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Abstract. Let T be a linear continuous operator from a Hilbert space H into a Banach space X. In
this paper necessary and sufficient conditions for the random series >, raTe, to be convergent
almost surely (a.s.) in X are given, where (r,) is the sequence of Rademacher random variables
and (ey,) is a fixed orthonormal basis in H.

1. Introduction

Let H be a separable real Hilbert space with scalar product (, ). Let (e,) be an orthonormal
basis in H; once chosen, fix it. Consider the formal random series:

> ra®en 1

where (r,,(¢)) are the Rademacher functions defined on [0, 1], i.e.,
ra(t) =signsin(2"nt), n=1, 2,..., t € [0, 1].

Clearly, for each & € H, the real random series
Z alen, h)
n

converges a.s. since y_, |{ey, h)|? < oo. However, if dim H = oo, the series (1) does
not converge a.s. in H because all the Rademacher functions (r,(¢)) take only the two
values +1 and —1 (with equal probability), so that for almost all ¢ € [0, 1] we have

Y i@ = oc.
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The aim of this paper is to give conditions such that the random series

Y ra(®Tes )

converges a.s. in X where X is a real Banach space and T is a linear continuous operator
from the Hilbert space H into the Banach space X . An analogous problem for the standard
Gaussian or stable sequences was studied in [1-4, 6-9]. The above problem was also
investigated in [4]. Here, first we point out that a statement in [4, p.234] is not correct
and we give a correction of it (see Theorem 5 below). Then, we give some necessary and
sufficient conditions for the a.s. convergence of series (2). It should be noted that, on one
side there are analogous results for the Gaussian and Rademacher cases with the same
proofs (see Theorems 6 and 7), on the other side there are analogous results for these
cases but with different proofs (see Theorems 5 and 8). Moreover, there are results which
are true for the Gaussian case, but not true for the Rademacher one (see the remark after
Theorem 4 below). For the completeness of the note, all the proofs are given in detail.
The ideas of Theorems 6 and 7 are taken from [1].

2. Definitions

In this section we recall some basic facts about absolutely p-summing operators between
Banach spaces and the definitions of type and cotype of Banach spaces.

Throughout this paper, probability space means the interval [0, 1] with the Lebesgue
measure, It is well known that in this probability space, the above Rademacher functions
(rx(¢)) form a sequence of i.i.d. random variables taking the only two values +1 and —1
with equal probability.

Definition 1. Let X, Y be two Banach spaces and T a linear continuous operator from
X into Y. T is said to be an absolutely (q, p)-summing operator, 1 < p < oo, if
>, ITx,l9 < oo for any sequence (x) in X such that D [ xn, x*)|P < o0, for all
x* € X* (X* is the dual space of X). T is said to be an absolutely p-summing operator
ifitis (p, p)-summing.

Denote by IT, (X, ¥) the class of an absolutely p-summing operators from X into ¥.
It is an easy consequence of the closed graph theorem that a linear continuous operator
T from X into Y is an absolutely p-summing operator if and only if there existsa p > 0

such that, given any n = 1, 2, ... and x1, x2, ..., X, € X, we have
n H
D NTxill? < pP sup{ 31w, )P < 7| < 1. 3)
i=1 i=1
Put

7p(T) =inf{p > 0 : 3) holds foralln = 1, 2, ... and for all x1, x7, ..., x, € X}.

The following inequality is a fundamental result in the theory of p-summing operators.



Convergence of the Rademacher Series in a Banach Space 73

Theorem 1. (Pietsch, see [16]) Let T € IT,(X, Y). Then there exists a regular Borel
probability measure u defined on the unit ball (Bx+, 0 (X*, X)) for which

, 1/
75t < mp( [ 1x ) @

By«
holds for each x € X, where 6 (X*, X) is the Borel o-algebra in the weak™* topology.
It is well known that IT, (X, Y) C II,(X, Y),for 1 <r < p.

Definition 2. A Banach space X is said to be of type p (1 < p < 2) if the random

series
Dhijrze, (5)

n

converges a.s. for any sequence (x,) in X with >, Ix:l? < o0o. A Banach space X is
said to be of cotype q (2 < q < o0) if the a.s. convergence of series (5) implies that

2on lxnll4 < oo

It is known that if a Banach space is of type p, then the dual space X* is of cotype ¢
withl/p+1/g =1.
Our objective is the following important results.

Theorem 2. (The Khinchin inequality) For any p,0 < p < 00, there exist constants
Ay and By, such that

AP(ZIanI2>1/2 < (/01 > s

172

pdt>1/p » Bp(Z Ian|2>

for all finite sequences of real numbers (ay).

It is known that A; = —= (due to Szarek [4, pp.227-228] for a short proof).
V2

Theorem 3. [12, 13]
@) IfX is of cotype 2 and Y is an arbitrary Banach space, then T11(X, Y) = I1,(X, ¥)
foralll < p <2
(i) IfX is an arbitrary Banach space and Y is of cotype 2, then II(X, Y) = I1p(X, Y)
forall2 < p < 0.
(ili) If X is of cotype q, 2 < q < 00 and Y is an arbitrary Banach space, then
M, Y)=0X,Y)foralll <r < ﬁ.

Theorem 4. (See [14]) The following are equivalent:

(a) X is of a finite cotype.

(b) If (x,) and (y,) are two arbitrary sequences in X such that ), rnX, converges a.s.
inX and Y, |{yn, ) < > %, x*)|? for all x* € X, then > FnYn cOnverges
a.s. in X as well.
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Remark. Tt is known (see [14]) that for any Banach space X, the following is always
true: If (x,) and (y,) are two arbitrary sequences in X such thaty_, ynx, converges a.s.
inXandy, |(yn, x*)> < 3, |{xn, x*)|? for all x* € X, then >, YnYn cOnverges a.s.
in X as well, where (y,) is a standard Gaussian sequence.

3. Main Results
Let us begin with the following observation.

Proposition 1. The following are equivalent:

(@) X is of a finite cotype.

() If T and U are two arbitrary operators from H into X such that the series (2)
converges a.s. in X and |U*x*|| < || T*x*|| for all x* € X*, then the series
Y . raUey also converges a.s. in X.

Proof. (a) = (b). Put x, = Te,, yn» = Ue, and note that these sequences hold the
conditions of (b) in Theorem 4. It follows that the series >, rmUey also converges a.s.
in X.

(b) = (a). Let (x,) and (y,) be two arbitrary sequences in X such that > i
converges a.s.in X and 3, |(ys, x*)> < 3, [(xy, x*)|* for all x* € X*.
Consider

FnXn

T*x* =3 (%, *)en,
n

U*x* =) (v, x*)en
n

and note that these operators are from X* into H and are the adjoint operators,
respectively, of the operators T, U from H into X defined by the formulas:

Th=" (h, en)xn,

Uh =7 (h en)yn.

Clearly, the series (2) converges a.s. in X and ||[U*x*| < ||T*x*| for all x* € X*, so
the series ) 7,yn = Y, rnUe, also converges a.s. in X. This ends the proof by
Theorem 4. n

Proposition 2. The following are equivalent:

(@) X is of a finite cotype.

(b) For any T the series (2) converges a.s. in X if and only if > Thy converges a.s.
in X for all sequences (h,) in H with ", |(hn, h)|? < 0o forall h € H.

Proof. (a) = (b). Let the series (2) converge a.s. and (k,) be a sequence in H with
Yo [, B) |2 < oo forall € H. Consider the following operator:

B:H— H
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Bh= (hn,h)e.
n
Clearly, B is a linear continuous operator from H into H. Moreover,

(h, B*h*) = (Bh,h*) = Y _(hn, h){en, ™).

In particular,
(h” B*en) = (hy hn), Vh € H'

It implies that
B*e, =h,, Yn=1,2,....

Next, consider the random series

Y raThy =) raTB*e,. 6)
n

n

Observe that
|BT*x*|| < IBIIIIT*x*|.

By Proposition 1, the series (6) is convergent a.s.

(b) = (a). Let (x,,) and (y,) be two arbitrary sequences in X such that }_, r,x,
converges a.s.in X and 3, [(yn, x*)1* < T, [, x*)[2forallx* € X.Let T and U be
the operators defined in the proof of Proposition 1. Let [M] be the closure of M = T*X*
in the Hilbert space H. Clearly, [M] is also a Hilbert space. Consider now the following
operator:

V:M—- H
V(T*x™) = U*x™.
It is easy to see that
[V(T*x* = T*y)| = UG =y S 1T %" = Ty

This shows that V is well defined and is a linear continuous operator from M into H.
Hence, V can be extended into a linear continuous operator from [M] into H. We have
U* = VT* soU = TV* where V* is an operator from H into [M]. Choose b, = V*e,,
n =1, 2, ... and note that

h,e[M], n=1,2,.. ‘

yo=Ue, =T(V*e,)=Th,, n=1, 2, ...
D U, T* )2 =Y U Tha, x)P = Y 1o, )P = IU*)? < | T*2%)1%,
n n n

This implies that 3, |(h,, k) |2 < oo for all & € H. By assumption, the series

ZrnThn =Z"n}’n
n n

converges a.s. and this ends the proof. |
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Remark. In [4] an operator T from H into X is called almost summing if the random
series Zn r» T h, converges a.s. in X for all sequences (%) in H with Zn |{hn, B) |2 < 00
forall h € H. The above proposition shows that the following statements are equivalent:
(a) X is of a finite cotype.

(b) The series (2) converges a.s. in X if and only if T is almost summing.

It should be noted that

Theorem 5. The following are equivalent:

(a) X contains no subspace isomorphic to cy.

(b) Let T be an arbitrary operator from H into X. T is almost summing if and only if
thereis anumber K > Osuchthatforalln = 1, 2, ...andforallhy, h», ..., h, € H,
the following inequality holds true:

i

n
E| Y nThi|? < K2sup { > (b, )| liR] < 1.
k=1 k=1

Proof. (a) = (b) is a consequence of Hoffman—Kwapien’s Theorem: if X contains no
subspace isomorphic to co, then the boundedness and the a.s. convergence of the partial
sums of the series (2) are equivalent (see {20, Theorem 6.1, pp. 347-348]).

(b) = (a). Let X be a Banach space which contains a subspace isomorphic to cy. Then
there is a sequence (x,) in X such that:

n
P(supll ) yexill < 00) =1, )
T k=1

where (y,,) is a standard Gaussian sequence, and the series

> rex ®)
k=1

(see the proof of Proposition 6.1 in [20, p. 352]; see also [19]).
Consider now the operator T’ : H — X defined by the formula Te; = x, k € N. By
(7), we have

P(sup || ZykTekll <oo)=1. ©)
k=1

Let (h,) be a sequence in H such that
n
> 1tk ) < o0
k=1
for all A~ € H. Then we know that

n
sup [k, h)I? < oo (10)
zll=1 k=1
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Hence
n n n
D U Thie, x*)? < sup D (ki 1) Y [(Tex, x°)
k=1 IA1=1 =y k=1

for all x* € X*. This, along with (9), implies that (see [20, Proposition 2.5, p.273])

n
P(sup || > yiThel < o0) =1.
*ok=1

This implies (see [18, Corollary 2, p.287]) that

n
supEl| Y v Thell* < o0, (11)
" k=1

Hence, we have (10) = (11). By the closed graph theorem, there exists a number K > 0
such that

supEl Y meThell® < K* sup Y [(hi, 1)
n =1 =<1,

Meanwhile, by (8),
o0
Z reT e
k=1
diverges a.s. ]
Remark. It was stated wrongly in [4] that (b) is true for any Banach space.
We now give a necessary condition for the a.s. convergence of the series (2).

Lemma 1. If the series (2) is convergent a.s. in X, then the adjoint operator T* is
absolutely 1-summing from X* into H.

Proof. Suppose that the series (2) is convergent a.s. in X. Denote by S its sum:
S =), raTe,.Inthis case S is an X-valued random variable. It is known that || S|| € L,
for p > 0, in particular, E||S| = fol IS(®)]ldt < oo. By the definition of the adjoint
operator, we have

T":X*—> H

(h, T*x*) = (Th,x*), h € H, x* € X*.

Consequently, we obtain that
IT*x* 1% = len, T*x") = Y Ten, x*)* = E|(S, x*)*.
n n

From the Khinchin inequality, it follows that

YTl =Y JES, 52 < V2 ) EKS, 1)
i=1 i=1 i==}

= «/EZ;EK%,L*)

n
ISI < V2EIS | sup { 3 Ix, 2] - l1x]) < 1.
i=1
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By (3), we have that T* € 7y (X*, H) and [11(T*) < ~/2E||S||. [
We now give a sufficient condition for the a.s. convergence of the series (2).

Lemma 2. If for some 1 < p < oo, T is an absolutely p-summing operator from H
into X, then the series (2) converges a.s. in X.

Proof. Putting

n
Sn = ZriTe,' 5
i=1

n
hp = E rie;,
i=1

we have
1Sm — Sull? = IT (hm — ha)|I”.

If T € I1,(H, X), by Pietsch’s Theorem 1 (inequality (4)), we get:
1T (hm — h) 1P < w5 (T) /BH [(hm = hn, h)IP u(dh).
Consequently, by the Khinchin inequality, there is a number C,, > 0 such that
EIT (hm — h)II? < 7)(T) /BH E[(hm — hn, B)|? u(dh)

< Cprf (1) /; (X HewmP) ucan.

k=n+1

It shows that (S,,) is a Cauchy sequence in the Banach space L, (X), so that the series
(2) (as the sum of independent X-valued random variables) converges a.s. in X.

Lemma 3. Let X be a Hilbert space K. The series (2) converges a.s. in K if and only if
T is a Hilbert—Schmidt operator.

Proof. Since (ry,) is an orthogonal sequence, we have
2
E|D rTen| =) ITenl”.
n n

This completes the proof. [
By Lemmas 1, 2 and 3 it is easy to get the following interesting result of [15].

Corollary 1. Let H, K be Hilbert spaces. Then any class M,(H,K),1 < p < o0,
coincides with the class of Hilbert—Schmidt operators.
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Remark. Using Lemma 3, we can prove Lemma 2 as follows. Since any Hilbert space is
of cotype 2, we have IT>(H, X) = I1,(H, X) forall 1 < p < oo by Maurey’s Theorem
3. On the other hand, it is known (see [16]) that if T € T1,(H, X), then T admits a
factorization T = BA where A is a Hilbert—Schmidt operator from H into a Hilbert
space K and B is a continuous operator from K into X. This ends the proof.

Theorem 6. The following statements are equivalent:

(a) X is of cotype 2.

(b) The series (2) converges a.s. in X if and only if T is absolutely 2-summing from H
into X.

Proof. (a) = (b). By Lemma 2, it is sufficient to show that if (2) converges a.s. in X,
then T € I1,(H, X). Indeed, let (h,) be any sequence in H with Zn |{hy, B) [2 < oo for
all » € H. Consider the following operator:

B:H—> H
Bh=Y (hn, hley.

n

By the proof of (a) = (b) in Proposition 2, the series (6) converges a.s. This implies that
Y liTha|? < 00

n

(since X is of cotype 2), i.e., T is absolutely 2-summing.
(b) = (a). Suppose (xy) is an arbitrary sequence in X such that ), r,x, converges
a.s. in X. To prove that X is of cotype 2 we must show that ), [|x, [ < oo. Note that

D 1, x7) 2 < 00
n

for all x* € X* because of the a.s. convergence of the series
Z T (s
n
Consequently, we can define the following operator:
T:X*—>H
TR = Z(x,,, ey .
n
T* is the adjoint operator of the operator T which is defined as follows:
T:H—->X
Th=> (en, h)xn.
n

In particular, we have Te, = x,, so that

Z rnT e,
n
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converges a.s. By (b), T is absolutely 2-summing. This implies that
Y liTenll> =Y lIxal* < oo,
n n

since

Zl(en,h)lz < o0, Vh € H.
- ]
As an immediate consequence of Maurey’s Theorem 3, I1;(X, H) = I1,(X, H) for
all 1 < p < oo (since X is of cotype 2 and any Hilbert space is also of cotype 2), we
have the following result.

Corollary 2. Let X be a Banach space of cotype 2. The series (2) converges a.s. in X if
and only if T is p-summing for some 1 < p < o0.

The same proof of Theorem 6 gives

Corollary 3. (See also [4]) The following are equivalent.
(a) Xifofcotypeq, 2 < g < oo.
(b) If the series (2) converges a.s. in X, then T is (q, 2)-summing.

Remark 1. Corollary 3 was proved in [4] (Proposition 12.6, p.235 and Proposition
12.29, p.251) for almost summing operators. Consequently, by Proposition 2, this fact
is an easy corollary of the mentioned Proposition 12.29 in [4]. Here, we give a direct
proof for the sake of completeness of the paper.

Remark 2. The difference between Theorem 6 and Corollary 3 is that for 2 < g < oo
the reverse to the statement in (b) of Corollary 3 is not true even for Hilbert spaces. In
fact, let X be a Hilbert space H. In this case, it is known that X is of cotype g for any
q,2 < q < ooand I, »(H, H) (the class of absolutely (g, 2)-summing operators from
H into H) and S, (H, H) (the Schatten class) coincide (see [4, Theorem 10.3, p. 198]).
On the other hand, it is also known that the series (2) converges a.s. in X if and only if
T € $(H, H) (the class of Hilbert-Schmidt operators). If dim H = oo, S»(H, H) is a
subclass of S;(H, H) forany g, 2 < g < 00.

In the case of type 2 we have the following result:

Theorem 7. The following statements are equivalent:

(a) Xis of type 2.

(b) The series (2) converges a.s. in X if and only if T* is absolutely 2-summing from X*
into H.

Proof. (a) = (b). By Lemma 1, it remains to show that if 7* € IT1,(X*, H), then the
series (2) converges a.s. in X. In fact, it is known (see [1]) that in this case the random

series
E vuT ey
n
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converges a.s. in X, where (35) is a sequence of i.i.d. real Gaussian variables with
characteristic function e~**/2. On the other hand, it is well known that the convergence
of the latter series always implies the convergence of the series (2).

Note that if X is a GL-space (see Definition 3 below), then (a) = (b) can be proved in
the following way. By Maurey’s Theorem 3 we have IT{ (X*, H) = I1o(X*, H) as X is
of type 2, so X* is of cotype 2. It is known (see [18]), moreover, that T* is 1-summing,
then there is a number 1 < p < oo such that T’ is p-summing. By Lemma 2, the series
(2) converges a.s. (also see Theorem 8 below).

(b) = (a). Assume that (x,) is any sequence in X with >_ ||x,

show that the series
Heindn (12)

n

I? < oo. We have to

converges a.s. in X. To this end, consider the following operator:

T:H—>X

Th = Z(en, h)xy, .

n

This operator is well defined since

1/2 1/2
3 lem il < (D ews ) (X Iaal?)
n n n
The adjoint operator of T is defined as follows:
Tr":X*> H
I T — Z(x,,, xe, .
n

We next show that T* € [I(X*, H). In fact let (x}') be any sequence in X* with
> lx, x) |? < 00. By the closed graph theorem, the linear mapping

A:X—> H
Ax = Zx, (x7)e;
1
from X into H is bounded. It follows that

Y 1, 2P < A1)
1

Consequently, we have
SN =)0 1k, 2P < NAIP Y lxall® < 00
i n i n

ie., T* € I(X*, H). By (b), it implies that Zn r,T e, converges a.s. in X, and hence,
so does the series (12) since Te, = x. u

To get a more general result we need the following notion.
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Definition 3. (See [4, 18]) A Banach space X is saidto be a GL-space if each I-summing
operator A from X into I, is 1-factorable, i.e., A = C B where B is a continuous operator
Jrom X into some Ly and C is a continuous operator from Linto l,.

It is known that any Banach space with a local unconditional structure is a GL-space
(see [4]). In particular, Banach spaces with Schauder unconditional basis and Banach
lattices are examples of GL-spaces. It is also shown that a Banach space X is also a
GL-space if and only if X* is a Banach space.

Theorem 8. Let X be a Banach space, H a separable Hilbert space and (c,) an arbitrary
fixed orthonormal basis of H. Consider the following statements:

(a) X is of a finite cotype.

(b) For a continuous linear operator T : H — X the random series

ZrkTek
k

converges a.s. in X if and only if T* is 1-summing.
Then (b) = (a) is always true, and in addition, if X is a GL-space, (a) = (b) is also
true.

Proof. (a) = (b). If T* is 1-summing, then T* is 1-factorable (since X is a GL-space).
So T factorizes through L. As X is of a finite cotype, by a result of Maurey (see [12]),
there is a number 1 < p < oo such that T is p-summing. This ends the proof (a) = (b)
by Lemma 2.

(b) = (a). We will make use of Proposition 1 and Lemma 1 to prove this implication.
To doit, let T and U be two arbitrary operators from H into X such that the series (2)
converges a.s. in X and

NU*| < ||IT"x™| for all x* € X*.

By Lemma 1, T* is 1-summing. It follows immediately that U* is also 1-summing.
Therefore, (b) implies that the random series >, r,Ue, also converges a.s. in X. By
Proposition 1, this ends the proof. ]

Remark. For the Gaussian case, the implication (b) = (a) is proved more easily (see

(1D.
Again by Maurey’s Theorem 3 we obtain

Corollary 4. Let X be a GL-space.

(1) If X is a Banach space of type 2, then the series (2) converges a.s. in X if and only
if T* is 1-summing.

(ii) If X is a Banach space of type p, 1 < p < 2, then the series (2) a.s. converges in
X if T* is r-summing for 1 <r < p.
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4. Examples

In this section we consider two important cases: X is an L,(€2, u) or X is a Banach
space with a Schauder unconditional basis.

We begin with the following result which is an easy consequence of the Khinchin
inequality (see Theorem 2).

Proposition 3. LetTbe anoperatorfrom Hinto L (2, ). Then the series (2) converges
a.s. if and only if the following condition holds:

(X renl)” e L@,

this means
1/2
[(Zirea@?)” ndo <o

Recall that a Banach space X C Lo(S2, u) is a lattice if
(i) the inclusion of X into Lg is continuous.
(i) If f, g€ Lo, |fl <lglas.andg € X, then f € X and || flix < llgllx.

Proposition 4. Let X be a Banach lattice of Lo(Q2, ) and X a finite cotype. The series
(2) converges a.s. in X if and only if

Tey, a))l2 L €X.
(Zrewr)

This result is an immediate consequence of the so-called Khinchin-Maurey inequality
(see [11]). There exists a number C > 0 such that for any finite collection x1, ..., x, € X

= ([ IS <l zlw ),

e

A=)l =

Remark. For the Gaussian case, a statement similar to that of the above proposition was
given in [5].

We now proceed to the case of the Banach space with a Schauder unconditional basis
(an). Let (a}) be the sequence of coordinate functionals associated with the above basis.
The proof of the following Theorem 9 is taken from [1]. 3

Theorem 9. Let X be as above.
(i) Ifthe series (2) converges a.s. in X, then the following series

[0}
> T a | nan (13)

converges in the norm of X.
(ii) The following are equivalent:
(a) X is of a finite cotype.
(b) The convergence of the series (13) implies the a.s. convergence of the series (2).
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Proof. (i) Assume that the series (2) converges and S is its sum. Clearly, the series

o0

S=) (S, ay)a,

n=1

is unconditionally convergent. Put
(o]
Z=> NS.a})lax.
n=1

Noting that E||S|| < oo and | Z|| < K||S|| for some constant K > 0, we obtain that the
series

o
EZ =) E|(S,a})la, (14)
n=1

is unconditionally convergent in the norm of X.
On the other hand, by the Khinchin inequality, we have

IT*a | = (EIS, a2)2)? < V2E[(S, al).

This together with the unconditional convergence of the series (14) implies that the series
(13) is also convergent in the norm of X (see [10]).

(ii) Suppose now that the series (13) is convergent. Since the basis (a,,) is unconditional,
for any x* € X*, we obtain

> {an, ) I T*ak ]l < oo.

n

Define the operators A : X* — [; and B : /; — H by putting

Ax™ = ((@n, x| T"azll0) x* € X*,
B(n) =Y _MT*ai/IT*a}llu () €.
n

It is easy to verify that A and B are continuous. This implies that B is 1-summing (by the
Grothendieck Theorem), so 7* is 1-summing. By Theorem 8, the series (2) is convergent
a.s., so (a) = (b).

(b) = (a) is an immediate consequence of Proposition 1. In fact, let T, U be arbitrary
operators from X into H such that the series (2) is a.s. convergent and

NU*x*|| < ||IT * xx™|| forall x* € X*.

By (i), the series (13) converges in the norm of X. As (a,) is an unconditional basis in
X, it follows that the series
> U*a;lian
n
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is also convergent in the norm of X. By (b), the series

ZrnUe,,
n

converges a.s. and this ends the proof of the theorem. =
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