On the Length of Generalized Fractions of Modules Having Polynomial Type ≤ 2

Nguyen Tu Cuong ${ }^{1}$ and Nguyen Duc Minh ${ }^{2}$
${ }^{1}$ Institute of Mathematics, P.O. Box 631, Bo Ho, 10000 Hanoi, Vietnam
${ }^{2}$ Department of Mathematics, Pedagogical University of Quy Nhon, Quy Nhon, Vietnam

Received October 2, 1996
Revised December 14, 1996

1. Introduction

It is well known that the function defined by the difference between the length and the multiplicity with respect to a system of parameters in a local ring gives a lot of information about the structure of the ring. In this note we shall study a similar problem. Instead of the length of a system of parameters, we take the length of the generalized fraction with respect to a system of parameters which was first introduced in [9]. Then for a system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ of a finitely generated A-module M, we consider the function

$$
J_{M}(\underline{n}, \underline{x})=n_{1} \ldots n_{d} . e\left(x_{1}, \ldots, x_{d} ; M\right)-\ell\left(M\left(1 /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}, 1\right)\right)\right)
$$

as a function in \underline{n}. Now the question is: What is the structure of M when $J_{M}(\underline{n} ; \underline{x})$ is bounded above by a constant or $J_{M}(\underline{n} ; \underline{x})=0$?

The purpose of this note is to answer the above question under the condition that M has the small polynomial type. Recall that the polynomial type of a module M is an invariant of M and it may be used to study the non-Cohen-Macaulay modules (see [1-3] for more details). All results of this short communication are found in [6] with complete proofs.

2. The Polynomial Type of Fractions

From now on, A is a Noetherian local ring with the maximal ideal m and M a finitely generated A-module, $\operatorname{dim} M=d$. Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters (s.o.p for short) of M and $\underline{n}=\left(n_{1}, \ldots, n_{d}\right)$ a d-tuple of positive integers.

The first author showed in [1] that the least degree of all polynomials bounding above the function

$$
I_{M}(\underline{n}, \underline{x})=\ell\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right) M\right)-n_{1} \cdots n_{d} \cdot e(\underline{x} ; M)
$$

is independent of the choice of \underline{x}. This invariant of M is called the polynomial type of M and is denoted by $p(M)$. The polynomial type was first introduced in [1] and many basic properties as well as some applications of this invariant have been given in [1-5]. Also in [5] we examined first the following function

$$
J_{M}(\underline{n} ; \underline{x})=n_{1} \cdots n_{d} \cdot e(\underline{x} ; M)-\ell\left(M\left(1 /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}, 1\right)\right)\right),
$$

where $M\left(1 /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}, 1\right)\right)$ is the submodule of the module of generalized fractions $U(M)_{d+1}^{-d-1} M$ defined in [10]. One of the main results of this note is the following theorem which allows us to define a new invariant on M.

Theorem 1. The least degree of all polynomials in \underline{n} bounding above the function $J_{M}(\underline{n} ; \underline{x})$ is independent of the choice of \underline{x}.

This new invariant of M is called the polynomial type of fractions of M and is denoted by $p f(M)$.

The next result is to give a relation between these invariants $p(M)$ and $p f(M)$ as follows.

Proposition 2. Let M be a finitely generated A-module. Then
(i) $p f(M) \leq p(M)$.
(ii) If M admits a dualizing complex and depth $M>p(M)$, then $p f(M)=p(M)$.

3. Local Cohomology Modules

A relationship between the top cohomology module $H_{m}^{d}(M)$ and the module of generalized fractions $U(M)_{d+1}^{-d-1} M$ was given in [11]. In the following result we shall use the invariant $p f(M)$ to give a sufficient condition for local cohomology modules of M to be zero or to have finite length. (Here we stipulate that the degree of the zero-polynomial is equal to $-\infty$.)

Proposition 3. Let M be a finitely generated A-module. Then
(i) if $p f(M) \leq 0$, then $\ell\left(H_{m}^{i}(M)\right)<+\infty$ for $i=p(M)+1, \ldots, d-1$.
(ii) if $p f(M)=-\infty$, then $H_{m}^{i}(M)=0$ for $i=p(M)+1, \ldots, d-1$.

From (i) of Propositions 2 and 3, we easily obtain again the basic results on local cohomology modules of Cohen-Macaulay and generalized Cohen-Macaulay modules. Furthermore, Proposition 3 shows that the polynomial type plays an important role in the study of modules which are not generalized Cohen-Macaulay.

Denote by \widehat{A} and \widehat{M} the m-adic completion of A and M, respectively. Then, as an interesting corollary of Proposition 3, the following proposition gives a new characterization of Cohen-Macaulay and generalized Cohen-Macaulay modules in terms of the invariant $p f(M)$.

Proposition 4. The following statements are true:
(i) M is generalized Cohen-Macaulay if and only if $\widehat{M} / H_{m}^{0}(\widehat{M})$ holds the Serre's condition $\left(S_{1}\right)$ and $p f(M) \leq 0$.
(ii) M is Cohen-Macaulay if and only if \widehat{M} holds the Serre's condition $\left(S_{1}\right)$ and $p f(M)=-\infty$.

4. Length of Generalized Fractions

The aim of this section is to study the structure of M using the local cohomology modules of M when $p f(M) \leq 0$ and M has the small polynomial type. First, in the case $p(M) \leq 1$, we have the following theorem.

Theorem 5. Suppose $p(M) \leq 1$. Then the following conditions are equivalent:
(i) $p f(M) \leq 0$.
(ii) There exists a s.o.p \underline{x} of M and a constant $K(\underline{x})$ which depends on \underline{x} such that $J_{M}(\underline{n} ; \underline{x}) \leq K(\underline{x})$ for all \underline{n}.
(iii) There exists a constant K such that $J_{M}(\underline{n} ; \underline{x}) \leq K$ for every s.o.p \underline{x} and all \underline{n}.
(iv) $\ell\left(H_{m}^{i}(M)\right)<+\infty$ for $i=p(M)+1, \ldots, d-1$.
(v) For any s.o.p \underline{x} of M, it holds

$$
J_{M}(\underline{n} ; \underline{x})=R \ell\left(H_{m}^{1}(M)\right)+\sum_{i=2}^{d-1}\binom{d-1}{i-1} \ell\left(H_{m}^{i}(M)\right)
$$

for $\underline{n} \gg 0$, where $R \ell($.$) is the residuum length of an Artinian module in the sense$ of Sharp.

Remark. (i) When M is a generalized Cohen-Macaulay module, i.e., $p(M) \leq 0$, we again obtain from Theorem 5, one of the main results of [9, Theorem 3.7], on the lengths of generalized fractions.
(ii) If $p(M)=1$ and $H_{m}^{i}(M)$ is not finite for some $i \in\left\{2, \ldots, d_{1}\right\}$, then we can choose a s.o.p \underline{x} of M so that $J_{M}(\underline{n} ; \underline{x})$ is a polynomial of degree 1 (see [5, Corollary 4.7]).

As a consequence of Theorem 5, we get the following result for the case $p f(M)=$ $-\infty$.

Corollary 6. Suppose $p(M) \leq 1$. Then the following conditions are equivalent:
(i) $p f(M)=-\infty$.
(ii) There exists a s.o.p \underline{x} of M such that

$$
\ell\left(M\left(1 /\left(x_{1}, \ldots, x_{d}, 1\right)\right)\right)=e(\underline{x} ; M)
$$

(iii) For every s.o.p \underline{x} of M, we have

$$
\ell\left(M\left(1 /\left(x_{1}, \ldots, x_{d}, 1\right)\right)\right)=e(\underline{x} ; M) .
$$

(iv) $H_{m}^{i}(M)=0$ for $i=p(M)+1, \ldots, d-1$ and $R \ell\left(H_{m}^{1}(M)\right)=0$.

In the case $p(M) \leq 2$, the problem is more difficult. In order to have $p f(M)=-\infty$ or $p f(M) \leq 0$, we have to use the Matlis dual modules of local cohomology modules to find some necessary conditions and sufficient conditions.

For $0 \leq i \leq d$, we set

$$
K_{i}=\operatorname{Hom}_{\widehat{A}}\left(H_{m}^{i}(M), E(k)\right),
$$

where $k=A / m$ and $E(k)$ is the injective envelope of k. Note that K_{i} is the Noetherian module for all $i \leq d$.

Theorem 7. Suppose that A admits a dualizing complex and $p(M) \leq 2$. Then $p f(M) \leq 0$ if and only if $\ell\left(H_{m}^{i}(M)\right)<+\infty$ for $i=p(M)+1, \ldots, d-1$ and K_{2} is a generalized Cohen-Macaulay module.

We can derive from this theorem some sufficient and necessary conditions for $p f(M)=-\infty$ as follows.

Corollary 8. Suppose A admits a dualizing complex and $p(M) \leq 2$. If pf $(M)=-\infty$, then $H_{m}^{i}(M)=0$ for $i=p(M)+1, \ldots, d-1$ and K_{2} is a Cohen-Macaulay module.

Corollary 9. Suppose that A admits a dualizing complex and $p(M) \leq 2$. If $H_{m}^{i}(M)=0$ for $i=p(M)+1, \ldots, d-1$ and K_{i} is a Cohen-Macaulay module with $\operatorname{dim} K_{i}=i$, for $i=1,2$, then $p f(M)=-\infty$.

References

1. N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J. 125 (1992) 105-114.
2. N. T. Cuong, P-standard systems of parameters and p-standard ideals in local rings, Acta Math. Vietnam 20(1) (1995) 145-161.
3. N. T. Cuong, Remarks on non-Cohen-Macaulay locus of Noetherian schemes, Proceedings $A M S$ (to appear).
4. N. T. Cuong and V. T. Khoi, On the partial Euler-Poincaré characteristics of certain systems parameters in local rings, Math. Z. 222 (1996) 383-390.
5. N. T Cuong and N. D. Minh, On the lengths of Koszul homology modules and generalized fractions, Math. Proc. Cam. Phil. Soc. 120 (1996) 31-42.
6. N. T. Cuong and N. D. Minh, On the length of generalized fractions of modules having small polynomial type (preprint).
7. N. T. Cuong, P. Schenzel, and N. V. Trung, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr. 85 (1978) 57-75.
8. N. D. Minh, On the least degree of polynomials bounding above the differences between lengths and multiplicities and length of generalized fractions, Acta Math. Vietnam 20(1) (1995) 115-128.
9. R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985) 323-336.
10. R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982) 32-41.
11. R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, Mathematika 29 (1982) 296-306.
12. J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin-Heidelberg-New York, 1986.
