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1. Introduction

Let @ C C; be a Runge domain. We denote by O(R) the space of all holomorphic
functions on . For a function a(¢) € O(), replacing formally by D, Dubinskii
[3] has defined an analytic pseudodifferential operator (an APO for short) A(D) with
symbol a(¢z) € O(R) and constructed the algebra of APOs on Q. He proved that
every A(D) € A(Q) acts continuously and invariantly in Expa(C,), the space of
exponential functions in C, growing over Q. So, if an APO A(D) € A(Q) has the
inverse A~} (D) € A(Q), then the analytic pseudodifferential equation

A(D)u(z) = v(2), v(z) € Expa(Cy), 1)

has a unique solution u(z) = A~ 1(D)(z) € Expa(C,). We remark that the requirement
a~1(¢) e O(R), which guarantees the existence of A~1(D) in A(Q), is very strong.
This requirement leads to a loss of solutions.

The purpose of this paper is to introduce a class of APOs with pole-singularities in the
one-dimensional case. We will show that every APO with poles is in fact a multivalued
operator acting in the space of exponential functions. Its values are described by the
geometry of the operator. We give a formula for them; roughly speaking, every value of
an APO A(D) with pole singularities can be represented as a sum of regular and singular
parts.

We denote by Exp(C;) the space of all exponential functions of the variable z. Let

o0 .
u(@) =Y uiz' € Exp(C,) with type r > 0.
i=0
def .

r= 1nfo{r’ - lu(z)| < const.e” !, vz € C ).
7>
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oo

Vi
The function Bu(¢) = ) % is called the Borel transform of u(z).

i=

It is well known [2] that Bu(¢) is a holomorphic function outside the disk {|¢| < r}
if r is of the type u(z). We denote by U C C; the largest open set where Bu(¢) can be
holomorphically continued. It is clear that U D {[¢] > r}.

The set C; \ U is said to be the spectrum of u(z) and is denoted by K,,.

2. APO with Pole Singularities

Let O(C;) be the space of all holomorphic functions in C;. For g(¢) € O(C;), we set
V(g) =1{t € C; : g(¢) =0}
f©

We put O,(C;) = {a(t) = 2@ f(©), 8@) € OCy), g(¢) # 0 and

V(i HiNV{g) = Q)} and call O,(C;) the space of symbols with pole singularities.
Let a(¢) € Op(C;). Replacing formally { by D, we obtain A(D).

Definition 1. We call A(D) an APO with pole singularity and a(t) its symbol,
respectively. We denote by A, (C;) the set of all APOs with pole singularities.

Definition 2. We call V(g) the singular set of A(D) and denote it by S(A).

Definition 3. We define

1
w0 = 400 = 5 [ T8 By etz
e 14

where T,(C \ S(A)) = {closed simple, oriented anticlockwise contours y C
C\ S(A) enclosing K,} and Bv(Z) is the Borel transform of v(z).

Theorem 1. A(D) acts invariantly in Exp(C;) as a multivalued operator if S(A) # @.

Theorem 2. Let A(D) € Ay(Cp), v(z) € Exp(C,). If there is a Runge domain
satisfying the following conditions:

@) To C Q,

(i) QN S(A) =0,

(i) v(z) € Expa(C,),

then the following representation holds:

iy (2) = ur, (@) + Y_ ur,(2)
Jjedy
k' | o
=22 40D =MD ui@ + ) | res[a(@) BuE) ¢,

i=1 j=0 jer,”
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3. Analytic Pseudodifferential AP-Equations with Symbols in O(C;)

Let us consider the AP-equation
A(D)u(z) = v(z), )
where A(D) € A(C;), v(z) € Exp(Cy).

Theorem 3. Equation (2) has the solutions in the form
1
4y (@) = AN(D)v(2) = — f a1 (©)Bu()eFede,
27i Jy
where y € T,(C\ S(A71)), A7H(D) € A,(Cy).

Corollary. Ifall hypotheses of Theorem 2 are satisfied for A~Y(D) and v(z), then every
solution u, (z) of (2) can be written in the form.:

k

uy (2) = ZZa(A)(D ,\,I)Jv,(z)+zres[a(;)Bv(;)efZ],

i=1 j=0 jel, b

k
where a~1(¢) = Z a; oD —r), yei=1, .., kandv(z) = Y vi(2).
j=0 i=1

Example. We consider the complex shift equation:
ADu@) =u(z+a)+u(z—a) =h(2), h(z) €Exp(C), 0#acC. (3)

We will give a representation for the solutions of (2) by using the AP-operator with pole
singularities. We have A(D)u(z) = [€*P + e~*Plu(z) = 2ch(aD) u(z).

1
Let Q C C\ S(m) be a Runge domain such that 0 € @, T'° ¢ Q and
h(z) € Expa(C,) and assume that the type of h(z) is less than Eﬁ Then using the
a
1
Taylor series of the function 2eh@l) at zero [1], we get
(-D)"a* Ezn 5,
uro(@) = Z —a D@,
n=0
where E,, are Buler’s numbers (Ey = 1, E; = —1, E4 = 3,..). Because
2k
L = %— are simple zeros of ch(a), by the construction of I';, we have
ia
1 Bh()eb? Bh(s)eb*
an@ = o [ SO dr = res (3005
2mi Jr, 2ch(a?) =\ 2ch(al)
Bh(%)e”ﬁ‘hz ch(ag)

(here, chg(al) = —).
2chy (2422 ) ¢ — &
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Finally, we get the following formula for u,, (z):
m42kn \ TR,
1 s (—1)*"a™Ey Bh(—Zia )e i
uy(@)=5) ——=— D"h@)+
4 2 ;; 2n)! ; ZChk(ﬂ;iZfﬂ)
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