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1. Introduction

It is well known that the function defined by the difference between the length and
the multiplicity with respect to a system of parameters in a local ring gives a lot of
information about the structure of the ring. In this note we shall study a similar problem.
Instead of the length of a system of parameters, we take the length of the generalized
fraction with respect to a system of parameters which was first introduced in [9]. Then
for a system of parameters x : (xt, ...,x6) of a finitely generated A-module M, we
consider the function

J  r , , r  ( r y ,  t )  :  n  t . . . n  d .e (x t ,  . . . .  xd ;  W -  l (M  ( l  /  @ i ' ,  . . . .  xX '  .  D )

as a function in n. Now the question is: What is the structure of M when Jy(n; x) is
bounded above by a constant or Jy(n; x) : O?

The purpose of this note is to answer the above question under the condition that M
has the small polynomial type. Recall that the polynomial type of a module M is an
invariant of M and it may be used to study the non-Cohen-Macaulay modules (see [1-9]
for more details). All results of this short communication are found in [6] with complete
proofs.

2. The Polynomial Tlpe of Fractions

From now on, A is a Noetherian local ring with the maximal tdeal m and M a finitely
generated A-module, dimM : d.Let x : (xr, ..., xa) be a system of parameters (s.o.p
for short) of M andn: (nt,...,nd) ad-tuple of positiveintegers.
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The first author showed in [1] that the least degree of all polynomials bounding above
the function

I  u @, D :  t  (M l  @i '  ,  . . . ,  x i ' )  M) -  nt  "  '  na '  e@; M)

is independent of the choice of x. This invariant of M is called the polynomial type of
M and is denoted by p(M) . The polynomial type was first introduced in [1] and many
basic properties as well as some applications of this invariant have been given in [1-5].
Also in [5] we examined first the following function

J u @ ;  x )  :  n r .  . n d .  e @ ;  M )  -  l ( M ( I l @ i ' , . . . ,  * X ' ,  l ) ) ) ,

where M.(l/(*i' , ...,*;' ,D) is the submodule of the module of generalized fractions
U(M);irrM defined in [0]. One of the main results of this note is the following
theorem which allows us to define a new invariant on M.

Theorem L. The least degree of all polynomials in n bounding above the function
Jm(ry; t) is independent of the choice of x.

This new invariant of M is called the polynomial type of fractions of M and is denoted
bv pf (M).

The next result is to give a relation between these invariants p(M) and pf (M) as
follows.

Proposition 2. Let M be afinitely generated A-module. Then
(i) pf (M) = p(M).

(11) If M admits a dualizing complex and depth M > p(M), then pf (M) : p(M).

3. Local Cohomology Modules

A relationship between the,top cohomology module H!"fUl and the module of
generalized fractions U (M);it ' M was given in [ 1 1]. In the following result we shall use
the invariant pf (M) to give a sufficient condition for local cohomology modules of M to
be zero or to have finite length. (Here we stipulate that the degree of the zero-polynomial
is equal to -oo.)

Proposition 3. Let M be afinitely generated A-module. Then
( 1 )  i f  p f  ( M )  < 0 , t h e n [ . ( H k @ ) )  <  l x f o r i :  p ( M )  + 1 , . . . , d  - 1 .

( 1 1 )  i f  p f  ( M ) :  - o o ,  t h e n H i " ( M ) : o f o r i :  p ( M ) + 1 , . . . , d  - 1 .

From (i) of Propositions 2 and 3, we easily obtain again the basic results on local
cohomology modules of Cohen-Macaulay and generalized Cohen-Macaulay modules.
Furthermore, Proposition 3 shows that the polynomial type plays an important role in
the study of modules which are nol generalized Cohen-Macaulay.

Denote by A and M the m-adic completion of A and M, respectively. Then,
as an interesting corollary of Proposition 3, the following proposition gives a new
characterization of Cohen-Macaulay and generalized Cohen-Macaulay modules in
terms of the invariant pf (M).
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Proposition 4. The following statements are true:
(i) M is generalized Cohen-Macaulay if and only

condition (S) and pf (M) < O.
(11) M is Cohen-Macaulay if and only if M holds

pf  (M):  -oo.

89

it futn|fh holds the Serre's

the Serre's condition (S) and

4. Length of Generalized Fractions

The aim of this section is to study the structure of M using the local cohomology

modules of M when pf (M) < 0 and M has the small polynomial type. First, in the case
p(M) = 1, we have the following theorem.

Theorem 5. Suppose p(M) < L Then the following conditions are equivalent:
(1)  pf  (M) =0.

(11) There exists a s.o.p x of M and a const&nt K@-) which depends on x such that

Jm(ry; t) < K(x) for all n.
(ri1) There exists a constqnt K such that Jm@; x) < K for every s'o.p x and all n.
( iv)  t (Hk(M))  < +x 7or  i  :  p(M) + I ,  . . ' ,  d  -  l .
(v) For any s.o.p Lof M, it holds

rm(a; r.) : Rt@h(Mll . 
E (1 l)nrr;r*,

for n )) 0, where RL(.) is the residuum length of an Artinian module in the sense

of Sharp.

Remark. (i) When M is a generalized Cohen-Macaulay module, i.e., p(M) < 0, we

again obtain from Theorem 5, one of the main results of [9, Theorem3,7l, on the lengths

of generalized fractions.
(ii)It p(M): 1 and H;"(M) is not finite for some i e {2, . . ., dr}, then we can choose

a s.o.p .{ of M so that Ju@; x) is a polynomial of degree 1 (see [5, Corollary 4.7])'

As a consequence of Theorem 5, we get the following result for the case pf (M) :
-oo.

Corollary 6, Suppose p(M) < l. Then the following conditions are equivalent:
(1)  pf  (M):  -oo.

(ii) There exists a s.o.p x of M such that

! . (M ( l  I  @r,  . . . ,  xa,  l ) ) )  :  e(x;  M) '

(111) For every s.o.p x of M, we have

l . (M ( l  I  @1, . . . ,  xa,  I ) ) )  :  e(x;  M) '

( i v )  H k ( M ) : O f o r i :  p ( M )  +  1 , . . . ,  d  - I a n d  R l @ h @ ) ) : 0 '
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In the case p(M) < 2, the problem is more diffrcult. In order to have pf (M) : -oo

or pf (M) < 0, we have to use the Matlis dual modules of local cohomology modules
to find some necessary conditions and sufficient conditions.

F o r 0 < j < d , w e s e t
K; : Homf Hk(M), E(k)),

where k : A / m and E (k) is the injective envelope of k. Note thal Ki is the Noetherian
module for all i < d.

Theorem 7. Suppose that A admits a dualizing complex and p(M) < 2. Then
pf(M) < O if and only if t(H)"(M)) < ln for i : p(M) + 1,..., d - | and K2
is a generalized Cohen-Macaulay module.

We can derive from this theorem some sufficient and necessary conditions for

Pf (M) : -oo as follows.

Corollary 8. Suppose A admits a dualizing complex and p(M) < 2. If pf (M) : -oor

then Hl"(M) : 0 for i : p(M) + 1, ..., d - | and K2 is a Cohen-Macaulay module.

Corollary 9. Suppose that A admits a dualizing complex and p(M) < 2. If Hk(M) : 0
for i : p(M) + l, ..., d - | and K; is a Cohen-Macaulay module with dimKi : i, for
i : l , 2, then pf (M) : -oo.
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