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Abstract. Let I be a linear continuous operator from a Hilbert space 11 into a Banach space X. In
this paper necessary and sufficient conditions for the random series fn rnT en to be convergent
almost surely (a.s.) in X are given, where (rn) is the sequence of Rademacher random variables
and (e) is a fixed orthonormal basis in 11.

L. Introduction

Let 11 be a separable real Hilbert space with scalar product ( , ) . Let (e, ) be an orthononnal
basis in fI; once chosen, fix it. Consider the formal random series:

lr,Q)e,
n

where (r,(l)) are the Rademacher functions defined on [0, 1], i.e.,

r , ( t ) :  s igns in (2"n t ) ,  n :1 ,2 ,  " ' '  /  €  [0 '  1 ] '

Clearly, for each h e H, the real random series

l r ,@,,h)

converges a.s. since D,llrn,h)12 . oo. However, if dimFl : oo, the series (1) does

not converge a.s. in -FI because all the Rademacher functions (r"(f)) take only the two

values *1 and -1 (with equal probability), so that for almost all I e [0, 1] we have

(1 )

l lr,{t)|z : *.
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The aim ofthis paper is to give conditions such that the random series

lr,Q)re,

converges a.s. in X where X is a real Banach space and Z is a linear continuous operator
fromtheHilbert space 11 into theBanach space X. An analogousproblemforthe standard
Gaussian or stable sequences was studied in [1-4, 6-9]. The above problem was also
investigated in [4]. Here, first we point out that a statement in [4, p.Ta] is not correct
and we give a correction of it (see Theorem 5 below). Then, we give some necessary and
sufficient conditions for the a.s. convergence of series (2). It should be noted that, on one
side there are analogous results for the Gaussian and Rademacher cases with the same
proofs (see Theorems 6 and 7), on the other side there are analogous results for these
cases but with different proofs (see Theorems 5 and 8). Moreover, there are results which
are true for the Gaussian case, but not true for the Rademacher one (see the remark after
Theorem 4 below). For the completeness of the note, all the proofs are given in detail.
The ideas of Theorems 6 ard7 are taken from [1].

2. Definitions

In this section we recall some basic facts about absolutely p-summing operators between
Banach spaces and the definitions oftype and cotype ofBanach spaces.

Throughout this paper, probability space means the interval [0, 1] with the Lebesgue
measure. It is well known that in this probability space, the above Rademacher functions
(rr(t)) form a sequence of i.i.d. random variables taking the only two values * 1 and - I
with equal probability.

Definition l, Let X, Y be tvvo Banach spaces and T a linear continuous operatorfrom
X into Y. T is said to be an absolutely (q, p)-sumrning operator, | < p < e, if
D, l l r *n l lq  < n for  any sequence (x)  in  X such that ln l@n,x*) lp  < x,  for  a l l
x* € X* (X* is the dual space of X). T is said to be an absolutely p-summing operator
if it is (p, p)-summing.

Denote by llp(X,I) the class of an absolutely p-summing operators from X into I.
It is an easy consequence ofthe closed graph theorem that a linear continuous operator
Z from X into Y is an absolutely p-summing operator if and only if there exists a p > O
such that, given any n : l, 2, ... and x1, x2, ..., xn € X, we have

l l l r * , l lp  .  pp sup{ I  l (x i ,  x* ) lp  :  l lx - l l  <  1} .
; - _ 1  i - 1

Put

trp(T) : inf {p > 0 : (3) holds for alln : 7, 2,... and for all x1, x2, ..., xn € X}.

The following inequality is a fundamental result in the theory of p-summing operators.

(2)

(3)
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Theorem 1. (Pietsch, see [16]) Let T e np(X, Y). Then there exists a regular Borel

probability measure p, defined on the unit ball (8v., o(X*, X)) forwhich

l l rx l l  <  no(D( [  l@.* . | 'u@x*r) t ro  @)
;".

holds for each x e X, where o (X" , X) is the Borel o -algebra in the weak* topology'

It is well known thatll,(X,Y) c llr(X, Y), for | < r < p.

Definition 2. A Banach space X is said to be of type p (l < p < 2) if the random

series

D'n*, (s)

cotwerges a.s. for any sequence (x) in X withlrllx"llp < oo. A Banach space X is

said to be of cotype q (2 < q < 6) if the a.s. cowergence of series (5) implies that

L llr, l ln . *.

It is known that if a Banach space is of type p, then the dual space X* is of cotype 4
wl th l lp  1-  I lq  :  L

Our objective is the following important results.

Theorem 2. (The Khinchin inequality) For any P,0 < P < @, there exist constants

Ao and Bo suchthat

7 n  . r , I l 2  z  f I l -  t p  t l l p  / . _  ^ t 1 / 2
A"(I lo, l ' )  = U. l \ , ,{,)",1 d,) '  s Bo( l la"l ')

for alt finite ,"'n rn 
", 

of real numbers (an).

It is known that A1: { ldue to Szarek 14, pp.227-2281 for a short proof).

Theorem 3.tlz,I3l
(1) If X is of cotype 2 and Y is an arbitrary Banach space, then fl1(X, Y ) : fl p (X, Y.)

f o r a l l l . p < 2 .
(11) If X is an arbitrary Banach space and Y is of cotype 2, then flz(X, Y ) : 17 p (X' Y)

f o r a l l  2 < p < a .
(iii) ff X is of cotype q, 2 < q < @ and Y is an arbitrary Banach space, then

fI1(X, I)  :  f l , (X,Y) for al l  l  ' ,  .  f1.

Theorem 4. (See ll4l) The following are equivalent:
(a) X ls ofafinite cotype.
(b) If (x") and (y) are two arbitrary sequences in X such that l, rnxn converges a.s'

in X andLnl ' , ,  x*)P < Dnlkn, x*)12 for al l  x* € x,  thenLnr, ln converges
a.s. in X as well.
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Remark. It is known (see [14]) that for any Banach space X, the following is always
true: If (x") and (y") are two arbitrary sequences in X such thatl, ynxn converges a.s.
in  X andDr l0, ,  x*)P < D, l \ * , ,  x*)12 for  a l l  x*  e X,  thenE,yry,  cof fverges a.s.
in X as well, where (y") is a standard Gaussian sequence.

3. Main Results

Let us begin with the following observation.

Proposition l. The following are equivalent:
(a) X is of afinite cotype.

$) If f and U are two arbitrary operators from H into X such that the series (2)
converges a.s. in X and ll U*x*ll < llT*x*ll for all x* e X*, then the series
lnrr(J e, also converges a.s. in X.

Proof. (a) =+ (b). Put x, : T€n, !, - Ue, and note that these sequences hold the
conditions of (b) in Theorem 4. It follows that the series fn rr(J en also converges a.s.
in X.

Consider
- *  *  ,  * \t  x  :  \ x n r x  ) e n ,

z r *  *  a - ,U*x*  :  L \1" ,  r * ) rn

and note that these operators are from X* into H and are the adjoint operators,
respectively, of the operators T , U from /1 into X defined by the formulas:

T h : l ( h , e ) x n ,

Ut t  : l (h ,  en l tn  .

Clearly, the series (2) converges a.s. in X and ll U.x*ll
the series Drrnln : Dnrr(Je, also converges a.s.
Theorem 4.

< ll Z*r*ll for all x* € X*, so
in X. This ends the proof by

I

Proposition 2. The following are equivalent:
(a) X ls of a finite cotype.
(b) For any T the series (2) converges a.s. in X if and only if lrrrThn converges a.s.

in X for all sequences (h,) in H withD,,l(h,, h)12 - crc for all h e H -

Proof. (a) + (b).Let the series (2) converge a.s. and (h,)be a sequence in 11 with
D, l(tt", UP < oo for all h e H.Consider the following operator:

B : H - - > H
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B h : D \ h , , h ) e , .

Clearly, B is a linear continuous operator from 11 into FI. Moreover,

( h ,  B * h * )  :  ( B h , h * J  : D \ h , , h ) ( e n , h * ) .

In particular,
(h ,  B *e r )  -  ( h ,h " l ,  Yh  e  H .

It implies that
B* en :  hn,  Yn :  t ,  2 ,  .  .  .  .

Next. consider the random series

\ r ,Thn 
- l rnTB*e, .

Observe that

l lBT*x* l l  S  l lB l l  l lZ .x . l l .

By Proposition 1, the series (6) is convergent a.s.
(b) + (a). Let (x) and (yr) be two arbitrary sequences in X such thatlnrnxn

converges a.s. in X and t, | (y,, x*) 12 . L, l(*,, **\ 12 for all x* e X. Let T and U be
theoperatorsdefinedintheproofofPropositionl.LetlMlbetheclosureof M:T*X*
in the Hilbert space 11. Clearly, [M] is also a Hilbert space. Consider now the following
operator:

V : M - > H

V ( T * x * ) : U * x * '

It is easy to see that

l lv(T*x* -  r*y*) l l  :  l lu*(x* -  y*) l l  .  l l7*"*  -  T*y* l l .

This shows that V is well defined and is a linear continuous operator from M into FI.

Hence, V can be extended into a linear continuous operator from [M] into I/. We have
(J* : V T *,so U : ? V* where V* is an operator from 11 into [M]. Choose ft n : V * €n,
n : l. 2. ... and note that

hn e lMl ,  n  :  l ,  2 ,  . . .

l n :  ( J e n :  T ( V * e )  -  T h n ,  n : 1 , 2 ' . . .

l l<n",7***)12 : l ! l l r , ,  ** |12 :110,,  **)12 :  l l tJ**"112 < l l r***112.
n n n

This implies that !, l(hn, h)12 < oo for all h e H. By assumption, the series

(6)

l r ,Thr :Dr ,yn

converges a.s. and this ends the proof.



76 Nguyen Duy Tien and Vdal Vazquez Ricardo

Remnrk. In [4] an operator Z from f1 into X is called almost summing if the random
series!, rnThnconvergesa.s.inXforallsequences(h)in11 with!, l(h,,h)12 . *
for all h e 11. The above proposition shows that the following statements are equivalent:
(a) X is of afinite cotype.
(b) The series (2) converges a.s. in X if and only if Z is almost summing.

It should be noted that

Theorem 5. The following are equivalent:
(a) X contains no subspace isomorphic to cg.
(b) Let T be an arbitrary operator from H into X. T is almost summing if and only if

thereisanumber K > 0suchthatforalln : I, 2, ...andforallh1, h2, ..., hn e H,
the following inequality holds true:

El l I  r1 , rh1, l l2  < K2sup l l l<no, l l l ' l l ta t t  =  r l .
k=r k : l

Proof. (a) + (b) is a consequence of Hoffman-Kwapien's Theorem: if X contains no
subspace isomorphic to c6, then the boundedness and the a.s. convergence ofthe partial
sums of the series (2) are equivalent (see [20, Theorem 6.1, pp. 347-348D.

(b) + (a). Let X be a Banach space which contains a subspace isomorphic to c0. Then
there is a sequcncc (x") in X such that:

P(sup llf,vrrtl l= m) : l, ( i)

where (yr,) is a standard Gaussian sequence, and the series

S
L'o*o 

(8)

(see the proof of Proposition e .t in fZO,l.352); seealso [19]).
Considernowtheoperator T : H --+ XdefinedbytheformulaTet- xp,k e N.By

(7), we have
n

r(1n lllrrrejl = *) : l. (e)

Let (h") be a sequence in H such that

for all h e 11. Then we know that

s l  , , ,  ,  , , )
>  l ( n L .  n ' ) l -  <  6

Z - / ' '  -

K : I

n

sup t  l (h1 , ,h )12  <  oo .  (10)
Wt ts tTq



Corwergence ofthe Rademacher Series in a Banach Space 77

Hence
n n n

lwno,  x* l f  <  :yp .  t  l (h r ,h l l2 l lTeu x* )12
k : l  l l l r l l< r  f t : l  k : l

for all x* e X*. This, along with (9), implies that (see [20, Proposition2.5,p.273l)

P(sup lliv*rnr,ll= m) : 1.
' k:r,

This implies (see [18, Corollary 2,p.2871) that
n

supEl l f  y1 ,Th1, l l2  <  x .
n 

k -_ l

Hence, we have (10) + (11). By the closed graph theorem, there exists a number K
such that 

n n

supEl lT.yrThr , l lz  < K2 sup l1@o, l r ) l ' .n ;= ttftttsr Ei
Meanwhile, by (8),

oo
S

Lrk I  ek
k=1

(1  l )

> 0

diverges a.s. r

Remark. It was stated wrongly in [4] that (b) is true for any Banach space.

We now give a necessary condition for the a.s. convergence of the series (2).

Lemma L, If the series (2) is corwergent a.s. in X, then the adjoint operator T+ is
absolutely I -summing from X* into H .

Proof. Suppose that the series (2) is convergent a.s. in X. Denote by S its sum:
S : L rnT er.In this case S is an X-valued random variable. It is known that ll S ll e Zo,

for p > 0, in particular, EllSll : f; ttstrlttat < @. By the definition of the adjoint
operator, we have

T * : X *  - - +  H

( h , T * x * ) :  ( T h , x * ) ,  h  €  H ,  x *  e . X * .

Consequently, we obtain that

l lr * r* l l2 : l l  {",, 7* ** ) l '  : l  lr r,, ** l 12 : El (s, .r * ) 12.

From the Khinchin -"n-U" it follows that

n n n

I l lr.*,rll : D,/"t(t, xi)12 < 
"6f 

n11s, ";11
; - l

f l  , ,  c  , ,  "

: Ji\)nl(*,' l)l l lsll s ra2nllsll sup { D tl ', xi)l : l lxll < 1}.
7 o  l \ l l J l l  ' |  

, : r
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By (3), we have thatT* e r1(X*,11) and IIr(7*) S rDBllSlt. r

We now give a sufficient condition for the a.s. convergence of the series (2).

Lemma 2. If for some I < p < oo,T is an absolutely p-summing operatorfrom H
into X, then the seies (2) converges a.s. in X.

Proof. Pttting

, , : f r ; re ; ,
; - l

h n : f r r r r ,
i : l

we have

llS' - S, llP : llT (hm - h")llP .

lf T e llo(H, X), by Pietsch's Theorem 1 (inequality (4)), we ger:

l l r  (h^ -  hn) l lp = n! (r1 [  l (h* -  h, ,  h) lp p,(dh)..  JB,

Consequently, by the Khinchin inequality, there is a number C o > 0 such that

El lT(hm - hn) l lp = r f  (D I  El&* -  hn, h) lp 1t (dh).  JB"

f  r  ^ t .  p/2

s C pr ee Q) |  (  l (er,  hl l '  l '  
'  

p(dh).
J B a , k  

1  
,

It shows that (sn) is a cauchy sequence in the Banach space zp(X), so that the series
(2) (as the sum of independent X-valued random variables) converges a.s. in X.

Lemma 3. Let X be a Hilbert space K. The series (2) corwerges a.s. in K if and only if
T is a Hilbert-Schmidt operaton

Proof. Since (rr) is an orthogonal sequence, we have

"l l  T 
r,r e,l l2 : l |r ",|2.

This completes the proof. I

By Lemmas 1,2 and 3 it is easy to get the following interesting result of [15].

Corollary l. Let H, K be Hilbert spaces. Then any class Ho(H, K), 1 < p < @,
coincides with the class of Hilbert-Schmidt operators.
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Remark. Using Lemma 3, we can prove Lemma 2 as follows. Since any Hilbert space is
of cotype 2,wehave flz(H, X) : flp(H, X) for all | < p < oo by Maurey's Theorem
3. On the other hand, it is known (see [16]) that if Z e flz(H, X), then Z admits a
factorization T : BA where A is AHilbert-Schmidtoperatorfrom 11 into a Hilbert
space K and B is a continuous operator from K into X. This ends the proof.

Theorem 6. The following statements are equivalent:
(a) X is ofcotype 2.
(b) The series (2) converges a.s. in X if and only if T is absolutely 2-summing from H

into X.

Proof. (a) + (b). By Lemma 2, it is sufficient to show that if (2) converges a.s. in X,
then e ll2(H, X). Indeed, let (h) be any sequence in F/ with Dn | (h,, h) l2 < o for
all h e 11. Consider the following operator:

B : H - - > H

B h : D ( h , , h l e n .

By the proof of (a) + (b) in Proposition 2, the series (6) converges a.s. This implies that

Dvn"ll2 . oo

(since X is of cotype 2),i.e.,7 is absolutely 2-summing.
(b) + (a). Suppose (.rr) is an arbitrary sequence in X such that !, rn.rn converges

a.s. in X. To prove that X is of cotype 2 we must show that D,llrnll2 = -. Note that

l l \ * , ,  x* )12 < x
n

for all x* e X* because of the a.s. convergence of the series

l r , \xn, x*).
n

Consequently, we can define the following operator:

T : X *  - - >  H

T*x* :  I ( r , ,  x*)e, .

Z* is the adjoint operator of the operato, i *frict is defined as follows:

T : H + X

T h : D k ^ , h ) x n .

In particular, we have T e, : xr, so that

79

l rnTe,
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converges a.s. By (b), Z is absolutely 2-summing. This implies that

Dlg r"ll' : D ll*,112 . q,
n n

l l { r " ,h)12 .  a ,  Yh e H.

As an immediate consequence of Maurey's Theorem 3,ll2(X, H) : flp(X, H) for
a l l  1  < p < @ (s inceXisof  cotype2andany Hi lber tspaceisalsoof  cotype2),we
have the following result.

Corollary 2, Let X be a Banach space of cotype 2. The series (2) converges a.s. in X if
and only if T is p-summing for some | < p < 6.

The same proof of Theorem 6 gives

Corollary 3. (See also [4]) The following are equivalent:
(a) X if of cotype q,2 < q < oa.
(b) If the series (2) converges a.s. in X, then T is (q, 2)-summing.

Remark 1. Corollary 3 was proved in [4] (Proposition 12.6, p.235 and Proposition
12.29, p.251) for almost summing operators. Consequently, by Proposition 2, this fact
is an easy corollary of the mentioned Proposition 12.29 in [4]. Here, we give a direct
prooffor the sake ofcompleteness ofthe paper.

Remark 2. The difference between Theorem 6 and Corollary 3 is that for 2 < q < @
the reverse to the statement in (b) of Corollary 3 is not true even for Hilbert spaces. In
fact, let X be a Hilbert space 11. In this case, it is known that X is of cotype q for any
q,2 < q < oo and llq2(H, fI) (the class of absolutely (q,2)-summing operators from
.F1 into F1) and Sq(H, H) (the Schatten class) coincide (see [4, Theorem 10.3, p. 198]).
On the other hand, it is also known that the series (2) converges a.s. in X if and only if
T e S2(H,11) (the class of Hilbert-Schmidt operators). If dim 11 : m, Sz(H,11) is a
subclass of Sn(H, H) for rry q,2 < q < @.

In the case of type 2 we have the following result:

Theorem 7. The following statements are equivalent:
(a) X rs of type 2.
(b) The series (2) coftverges a.s. in X if and only if T* is absolutely 2-summing from X*

into H.

Proof. (a) + (b). By Lemma 1, it remains to show that if Zx e ll2(X*, F1), then the
series (2) converges a.s. in X. In fact, it is known (see [1]) that in this case the random
series

lv,r",
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converges a.s. in X, where (y) is a sequence of i.i.d. real Gaussian variables with
characteristic function e-t" /2. On the other hand, it is well known that the convergence
of the latter series always implies the convergence of the series (2).

Note that if X is a Gl-space (see Definition 3 below), then (a) + (b) can be proved in
the following way. By Maurey's Theorem 3 we have II r (X* , H) : fIz(X*, 11) as X is
of type 2, so X* is of cotype 2. It is known (see [18]), moreover, that Z* is l-summing,
then there is a number I < p < oo such that Z is p-summing. By Lemma 2, the series
(2) converges a.s. (also see Theorem 8 below).

(b) + (a). Assume that (xr) is any sequence in X with f, ll*,llz < oo. We have to
show that the series

8 1

s1
Lrnx'

n

converges a.s. in X. To this end, consider the following operator:

T : H - - + X

\r l ,
7 7 :  l ( e n , h l x n .

n

This operator is well defined since

(r2)

l l lr.*i l l '  : I I l \*,, *l)12 < l lAll2 | l l ' ,112 . oo
n t

i.e., T* € llz(X*, H).By (b), it implies thatLnrnTen converges a.s. in X, and hence,
so does the series (12) since Ter: vr. I

To get a more general result we need the following notion.

Dt\, , ,  ht  tx, l= (  I  tk, ,  D() ' "(  D w,f) ' ' '
n n

The adjoint operator of Z is defined as follows:

T * : X * - - > H

z , x _ x  _  F r _  x * ) e r ,- 
, /Lt n'

We next show that T* e tlz(X*,.F/). In fact let (xi) be any sequence in X* with

D; l(t, xi)12 < oo. By the closed graph theorem, the linear mapping

A : X - - > H

. \-
Ax  :  l x .  (x i le i

from X into 11 is bounded. It follows that

I tt', *ill2 .llAll2llrll2

Consequently, we have
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Definit ion 3.(Seet4,l8l) ABanachspaceXissaidtobeaGL-spaceifeachl-summing
operatorAfromXinto12is 1-factorable, i.e., A: CB where B is acontinuous operator

from X into some L1 and C is a continuous operator from Llinto 12.

It is known that any Banach space with a local unconditional structure is a Gl-space
(see [4]). In particular, Banach spaces with Schauder unconditional basis and Banach
lattices are examples of Gl-spaces. It is also shown that a Banach space X is also a
Gl-space if and only if X* is a Banach space.

Theorem 8. Let X be a B anach space, H a s eparable Hilbert space and (c) an arbitrary

fixed orthonormal basis of H. Consider the following staternents:
(a\ X is ofafinite cotype.
(b) For a continuous linear operator T : H --> X the random series

lr,j.er,
k

converges a.s. in X if and only if T* is 1-summing.

Then (b) + (a) is always true, and in addition, if X is a GL-space, (a) + (b) is also
true.

Proof. (a) + (b). If Z* is l-summing, then I* is l-factorable (since X is a Gl-space).
So I factorizes through Z-. As X is of a finite cotype, by a result of Maurey (see [12]),
there is a number | < p < oo such that ? is p-summing. This ends the proof (a) + (b)
byLemma2.

(b) + (a). We will make use of Proposition 1 and Lemma I to prove this implication.
To do it, let 7 and U be two arbitrary operators from .FI into X such that the series (2)
converges a.s. in X and

l lU . l l  <  l l T - r - l l  f o ra l l x *  e  X* .

By Lemma l, Z* is l-summing. It follows immediately that Ua is also l-summing.
Therefore, (b) implies thattherandom series f, rnUe, also converges a.s. in X. By
Proposition 1, this ends the proof.

Remark. For the Gaussian case, the implication (b) + (a) is proved more easily (see

t l l ) .

Again by Maurey's Theorem 3 we obtain

Corollary 4. Let X be a GL-space.
(1) If X is a Banach space of type 2, then the series (2) corwerges a.s. in X if and only

if T* is 1-surnming.
(11) If X is a Banach space of type p, I < p S 2, then the series (2) a.s. converges in

X if T* is r-summingfor | < r < p.
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4. Examples

In this section we consider two important cases: X is an Lp({Z, p,) or X is a Banach

space with a Schauder unconditional basis.
We begin with the following result which is an easy consequence of the Khinchin

inequality (see Theorem 2).

Proposition 3. LetTbeanoperatorfromHintoLr({2,p).Thentheseries(2)converges
a.s. if and only if the following condition holds:

/  r  ^ t , I / z

l l V e , l ' )  e  L o ( e '  u ) ,
n

this means
f  ,  - ; l / 2

/  ( t  l r e , (a )12 ) ' -  p (do \  <  n .
J o . 7  /

Recall that a Banach space X c Zo(Q, pc) is a lattice if
(i) the inclusion of X into Zo is continuous.

( i l )  I f l ,  B € L o , l / l  S l s l a . s . a n d s e -  X , t h e n f  e  X a n d l l , f l l x S l l g l l x .

Proposition 4. Let X be a Banach lattice of Lo(Q, p,) and X afinite cotype. The series

(2) converges a.s. in X if and only if

r  ^ t ' l l 2

I  Ve , (a ) | " )  ex .
n

This result is an immediate consequence of the so-called Khinchin-Maurey inequality

(see[11]).ThereexistsanumberC > 0suchthatforanyfinitecollectionll,..., xn e X

Remark. For the Gaussian case, a statement similar to that of the above proposition was

given in [5].

We now proceed to the case of the Banach space with a Schauder unconditional basis
(ar).Let(atr)be the sequence ofcoordinate functionals associated with the above basis.

The proof of the following Theorem 9 is taken from [1].

Theorem 9. LetXbe as above.
(1) If the series (2) converges a.s. in X, then the following series

s _ .
Lllr*al,llua" (13)

coffverges in the norm of X.
(11) The following are equivalent:

(a) Xls ofafinite cotype.
(b) Theconvergenceoftheseries(13)impliesthea.s.corcvergenceoftheseries(2).
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Proof. (i) Assume that the series (2) converges and S is its sum. Clearly, the series

s: i {s ,o ; )o ,
n: l

is unconditionallv conversent. Put

z : Dli\s, atrlla, .
n : I

Noting that EllSll < oo and llzll < KllSll for some constant K > 0, we obtain that the
series

", 
=iul(s,a|)lan r.4)

n : L

is unconditionally convergent in the norm of X.
On the other hand, by the Khinchin inequality, we have

llr*atrlln: (n11s, otr)l')t/' . "|zr;lls,otr)1.

This together with the unconditional convergence of the series (14) implies that the series
(13) is also convergent in the norm of X (see [10]).
(ii) Suppose now that the series (13) is convergent. Since the basis (ar) is unconditional,
for anv x+ € X*. we obtain

l l {o,, x*}l  l lT* a}l la < oo.

Define the operators A : X* -+ /1 and B : 11 --+ 11 by putting

Ax* :  ((an,x*) l lT"ai , l ln) x* e X*,

B(x) : lx , r*ai l l lT*ai , l ln Q.)  e \ .

It is easy to verify that A and Bui" 
"ootinooos. 

This implies that B is l-summing (by the
Grothendieck Theorem), so Z* is l-summing. By Theorem 8, the series (2) is convergent
a.s., so (a) + (b).

(b) + (a) is an immediate consequence of Proposition 1. In fact, let T , U be arbitrary
operators from X into fI such that the series (2) is a.s. convergent and

l lU*x*l l  < l l7 x *.x*l l  foral lx* e X*.

By (i), the series (13) converges in the norm of X. As (a") is an unconditional basis in
X, it follows that the series

lllu*otrll",
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is also convergent in the norm of X. By (b), the series

l rnUe,

converges a.s. and this ends the proof of the theorem.
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