Vietnam Journal of Mathematics 26:1 (1998) 91-94

Vietnam Journal of MATHEMATICS © Springer-Verlag 1998

is called the Borel Badeform of main

If r is well track (2) that Re(C) is a holomorphic function ratio both $L(t) \leq r$). If r is of the type with We dense here $U \in C_2$ the higgest open set where Ru(t) can be indenser fittedly continued. If it within that $U \supset U(t) > r$.

Short Communication

A Remark on Analytic Pseudodifferential Operators with Singularities

Nguyen Si Anh Tuan

Department of Mathematics, University of Transport and Communication Cau Giay, Hanoi, Vietnam

> Received October 16, 1996 Revised December 19, 1996

1. Introduction

Let $\Omega \subset \mathbf{C}_{\zeta}$ be a Runge domain. We denote by $\mathcal{O}(\Omega)$ the space of all holomorphic functions on Ω . For a function $a(\zeta) \in \mathcal{O}(\Omega)$, replacing formally by D, Dubinskii [3] has defined an analytic pseudodifferential operator (an APO for short) A(D) with symbol $a(\zeta) \in \mathcal{O}(\Omega)$ and constructed the algebra of APOs on Ω . He proved that every $A(D) \in \mathcal{A}(\Omega)$ acts continuously and invariantly in $\mathcal{E}xp_{\Omega}(\mathbf{C}_z)$, the space of exponential functions in \mathbf{C}_z growing over Ω . So, if an APO $A(D) \in \mathcal{A}(\Omega)$ has the inverse $A^{-1}(D) \in \mathcal{A}(\Omega)$, then the analytic pseudodifferential equation

$$A(D)u(z) = v(z), \quad v(z) \in \mathcal{E}xp_{\Omega}(\mathbf{C}_{z}), \tag{1}$$

has a unique solution $u(z) = A^{-1}(D)v(z) \in \mathcal{E}xp_{\Omega}(\mathbb{C}_z)$. We remark that the requirement $a^{-1}(\zeta) \in \mathcal{O}(\Omega)$, which guarantees the existence of $A^{-1}(D)$ in $\mathcal{A}(\Omega)$, is very strong. This requirement leads to a loss of solutions.

The purpose of this paper is to introduce a class of APOs with pole-singularities in the one-dimensional case. We will show that every APO with poles is in fact a multivalued operator acting in the space of exponential functions. Its values are described by the geometry of the operator. We give a formula for them; roughly speaking, every value of an APO A(D) with pole singularities can be represented as a sum of regular and singular parts.

We denote by $\mathcal{E}xp(\mathbf{C}_z)$ the space of all exponential functions of the variable z. Let $u(z) = \sum_{i=0}^{\infty} u_i z^i \in \mathcal{E}xp(\mathbf{C}_z)$ with type r > 0.

$$(r \stackrel{\text{def}}{=} \inf_{r'>0} \{r' : |u(z)| < \text{const.} e^{r'|z|}, \ \forall z \in \mathbf{C}_z\}).$$

The function $Bu(\zeta) = \sum_{i=1}^{\infty} \frac{i!u_i}{\zeta^{i+1}}$ is called the Borel transform of u(z).

It is well known [2] that $Bu(\zeta)$ is a holomorphic function outside the disk $\{|\zeta| \le r\}$ if r is of the type u(z). We denote by $U \subset \mathbb{C}_{\zeta}$ the largest open set where $Bu(\zeta)$ can be holomorphically continued. It is clear that $U \supset \{|\zeta| > r\}$.

The set $C_{\zeta} \setminus U$ is said to be the spectrum of u(z) and is denoted by K_u .

2. APO with Pole Singularities

Let $\mathcal{O}(\mathbf{C}_{\zeta})$ be the space of all holomorphic functions in \mathbf{C}_{ζ} . For $g(\zeta) \in \mathcal{O}(\mathbf{C}_{\zeta})$, we set $V(g) = \{ \zeta \in \mathbf{C}_{\zeta} : g(\zeta) = 0 \}.$

We put $\mathcal{O}_p(\mathbf{C}_{\zeta}) = \{a(\zeta) = 0\}.$ $f(\zeta) = \{a(\zeta) = \frac{f(\zeta)}{g(\zeta)} : f(\zeta), g(\zeta) \in \mathcal{O}(\mathbf{C}_{\zeta}), g(\zeta) \neq 0 \text{ and }$ $V(f) \cap V(g) = \emptyset$ and call $\mathcal{O}_p(\mathbb{C}_{\zeta})$ the space of symbols with pole singularities.

Let $a(\zeta) \in \mathcal{O}_p(\mathbb{C}_{\zeta})$. Replacing formally ζ by D, we obtain A(D).

Definition 1. We call A(D) an APO with pole singularity and $a(\zeta)$ its symbol, respectively. We denote by $A_p(\mathbf{C}_{\ell})$ the set of all APOs with pole singularities.

Definition 2. We call V(g) the singular set of A(D) and denote it by S(A).

Definition 3. We define

$$u(z) = A(D)v(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{g(\zeta)} Bv(\zeta) e^{\zeta z} d\zeta$$

where $\Gamma_{v}(\mathbb{C} \setminus S(A)) = \{ closed simple, oriented anticlockwise contours <math>\gamma \subset$ $\mathbf{C} \setminus S(A)$ enclosing K_{v} and $Bv(\zeta)$ is the Borel transform of v(z).

Theorem 1. A(D) acts invariantly in $\mathcal{E}xp(\mathbb{C}_z)$ as a multivalued operator if $S(A) \neq \emptyset$.

Theorem 2. Let $A(D) \in \mathcal{A}_p(\mathbb{C}_{\zeta}), v(z) \in \mathcal{E}xp(\mathbb{C}_z)$. If there is a Runge domain satisfying the following conditions:

- (i) $\Gamma_0 \subset \Omega$.
- (ii) $\Omega \cap S(A) = \emptyset$,
- (iii) $v(z) \in \mathcal{E}xp_{\Omega}(\mathbf{C}_z)$,

then the following representation holds:

$$u_{\gamma}(z) = u_{\Gamma_0}(z) + \sum_{j \in J_{\gamma}} u_{\Gamma_j}(z)$$

= $\sum_{i=1}^k \sum_{j=0}^\infty a_j^i(\lambda_i) (D - \lambda_i I)^j v_i(z) + \sum_{j \in J_{\gamma}} \operatorname{res}_{\zeta = \zeta_j} [a(\zeta) Bv(\zeta) e^{\zeta z}].$

92

Analytic Pseudodifferential Operators with Singularities

3. Analytic Pseudodifferential AP-Equations with Symbols in $\mathcal{O}(C_{\zeta})$

Let us consider the AP-equation

$$A(D)u(z) = v(z), \tag{2}$$

where $A(D) \in \mathcal{A}(\mathbb{C}_{\zeta}), v(z) \in \mathcal{E}xp(\mathbb{C}_z).$

Theorem 3. Equation (2) has the solutions in the form

$$u_{\gamma}(z) = A^{-1}(D)_{\gamma}v(z) = \frac{1}{2\pi i} \int_{\gamma} a^{-1}(\zeta) Bv(\zeta) e^{\zeta z} d\zeta$$

where $\gamma \in \Gamma_{v}(\mathbb{C} \setminus S(A^{-1})), A^{-1}(D) \in \mathcal{A}_{p}(\mathbb{C}_{\zeta}).$

Corollary. If all hypotheses of Theorem 2 are satisfied for $A^{-1}(D)$ and v(z), then every solution $u_{\gamma}(z)$ of (2) can be written in the form:

$$u_{\gamma}(z) = \sum_{i=1}^{k} \sum_{j=0}^{\infty} a_{j}^{i}(\lambda_{i})(D - \lambda_{i}I)^{j}v_{i}(z) + \sum_{j \in J_{\gamma}} \operatorname{res}_{\zeta = \zeta_{j}}[a(\zeta) Bv(\zeta) e^{\zeta z}],$$

where $a^{-1}(\zeta) = \sum_{j=0}^{\infty} a_{j}^{i}(\lambda_{i})(\zeta - \lambda_{i})^{j}, \lambda_{i} \in \Omega, i = 1, ..., k \text{ and } v(z) = \sum_{i=1}^{k} v_{i}(z).$

Example. We consider the complex shift equation:

$$A(D)u(z) = u(z+a) + u(z-a) = h(z), \ h(z) \in \mathcal{E}xp(\mathbb{C}_z), \ 0 \neq a \in \mathbb{C}.$$
 (3)

We will give a representation for the solutions of (2) by using the AP-operator with pole singularities. We have $A(D)u(z) = [e^{aD} + e^{-aD}]u(z) = 2ch(aD)u(z)$.

Let $\Omega \subset \mathbf{C} \setminus S\left(\frac{1}{2\mathrm{ch}(aD)}\right)$ be a Runge domain such that $0 \in \Omega$, $\Gamma^0 \subset \Omega$ and $h(z) \in \mathcal{E}xp_{\Omega}(\mathbf{C}_z)$ and assume that the type of h(z) is less than $\frac{\pi}{2|a|}$. Then using the Taylor series of the function $\frac{1}{2\mathrm{ch}(a\zeta)}$ at zero [1], we get

$$u_{\Gamma^0}(z) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n a^{2n} E_{2n}}{(2n)!} D^{2n} h(z),$$

where E_{2n} are Euler's numbers ($E_0 = 1$, $E_2 = -1$, $E_4 = 5$, ...). Because $\zeta_k = \frac{\pi + 2k\pi}{2ia}$ are simple zeros of ch(a), by the construction of Γ_k , we have

$$u_{\Gamma_k}(z) = \frac{1}{2\pi i} \int_{\Gamma_k} \frac{Bh(\zeta)e^{\zeta z}}{2\mathrm{ch}(a\zeta)} d\zeta = \operatorname{res}_{\zeta = \zeta_k} \left(\frac{Bh(\zeta)e^{\zeta z}}{2\mathrm{ch}(a\zeta)}\right)$$
$$= \frac{Bh\left(\frac{\pi + 2k\pi}{2ia}\right)e^{\frac{\pi + 2k\pi}{2ia}z}}{2\mathrm{ch}_k\left(\frac{\pi + 2k\pi}{2ia}\right)} \quad (\text{here, } \mathrm{ch}_k(a\zeta) = \frac{\mathrm{ch}(a\zeta)}{\zeta - \zeta_k}).$$

Finally, we get the following formula for $u_{\gamma}(z)$:

$$u_{\gamma}(z) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n a^{2n} E_{2n}}{(2n)!} D^{2n} h(z) + \sum_k \frac{Bh\left(\frac{\pi + 2k\pi}{2ia}\right) e^{\frac{\pi + 2k\pi}{2ia}z}}{2\mathrm{ch}_k\left(\frac{\pi + 2k\pi}{2ia}\right)}.$$

References

- 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulae, Graphs and Mathematical Tables, National Bureau of Standards, Washington, DC, 1964.
- 2. L. Bieberbach, Analytic Continuation, Nauka, Moscow, 1967 (Russian).
- 3. Yu. A. Dubinskii, Analytic Pseudodifferential Operators and Their Applications, Kluwer, 1991.
- 4. B. V. Sabat, Introduction to Complex Analysis, Part I, Nauka, Moscow, 1985 (Russian).

where
$$a^{-1}(t) = \sum_{i=1}^{N} a_i^{i}(t_i)(t_i - \hat{b}_i)^{i} + i_i \in \Omega, i = 1, ..., t and $a(t_i) = \sum_{i=1}^{N} a_i(t_i)$.$$

frample Wereauter the complex shift opening

We will give a representation for the columbra of CD by v length: AF operator with pole singularities: We have $A(D)w(D \ge |e^{-it} + e^{-itt}]w(t) = 18h(aD)w(C)$

Let $\Omega \subset C^{-1} \cdot S\left(\frac{1}{2\pi h(r)}\right)$ be a Bange dynamic such that $\Omega \in \Omega_1 \Gamma^{0} \subset \Omega$ and the $\Omega \subset C^{-1} \cdot S\left(\frac{1}{2\pi h(r)}\right)$ be a Bange dynamic such that $\Omega \in \Omega_1$. This using the first $c \cdot S(\eta_0) \Omega_1$ and sections that here type of $\theta(r)$ is term than $\frac{\theta}{2\|\rho\|}$. This using the

Fighter service of the theories, zetalors, in Arris [1], we get

$$u_{1}(q_{1}) = \frac{1}{2} \sum_{n=0}^{10} \frac{(-1)^{n} a^{2n} E_{2}}{(2m)!} (D^{2n} h_{12}),$$

where B_{21} are Euler's similarity $(B_{21} \rightarrow 4, B_{22} \rightarrow -4, B_{22} \rightarrow 5, 1)$ Because $G_{1} \neq \frac{1}{2M} + \frac{2M}{2M}$ we write zeros of either, by the construction of Γ_{11} we have

$$a_{1}(z) = \frac{a_{1}}{2\pi i} \int_{\Omega_{1}} \frac{m_{0}(z)e^{zz}}{2m_{0}(z)} dz = \sup_{z \neq 0} \left(\frac{d(z)e^{zz}}{2m_{0}(z)} \right) = \frac{a_{0} \left(\frac{z+2z}{2\pi i} \right) e^{\frac{z}{2\pi i} \frac{z}{2\pi i}}}{2m_{0}(z)} dz = \sup_{z \neq 0} \left(\frac{d(z)e^{zz}}{2\pi i} \right)$$