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Abstract. A new subdifferential of a C-lower semicontinuous vector function f from a Banach
space X into R™ is defined, where C C R™ is a cone generated by m linearly independent vectors.
Some of its properties are shown. Especially, f is C-quasiconvex (resp. C-convex) if and only if
its subdifferential is C-quasimonotone (resp. C-monotone).

1. Introduction

The problem of characterizing various classes of functions in terms of their local
approximations has been studied intensively. Some new resuits are presented in [3-6, 8,
10] where lower semicontinuous convex, quasiconvex or pseudoconvex functions have
been characterized via their Frechet derivatives [5], Clarke subdifferentials [3, 4, 6], upper
and lower Dini derivatives [6, 8] or lower Dini—-Hadamard derivatives [10]. Especially
in [11,12], the authors have shown necessary and sufficient conditions for a set-valued
map F between Banach spaces Xand Y to be convex and quasiconvex with respect to a
convex cone C C Y. These conditions are written in terms of the Bouhgand and Clarke
derivatives of the map F():=FQ)+C.

The aim of this paper is to characterize C-lower semicontinuous quasiconvex and
convex vector functions from a Banach space X into R™ in terms of their generalized
subdifferentials, where C € R™ is a cone generated by m linearly independent vectors.

The paper is structured as follows. In the next section, we introduce some preliminaries.
In Sec.3, after introducing the concept of generalized subdifferentials of C-lower
semicontinuous vector functions, we shall prove some of their basic properties. Section 4
is devoted to proving the equivalence between the quasiconvexity (resp. convexity) of
C-lower semicontinuous vector functions and quasimonotonicity (resp. monotonicity)
of their generalized subdifferentials.
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2. Preliminaries

Let C € R™ be a cone generated by m linearly independent vectors ci, ¢z, ..., Cn.

S — m —
Denote by R the set R U {—o0, +0o0} and by R" the set {aici : o €R, i =
i=1

1, 2,..., m}. Deﬁne on R a partial order “<” as follows. For every x, y € R,
X = Zalcl! y = Zﬂtcl’

x<yifo; <B,i=1,2,....m
It is clear that if x, y € R™, then
x<yiffy—xeC.

Denote by pr; the projection

m
pri . Zaici € R"— a; €R.
i=1

Lemma 1. Let A be a nonempty subset of R . Then

(a) inf A = % inf (pr; (A))c;.
Particulc;:l;, if ANR™ # @ and A is bounded below by an element of R™, then
inf A € R™,

(b) supA = 3" sup(pri(A))e.

=1l
Particularly, if AN R™ # @ and A is bounded above by an element of R™, then
supA € R™.

m —
Proof. (a) Let x € A be arbitrary. Represent x as x = ) _ &;c;, for some o; € R. It

i=1
m
is clear that o; > inf(pri(4)), i = 1, 2,..., m. Then x > > inf(pr;(A))c;. Hence,
=1
m
Y inf(pri(A))c; is a lower bound of A. Now, let a be an arbitrary lower bound of A.
i=1
m —
Representaasa = Y o;ci, forsomea; € R.Let B; € pr;(A) be arbitrary. Then there is

i=1
anelement x € A suchthat pr;(x) = B;. Since x > a, then 8; > «;. Hence, «; is alower
bound of pr, (A). Then ¢; < inf(pr;(A)). Slnce this is true forevery i = 1, 2, .

thena < Z inf (pr;(A))c;. Hence, inf A = Z inf(pr; (A))c;.
i=1
Finally, assume that A N R™ £ {J and A 1s bounded below by an element b € R™.

Let x € AN R™ be arbitrary. We have » < inf A < x. Hence, inf(pr;(A)) € R,
i=1,2,...,m.Thus, inf A € R™.
(b) The proof is completely similar. n
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Denote by oo the element (+00)c1 + (+00)ca + -+ + (+00)cp. Let x, y € Em,

x—Za,c,,y_Z,B,cl We shall write x € yifo; < B;,i =1, 2,.
i=1 i=1

Now let f be a vector function from a Banach space X to R™ U {oo}. The effect
domain of f is defined as the set

domf :={x € X : f(x) « +00}.

Represent f as

f@ =) fie. Q)
=)

It should be noted that dom f = domf;, i =1, 2,.
A subset W C R™ is said tobe a ne1ghborhood of % if there is a point z € R™ such

that W 2 z+ C. LetusdenotebyCtheset{Zoz,c,GR ta; > 0,i=1,2,.., m}.

f is said to be C-lower semicontinuous at xo e X if, for every nelghborhood W of
f (x0), there is a neighborhood V of xo such that x € V implies f(x) € W + C.fis
said to be C-lower semicontinuous if it is C-lower semicontinuous at every point of X.
Sometimes we write “lower semicontinuous" instead of “C-lower semicontinuous" if it
is clear which cone is being considered.

It is easy to see that if f is continuous at xo € dom f, then it is lower semicontinuous
at xg.

Lemma 2. f islower semicontinuousatxo € X ifandonlyif f; is lower semicontinuous
at xg, foreveryi=1,2,... m

Proof. For the “only if” part, first assume that xo € domf. Let ¢ > 0 be arbitrary. Set

m m

Wi={yeR" : ) (filx) - )i <y<2<f,(xo>+e>c,}

i=1

Then W is a neighborhood of f(xo). Hence, there is a neighborhood V' of xq such that
x € V implies f(x) € W + C. We have

f(x)eW+c=>ayeW IeeC:f(x)=y+c

= Z fix)er = Z(ﬁ (%0) — &)ci

i=1
= filx) = ﬁ-(xo) —e,i=1,2,...m

Hence, f; is lower semicontinuous at xo, foreveryi =1, 2, ..., m.
m —
Now, assume that xp ¢ dom . Let o > 0 be arbitrary. Set W := Y ¢i+ C.Then W
i=1
is a neighborhood of 0_46 Hence, there exists a neighborhood V of xg such that x € V
implies f(x) € W + C. Hence, f;(x) > a foreveryi =1, 2, ..., m. Then f; is lower

semicontinuous at xg, forcvery i =1, 2, ..., m.



56 Phan Nhat Tinh, Dinh The Luc, and Nguyen Xuan Tan

For the “if” part, first we assume that xo € dom f. Let W be an arbitrary neighborhood
of f(xg). Then there exists £ > 0 such that

D EeR™ 1 ) (filwy—e)ar =y =) (filxo) +&)ei} S W.

i=1 i=1

Since f; is lower semicontinuous at xo, for every i = 1, 2, ..., m, we can find a
neighborhood V of xg such that f;(x) > fi(xp) —¢,foreveryx e V,i =1, 2, ..., m.
m m m
Hence, f(x) = Y fi(x)ei = X (fi(xo) — €)ci. Since Y _(fi(xo) — &)c; € W, then
i=1 =] i=l
f(x) € W+ C. This means that f is lower semicontinuous at x.
Now, assume that xo ¢ domf. Let W be an arbitrary neighborhood of f(x¢).
m

Then there exists z € R™ such that W 2 z 4+ C. Represent z as 7z = 3 e, for
i=1
some «; € R. Since f; is lower semicontinuous at xg, for every i = 1, 2, ..., m,

there exists a neighborhood V of xo such that x € V implies f;(x) > o, for every

m m -
i=1,2,.., m Hence, f(x) = fix)ei = > ajci,ie. f(x) € W+ C. Thus, fis

i=1 i=1

lower semicontinuous at xg.
The proof is complete. [

We recall some definitions.
S is said to be convex (or more precisely C-convex) if forevery x, y € X, ¢ € (0, 1)
we have

fx+ QA =0y 2tf(x)+ A =1)f).

f is said to be quasiconvex (or more precisely C-quasiconvex) if for every x, y € X,
t € (0, 1) we have
f@x+ A —10)y) =2 sup{f(x), f()}

Lemma 3.

(a) fis convex if and only if f; is convex, foreveryi =1, 2, ..., m.

(b) fis quasiconvex if and only if f; is quasiconvex, for everyi =1, 2, ..., m.

Proof. The proof is immediate from the definitions. ]

3. Subdifferentials of Lower Semicontinuous Vector Functions

Let C € R™ be a cone generated by some linearly independent vectors c1, ¢z, ..., Cm

R ] . +
and f alower semicontinuous vector function from a Banach space X into R U {oc}.
The generalized subderivative of f at x € dom f in the direction v € X is defined by

; ftu) —
fT(x§ v) := sup inf sup inf fy+tu)— f(y) .
e>0 v>0 y€B, (x) u€B, (v) t
§>0
FMefx)+B;(0)—C
iy 1€(0,3)

Let us represent f as (1).
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Theorem 1. Forevery x € dom f, v € X, we have

o =Y e,

i=1

If, in addition, f is continuous at x, then the equality holds.

Proof. From Lemma 1, we have

m

flw) = Z sup inf sup inf O +m) — i) G .
g=0 ¥=0 vel,(x) ueb, (v) [

‘:‘é FIVIEf(x)+B5(0)—C

re(0.4)

i=l1

Let & > 0 be arbitrary. For every i = 1, 2, ..., m, we shall prove that

fily +tuw) — i)

inf sup inf
y >0 yeB, (x) ueB.(v) t
220 FOIEfX)+ByO)—~C
) 1€(0,1) -
. : (y +tu) — f;
=< inf sup inf fily )= /i) : 2
y>0 yEB, (x) ueB. (v) (9
520 F=fit)+s
T e,

Indeed, let y > 0,8 > 0, A > 0, then the set
m
W= {z = Zaic,- € R™ : |oy| <8}
i=1

is a neighborhood of 0. Then there exists 81 > 0 such that B;, (0) € W. Hence,

{(yeX:yeByx), f(y) € f(x) + B (0) — C)
C{yeX:yeByx), fi(h) = fikx) +8}.

This implies
. fi+tw) - fi(y)
sup inf

yeB, (x) u€B(v) t
fefx)+B5 0)-C

te(0,r)

. fi+w) — fi(y)

=< sup inf :

yEB, (x) ueB, (v) t

[O)=filx)+8

te(0,r)
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Then we obtain (2). From (2) one has
m
JUCEVED P AL CTEO
i=1

Now, assume that f is continuous at x. Forevery ¢ > 0, i = 1, 2, ..., m, we shall prove
that

fily+tuw) — fi(y)

inf sup inf
y>0 y€B, (x) ueB, (v) {
8>0
fefx)+Bs(0)-C
i te(0,1)

Jily +tu) — fi(y)

> inf sup inf 3)
y>0 y€B, (%) u€B. (v) ¥
§>0
fi=fi(x)+8
A>07c 00

Lety > 0, § > 0, A > 0. Since f(x) + B;s(0) is a neighborhood of f(x), then
we can find a positive number y; with y; < y such that y € B, (x) N domf implies
F(y) € f(x) + Bs(0). Hence,

{reX:yeB,(x), f(y) e f(x)+Bs(0)-C} 2 By, (x) Ndom f
2{yeX:yeB,(x), fi(y) < filx) +5}.

This implies
sup inf Sily+tuw) — f;(y)
yeB, (x) u€B.(v) t
FOef(x)+Bs(0)—C
te(0,A)
. e inf fily +tu) — fi(y) ‘
yEB, (x) ueB,(v) 1
fiN2fi(x)+8
te(0,A)

Then we obtain (3). From (3) one has
vy =Y £l ve.
i=1

The proof is complete. L

Let f: X > R™U {o%} be a C-lower semicontinuous function. The generalized
subdifferential of f at x € X is defined by

{Ae L(X,R™ : A(w) < fT(x;v), Vx € X}, x € dom f

1 ._
A [ @, x ¢ dom f,

where L(X, R™) denotes the space of continuous linear maps from X into R™.
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m
Let Aj, As, ..., Am € L(X, R). Denote by Y A;c; the linear map from X into R™
==l
defined by the rule

O Aie)x) =) A -
i=1 i=1

Let A1, A, ..., An € L(X, R).

Denote by Y A;c; the subset of L(X, R™) defined by the rule
i=1

iAici E= {Z Aici t Aje A (=1,2,.., m}

i=1 i=1
Theorem 2. For every x € dom f, we have

o' f) €D 8" fixei.

i=1

In addition, if f is continuous at x, then the equality holds.

m
Proof Let A € 8T f(x) be arbitrary. Represent A as A = > Ajci, for some
i=1
A; € L(X, R). From definitions and by Theorem 1, we have

m

P HOLESACIIED B ACHIEE
i=1

i=1

for every v € X. Then A;(v) =< fiT(x; v). Hence, A; € 3'fi(x). Thus, A €

m
Y ot fim)ei.
i=1
Now, assume that f is continuous atx.Let A; € 37 f; (x) be arbitrary. From definitions
and by Theorem 1, we have

> Aiw)e = > e ve = £ xsv),
=1 i=1

m
for every v € X. Hence, Y Aic; € 81 f (x). The theorem is proved. [ ]
i=1

Now, we shall consider the relation between the generalized Jacobian and the
generalized subdifferential of a lower semicontinuous vector function f from R" to
R™.

Letxo € int(dom f). Assume that f is Lipschitz near xo. By Radermacher’s theorem,
f is differentiable almost everywhere. The generalized Jacobian J f (xo) of f at xo in the
Clarke’s sense [2] is defined as the convex hull of all (m x n) matrices obtained as the
limit of a sequence of the form (Df (x;));, where (x;); converges to xo and the classical
Jacobian matrix Df (x;) of f at x; exists.
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Lemma 4. For every x € dom £, 8" f(x) is convex.
Proof. This is immediate by definition. a

Lemma 5. Let g : R — R U {400} be a lower semicontinuous function. If gis
Lipschitz near x¢ € int(domg), then

Jg(xo) € 8" g(x0).

Proof. Let A be the limit of a sequence of the form (Dg(x;));, where (x;); converges to
xo and the classical Jacobian matrix Dg(x;) of g at x; exists. Since g is Lipschitz near
Xo, there exists ¢ > 0, k > 0 such that for every x, y € By (xp), one has

lg(x) — eI < kllx — y]. “

0’8

Letv € R" and a > O be arbitrary. Set gg := 5%. From the definition we have

gy +1tu)—g(y)

inf sup inf < g (xo; v). (5)
¥=0 yep (xy) HEB (V) 4
820 p(yi<g(xg)+o

i re{l), i)

By the definition of “inf”, there exist y; > 0, 81 > 0, A1 > 0 such that

inf gy +tu) — g(y)

sup
Y€B,, (X0) ueB,, (v) t
8(y)=g(x0)+8
tE(O,)s.])
. . +tu) — o
< inf sup inf &—)_g@ + = 6)
y>0 y€B, (x0) ueBEo(v) I 6
80 sn=glx0)+5

te(0,r)
Since x; — x¢ and g is continuous at xg, there exists N > 0 such that

i>N=ux €B,(x)N B%(xo), g(xi) < g(xo0) + 98y . @)

glxi + tv) — g(x;)
t

For every i > N, since Dg(x;)(v) = liﬁ)l , there exists t; € (0, A1)
t

such that , ( x:)
£ g(x; +4v) — g(x; o

< —— Dg(x)) < + -, 8
2ol ey TN ” 3 @®

4]

It is clear that

inf <s’(xi+t,~u)—g(xi)S L inf g(y+tu)—g(y). ©)

U€B, (v) f y€By, (x0) u€B;, (v) 1

g(¥)<g(x0)+6;
te(0,A1)
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for every i > N. From the definition of “inf”, there exists

u; € Bgy(v) (10)
such that ‘
g(xi + tiu;) — g(xi) < inf g(xi + tiu) — g(xi) o G amn
t u€B,, (v) L 6

From (5), (6), (9) and (11), for every i > N, we have

g(x;i + tiui) — g(xi)
L

From (4), (7), (8) and (10), we have

o
< g"(xo; v) + 3 (12)

gxi +tiv) —glx)  glxi+ tiui) — g(x;)

o
< kllv — u; keg = — . 13
- 7 < k|lv —u;|| < keo 3 (13)

From (8), (12) and (13), we have
Dg(x;)(v) < gT (x0; v) + .

As i — 00, one has
A@) < g"(xo; v) + .

Since o > 0 is arbitrary,
A) < g"(xo; v).

Hence A € 8% g(xo). By Lemma 4, we obtain
Tg(x0) € 3'g(xo).

The proof is complete. ]

Theorem 3. Ifalower semicontinuous vector function f : R" — R’"U{ot)} is Lipschitz
near xg € int(dom f), then
Jf (x0) € 8" f (x0).

Proof. Since f is Lipschitz near xo, by Theorem 2, we have

81 f(xo) =) 3" fitxo)ci -

i=1

By Lemma 5 above and by [2, Proposition 2.6.2], one has

Jf (o) €Y Tfitxo)ei € Y 9" fitxo)ei = 3" £ (xo).
i=1

i=1
The proof is complete. ]
Tt should be noted that the inclusion of Theorem 3 is strict in general. For instance,

consider the function f : x € R — (|x], [x]) € R?, where R? is ordered by the
nonnegative orthant. Then J £ (0) = [(—1, —1), (1, 1)] and 8" £(0) = [—1, 11x[-1, 1].
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Lemma 6. Let g be a lower semicontinuous function from a Banach space X into
R U {+o00}. If g is differentiable at x € int(domg), then Dg(x;) € 31 g (x0).

Proof. Letv e X.Foreverye >0,y > 0,8 > 0, A > 0, we have

g(xo + tu) — g(xo) - inf gy +tu) — g(y)

sup inf sup
te(0,1) UEB:(v) t y€B, (x9) #E€B:(v) t
() =g (x0)+3
te(0,A)
Hence,

t —
sup inf sup inf §(%0 + 1w) — g(xo)

9\
< g'(xp; v). (14)
£>0 +>0 yc(0,1) 4€B:(v) t &

Let o > 0 be arbitrary. Since Dg(xg) is continuous at 0, for r ;= % > 0, there exists
s > 0 such that for every w € X, one has

lwll <s = [Dg(xo)(w)| <r. (15)

2 (X w) — glxg) — Dg( . /
Since lim 80xo + w) — g(xo) 8 (xo)(w) =10, for+' i= Sl sy
w—0 I[w]| 6(|fv|l + 5)

s’ > 0 such that

. there exists

|8 (x0 + w) — g(x0) — Dg(x0)(w)| p
= <r.

lwl < s’ (16)
lwll
It is clear that
. .o 8(xo+tu) — g(xo)
inf sup inf ———~ 2"
A>0 te(0,n) 4€B:(v) t
. X tu) — )
<sup inf sup inf M ‘ a7
e>0 +>0 re(0,1) u€B:(v) t
From the definition of “inf”, there exists A; > 0 such that
.~ 8(xo+tu) — g(xo)
sup  inf
te(0,x) ueB, (v) t
. ’ X0+ tu) —
<inf sup inf g0 ) ~ 8G0) + E' (18)
A>0 te(0,1) ueB. (v) t 4
s/
Let# € (0, A1) such that g < —————. Then
lvll + s/
1/ = tu) —
inf g(xo + tou) — g(xo) < sup inf 8(xo + tu) — g(xo) . (19)
ueB,(v) t te(0,r;) 4€B:(v) t
From the definition of “inf”, there exists ug € B, (v) such that
b1 = 1 =
8 (xo + fouo) — g(xo) Jiab 8(xo + tou) — g(xop) Hona) 20)

fo T ueB.(v) to 4
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From (14), (17)-(20), we have

g(xo + touo) — g(xo)
Iy

(7
< g Gxo;v) + > 1)

Put 8 := ﬁ For every t € (0, B), since ||tv|| < ', then by (16), one has

|g(xo + tv) — g(x0) — Dg(x0){(tv)| <7 (22)
flzvll
Since y||uol| < s,

|g (x0 + touo) — g(x0) — Dg(x0)(touo)! -y
llzouoll '

(23)

Since ug € B;(v), by (15), one has
|Dg(xo)(v — uo)| <r. (24)

From (22)—(24), for every t € (0, 8), we have

‘gixn +1v) —glxo)  glxg + foup) — g(xo)
t fp
(xp + tv) — g(xp) — Dglxp)(tv)
[ltv]|

g
< vl

g(xp + toup) — g(xg) — Dg(xp)(touo)
[[touo |l

< ol + 7 + luollr’ = ol ————— + = + o) ———— <
6ol +5) ' 6 6ol +5)

+ |Dg(x0)(v — uo)| + lluoll

| R

(25)
From (21) and (25), we have

g(xo + tv) — g(xo0)
t

< g"(xo;v) + 0.
Taking ¢ | 0, we obtain
Dg(x0)(v) < g"(x0; v) + .

Since « > 0 is arbitrary,
Dg(x0)(v) < g (x03 v).

Hence, Dg(xo) € 81 g(xo). The proof is complete. =

Theorem 4. If a lower semicontinuous vector function f from a Banach space X into
a5 o g :
R™ U {00} is differentiable at xo € int(dom f), then

Df (x0) € 8" f(x0).
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Proof. By Theorem 2, we have

m

81 f(xo) =) 3 fixode

i=1
By Lemma 6, one has Dyi(xo) € 3" fi(xo), i = 1,2,..., m. Hence, Df (x0) =
m
3" fi(xo)ci € 8" £ (x0). The proof is complete. [

i=1

Now, let f : R* — R™U {o_t)} be convex. The subdifferential of f at x € dom f (see
[9)) is defined as the set

f(x):={AeLR", R™) : f(»)— f(x) = A(y —x), (¥y € dom f)}.

We shall consider the relation between the subdifferential and the generalized subdiffer-
ential of a convex vector function.

Lemma 7. Letg : R" — RU{+00) be a lower semicontinuous convex function. Then
for every xy € int(domg), we have

3g(xo0) = 3" g(x0).

Proof. Since g is a scalar convex function, then Jg(xo) = 9g(xo). By Lemma 5, one
has 9g(xo) € 8%g(xo).

Conversely, let A € aTg(xo) be arbitrary. Since g is Lipschitz near xg, there exist
¢’ > 0, k > 0 such that

lg(x) — g < kllx —yll, (26)
foreveryx, y € By/(xp).Letv € R" suchthatxo+v € domg andletor > Obe arbitrary.
There exists g9 € (0, 4ik) such that

i . gy +tu) —g(y) + a
inf sup inf — = >gl(xp;0)——. 27
y=0 yeB () MEB,) I -4
820 o (v)=g(ag)+8
A=0 \
1e(0,4)

Let 8¢ > O be arbitrary. Then there exist Ao > 0, yo > 0 such that

4 o Aoe
ko < min{——-———, 1}, 1o < min{—, —},
: {2(I1t-'l|+fm e [2' 81-}
g(y) < g(x0) + 80 (¥y € By, (x0)). (28)
Obviously,
.. 8Oy +tu)—g(y)
sup inf Z—————-<
y€B,,(x0) u€B;, (v) t
8(y)=g(x0)+d0
IE(O,A())
tu) —
> inf sup inf M . (29)
¥>0  yeB (xp) B, ) t

820 g <g o)t
te(0,A)
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From the definition of “sup”, there exist yo € By, (x0), to € (0, Ag) such that

g(vo + tou) — g(yo)

inf
ueBg,(v) fo
. + tu) — o
> sup of SO T —20) « 30)
YEBy, (x0)  ¥EBo () t 4
2(y)=<g(x0)+8o
1e(0,Ao)
Since g is convex, for every u € Bg,(v), we have
800 + tou) — g(Gvo) _ 8(vo + Aou) — 8(v0)
to - Ao ’
Hence,
y Aolt) — ) tor) — ey
inf g(yo + Aou) — g(yo) > inf g(yo +tou) — g(yo) _ 31
ueb,, (v) Ap weB,; (v) o
Let ug € Bg,(v) be arbitrary. One has
& H Y — pf oy, iow) — e
g(yo + Aoug) — g(yo) > inf &(Yo + Aout) é.()’u)_ 32)

Ao T ueB,(v) Xo
From (27) and (29)—(32), we have

g(vo + Aoutg) — g(vo)
A

+ - o
> g'(xp: v) — 3

On the other hand, we have

\g(xu + Aov) — g(xo) g0 + Aouo) — g(yo)

lo 'kU
- ‘ [g(x0 + 2ov) — g(yo + Aouo)] — [g(x0) — g(y0)]
el Ao
i lg(xo + ov) — g(yo + Aoup)| i [g(xa) — g(yo)|
AO A

k k
< —{lxo — yo + Ao(v — ug) |l + —llxo — yoll
AQ Ao

<kl II+2kII I <k LN
—u —|lxo — x0+ — L= a=,
= Kjv 0 20 0— Yo 0 AOVO 4 4 5

By this and the convexity of g, one has

8(xo + Aov) — g(x0) _ 8(yo + Aouo) —g(0) _ @
AQ ™ Ag 2
> ¢ (xo;v) —a > A(v) —«a.

g(xo +v) — g(xo) =

Since & > 0 is arbitrary, A(v) < g(xo + v) — g(x0). Thus, A € 9g(xo). The proof is
complete. u
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5 b 4 . ) +. .
Theorem 5. If a lower semicontinuous function f from R" into R™ U {00} is convex,
then for every xo € int(dom f), we have

af (x0) = 8" f(x0).

m
Proof. Represent f as f(x) = )_ fi(x)c;. Itis not difficult to see that

=

m

8f (x0) = ) 3fi(xo)ci -

i=1
By Lemmas 3 and 7, we have
af; (xo) = 3" fi (o).
Then by [9, Theorem 3.1] and Theorem 2 above, we have
8f (x0) = 8" f; (x0).

The proof is complete. [ ]

4. Subdifferential Characterization of Convex and Quasiconvex Vector Functions

Let F be a set-valued map from a Banach space X into L(X, R™). Denote by domF the
set {x € X : F(x) # 0}.

F is said to be monotone if x, y € domF, A € F(x), B € F(y) imply
(B-A)(y—x)eC.

F is said to be quasimonotone if x, y € domF, A € F(x), B € F(y) and
A(y —x) € intC imply B(y — x) € C.

m
Let F1, F, ..., F, be set-valued maps from X to L(X, R). Denote by Y Fic; the
i=1
set-valued map from X into L(X, R™) defined by the rule

O Fc)x) =) Fi(x)c.
=l i=1

m m
It is easy to see that dom( N F,-c,-) = [ domF;.
i=1 i=1

Lemma 8. Assume that dom F; = domF; = --- = domF,,. Then

m

(@ > Fic; is quasimonotone if and only if F; is quasimonotone for every i =
i=1

1, 2,.., m

m

(b) Y Fic; is monotone if and only if F; is monotone for everyi =1, 2, ..., m.
i=1
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Proof. (a) For the “only if” part let x, y e domF;, A; e F;(x), B, € F;(y),
and A;(y — x) > 0. Then ZAC, € (Z Fic;)(x), ZBC, € (Z Fic)(y)

= i=1 i—l i=1

and (Z Bic))(y — x) = Z Ai(y — x)¢; € intC. Since Z F;¢; is quasimonotone,
i=1 i= i=1

(Z Bic;)(y—x) € C.Hence, B;(y—x) > 0,i =1, 2, ..., m. Thus, F; is quasimonotone
i=1
foreveryi =1, 2,.

For the “if” part, let x, y € domz Fic;, A € (Z Fic))(x), B € (Z F;c;)(y) and
i=1 i=1 i=1

A(y —x) €intC. Represent A, B as

m
A= ZA,-C,-, for some A; € F;(x).
i=1

m
B = ZB,-C,-, for some B; € F;(y).
i=1
Then ZA (y — x)e; = (E A;c))(y — x) € intC. Hence, A;(y —x) > 0,i =

=1 i=1
1LNOINER 172 Slnce F; is quasimonotone, B, (y—x)=0,i =1, 2, ..., m. This implies

B(y —x) = Z B;(y — x)¢; € C. Thus, Z F;c; is quasimonotone.
i=1
(b) The proof 1s completely similar. [ ]

Now, let f be a lower semicontinuous vector function from a Banach space X to

R™U {ot)}. Represent f as

m

f@ =) fioe,

i=1
for some f; € R U {+00}.
Theorem 6. Assume that the lower semicontinuous vector function f is continuous on
dom f and domd? f; = domd? f, = - .- = domd" f,,. Then

(@) f is quasiconvex if and only if 31 f is quasimonotone.
(b) f is convex if and only if 3" f is monotone.

Proof. Since f is continuous on domf, by Theorem 2, we have
m
atf=> 0" fic:.
=l
(a) One has
f is quasiconvex < f; is quasiconvex, i = 1, 2, ..., m, by Lemma 3 above.

& 3T f;is quasimonotone, i = 1, 2, ..., m, by [6, Theorem 3.2].
& 3" f is quasimonotone by Lemma 8 above.
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(b) One has

fisconvex & f;isconvex,i =1, 2,..., m, by Lemma 3 above.
& 31 f; is monotone, i = 1, 2, ..., m, by [6, Theorem 3.2].
< 3" f; is monotone, by Lemma 8 above.

The theorem is proved. [ |

Remark. We note that in [11, Theorem 4.2] some sufficient conditions for quasiconvex
set-valued maps between Banach spaces were given. However, in some cases [11,
Theorem 4.2] is not valid while Theorem 6 above is still applied. For instance, put

X=Rm=2andC = R_z,_. Define a function f : R — R U {o+o} as follows:
(x,—x) =xel[-1,0]
fxy=4{ x, =2x) x€][0, 1]

+ ;
o0 otherwise.

Denote by f1, f» the component function of f. Obviously, f is continuous on [—1, 1].
By computing, we obtain

(=00, 1] x=-1

31 f10r) = {1} —l<x<l1
P21 11, 400) x=1

@ otherwise.
(=00, 11 x=-1
{—1} —1<x<0
[-2,—-1] x=0

T =

IR =1y Oex <1
[-2, +00) x =1
] otherwise.

It is not difficult to see that 31 f; and 3" £, are quasimonotone and so is 31 f. Hence, by
Theorem 6 above, f is quasimonotone.
However, in this case, the sufficient conditions in [11, Theorem 4.2] do not hold.
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