if and only if the vector ap is a nonnegative linear representation of vectors a; of the
system (3).

The following theorem provides us with a condition to check whether a cone K is of
maximal volume.

Theorem 2, Let xo be the solution of the system (2) such that

(o r ,  *o )  :  b i ,  i  :  I ,  . . . ,  f l .  (4 )

If x0 is also a solution of the system (1), then the cone K of the system ( j) is of maximal
volume.
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Proof. Suppose -r0 is a solution of the system (1). We will show that the cone K is of
maximal volume. If this is not true, there exists a consequent inequality (ap, x) < 0 of
the system (3), meaning that

o [ .  : f , ^ , o o { ,  L i k  2 0 ,  I  -  1 , . . . ,  f t ,
i : l

where a{ isa transformation of ai. There exists at least one ).r7. > 0. Consider the system

[  ( o i , x ) : b i ,  i : 1 , . . . , n ,  i # s ,

t (oo, x) : br, . 
(5)

Denote by *k the solution of the system (4). It is obvious that xk I xo and

(or ,  *k)  I  b,  .

Notice that
n

(ot, *k) - 
I Linbi * lrk (ar, xk) : bk ,

i : I , i * s

(ot  ,  *o) -  
L,  ) ' i tbt  *  A.r1r(ar,  ro) .

i : t , i * s

Since (or, x0) - br, it follows from (6), (7), and (8) that

(ot, *o) > (at, xk) - br, .

This contradicts the assumption that x0 is a solution to the system (1). Therefore,
(ar, x) < 0 cannot be a consequent inequality of the system (3), which implies that
K is a cone of maximal volume.

Definition 3. Including a consequent inequality (at, x) < 0 into the system (3) instead
of an inequality (ai, x) < 0 is called replacing of consequent inequality if the rank of
the new system equals the rank of the system (3).

Theorem 3. Let x0 be a solution to the system (4) and the cone K not of maximal
volume. Then a cone of maximal volume Kt can be found after not more than m - n
replacing s of c ons e quent inequalitie s.

Proof .  Suppose o l  :D i : rL i ,a l  ,L i t  2  O, i :  l , . . . ,n .Th ismeans tha t (a1 ,x )  <  0 is
a consequent inequality. Note that there exists at least one positive coefficient ,l.ry. If we
replace (ar, x) < 0 by (ar, x) < 0, then the new system also has rurkn. Let us replace
(ar,x)  = 0by (at ,x)  < 0anddenoteby K'  thenewcone. Obviously K c Kt.Wewi l l
show that (ar, x) < 0 never becomes a consequent inequality of Kt .Letri , j : l, ..., fl
be the vectors generating K. Determine

h :  U  l ( a r , r i )  -  0 ,  j  : 1 , . . . ,  n l ,

Jz :  { j  |  (as, 11) < 0, j  :  l ,  . . . ,  nl .
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It is plain that I Jrl : n - l,lJzl : 1. Note that

(a7, ri) < 0 for some i e Jt .

This implies that K c Kt and some Pffi P, of the hyperplana (ar, x) : 0 belongs to

the interior of Kt. At step h > t we obtain

K c K t  c . . . c K h ,

P r c  i n t K t c " ' C r n t K h .  
( 9 )

If at step h + | the inequality (ar,x) < 0 becomes a consequent inequality and we
replace (ai,x) < 0by (ar,x) < 0, then the hyperplane (ar,x) :0 defines aface of

the cone Kh+r. This contradicts (7). Therefore , after not more thanm - n replacings of

consequent inequalities, we obtain a cone of maximal volume. The theorem is proved.r

Theorem 4. Let c be a nonnegative linear combination of the vectors a; of the system
(3) and suppose the cone K is not of maximal volume. Then there exists replacing of

some inequality (ar, x) < 0 from the system (3) by a consequent inequality (a1, I) < 0

such that the new system has a cone of bigger volume and (c, x) < 0 ls also a consequent

inequality of the new system.

Proof. Let (ar, x) < 0 be a consequent inequality of the system (3) and

r  . \ ^gt  :  
)_,Lrrol  ,  L i ,  )  0,  i  :  I ,  . . . ,  f l ,
i : l

r  . \ .al  :  L ,L, to l  ,  L f t  )  0 ,  i  :  I ,  . . . ,  n .
i : l

Suppose we replace (ar, x) < 0 with positive lsr by (at, x) < 0. Theorem 3 implies that

the cone K will be contained in the new cone Kt. We have to show that (c, x) < 0 is a

consequent inequality of the cone K/. Consider the representation of vector c by vector

a t ,  a i ,  i  + , s ,  I  :  1 , . . . ,  n . L e t

,T : ),'rral + D, L|rol .
i : l , i # s

Note that
^ t  t r r "
' " t c  -  

^  )
hs t

\ | r :  L r ,  -P^ , , ,  i  + . s ,  i  :  l ,  - - - ,  n .
lvst

The inequality (c, r) < 0 will be a consequent inequality of Kt 1f

A, ' .^ :  
^ "  =  o .

t L  1  
-

hst

t r  .  l r a .L' , , :  ) " i ,  -  
f r^ , ,  

>  o ,  i  *  s ,  i  :1 , . . . ,  n .
(10)

It is easy to verify that if
lr. Lu

flun
l r r  k) '14>0 ) 'p7 '

then condition (9) will be satisfied. This concludes the proof of Theorem 4. r
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Remark l. If we replace the inequahty (ar, x)
(at, x) < 0, then the new representation )'t, of the vector ai by vectors at, ai, i * s,
i : l, ..., n are defined as follows:

1 '

t t  n s j
' " t c  -  

t  s
r'"st

A' ' i j :  ) ' i j  
#^ " '  

i  #  s '  i  -  L ,  " ' '  n '

Remark 2. The cone K0, such that the inequality (c, x) < 0, is its consequent inequality
and from K0 we begin the process of finding a cone of maximal volume which will be
called an initial cone. The initial cone K0 can be found by solving the following problem
(a).

3
max L-!j ,

j : I

subject to

3
Lo, iL ,  I  e jY j  :  c j ,  j  :  r ,  " ' ,  n ,
i : 1

l ;  >  0 ,  i :  L , . . . s  f f i ;  y i  >  0 ,  j  :  L , . . . ,  f l ,

where ei rs ?, vector such that

[  0 ,  Y k + i ,
T

, k j - 1 I ,  l f k - i , c j 2 0 ,

[ - 1 ,  r f k : i , c i < 0 .

This requires not more than n simplex iterations.

Now let us consider the question of how to choose the consequent inequality
(a,, x) < 0. Our aim is to make the cone Kt as big as possible. We do this in the
following way.

Denote by Z the index set of consequent inequalities and let I Z | > 2. Determine

1 n

v  -  - ;D " , ,
j : 1

T1 :  {k lyn > 0,  (ak,ykai l  :  0,  (c,  y *  y l rap) < 0,  k e T}.

Find
y r :max{yn lk  eT t } . ( 1  1 )

The consequent inequality (at, x) < 0 corresponding to y1 in (11) will be chosen for
inclusion into the new svstem.

Theorem 5, Let the vector c be a nonnegative linear combination of vectors ai,
i : l, ..., fl of the system (3) and xo a solution to the system (4). If the cone K of
the system (3) is of maximal volume and xo is a solution to the system ( 1), then xo is an
optimal solution to the problem (P).
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Since (c, x) < 0 is a consequent inequality of the system (4), it implies

(c, x) < (c, xo1, vx e X.

On the other hand, Theorem 2 implies that x0 e X. Therefore

(r, *o) - max{(c, ro) | x e Xl,

which concludes the proof of Theorem 5.

3. The Algorithm

The idea of this algorithm is that from a vertex of X which corresponds to a cone, we
construct a cone with a bigger volume by gradually replacing a consequent inequality
until we get a cone of maximal volume (the procedure contains not more than m - n
replacement steps) and a coffesponding solution x0. If x0 satisfies all consffaints of
problem (P), then x0 is an optimal solution of (P). Otherwise, we choose a new vertex
of X and repeat the procedure.

Initial srep. Solve the problem (Q) for finding the representation Lij, Lir, )";6 ()';6 - Q)
of vectors a; defining the initial K0. Go to Step 1.

Step l. Define the set Z of consequent inequalities of cone K0. If T : 0, then go to
Step 2. Otherwise, define the index s, / and replace by or. Go to Step 1.

Step 2. If x0 is a solution to the system (1), then stop; x0 is an optimal solution to the
problem (P). Otherwise, go to Step 3.

Step 3. Choose a cone K* such that (c,,.r) is a consequent inequality of K* and
(c, x*) < (c, x0;, where x* is a solution to the system (2) corresponding to the cone K*.
Let Ko - K*, xo : x* and go to Step 1.

4. Computational Experience

The above algorithm has been written using PASCAL. With some examples, we have
shown the effectiveness of the algorithm. The number of iterated steps is less than the
one of the dual simplex method.

The following table is the result of the testing examples.

(1 ) (2) (3) (4) (s)
100 34.57 11 .98 15.46 12.25
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Note.
(1) The number of the testing examples.
(2) The average number of variables n.
(3) The average number of constraints m.
(4) The average number of iterated steps of the dual simplex method.
(5) The average number of iterated steps of the maximal volume cone algorithm.
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