Vietnam Journal
of
MATHEMATICS
© Springer-Verlag 1998

On Eigenvalue Problems with Singularity for Second Order Ordinary Differential Equations*

Ta Van Dinh

Department of Mathematics, University of Technology, Dai Co Viet, Hanoi, Vietnam

Received October 18, 1994 Revised January 10, 1995

Abstract. We are dealing with some eigenvalue problems with singularity for second order ordinary differential equations. The existence of a countable set of real eigenvalues and eigenfunctions is established. The high order of smoothness of eigenfunctions are investigated.

1. Introduction

The eigenvalue problems for ordinary differential equations with homogeneous boundary conditions arising from applied mathematics have been investigated by many authors and interesting results have been obtained [1–7]. The problems in which eigenvalues are involved in the boundary condition(s), arising from mechanics [2], are called in [2] eigenvalue problems with singularity and have been considered there for particular cases. In this paper, we are dealing with such problems. We shall prove the existence of a countable set of eigenvalues and eigenfunctions and the smoothness of eigenfunctions for second order ordinary differential equations; these questions were not investigated in [2]. The high order of smoothness of eigenfunctions will be used when we approximate eigenvalues and eigenfunctions by finite difference or finite element methods (see [1, 4, 7] for eigenvalue problems with homogeneous boundary conditions).

2. On the General Weak Eigenvalue Problem

Let

(i) H and V be infinite dimension Hilbert spaces (on R),

^{*} This work was supported in part by the National Basic Research Program in Natural Sciences, Vietnam

(ii) $a(u, v), (u, v) \in V \times V$ be symmetric, continuous on V and V-elliptic.

Then a(u, v) can be used as a new inner product in V and the new norm $||u||_a = \{a(u, u)\}^{1/2}$ is *equivalent* to the norm $||u||_V$. The space V with this new inner product and new norm is a Hilbert space (on R) and is denoted by V_a .

Denote by V_H the closure of V with respect to the norm in H.

Consider the eigenvalue problem in a weak form: Find a scalar λ , called eigenvalue, and an element $u \in V$, $u \neq 0$, called eigen element, such that

$$a(u, v) = \lambda(u, v)_H \quad \forall v \in V. \tag{2.1}$$

Under assumptions (i) and (ii), we have the following:

Lemma 1.

(1) The weak problem (2.1) has countably many eigenvalues which are real, have no finite limit points and can be arranged as

$$0 < \lambda_1 < \lambda_2 \le \dots \le \lambda_m \le \dots \ \lambda_m \to +\infty. \tag{2.2}$$

(2) The corresponding eigen elements $\{u_m \in V\}$ are orthonormal in H, and they form an orthonormal base in V_H ; the elements $\{\lambda_m^{-1/2}u_m\}$ form an orthonormal base in V_a .

Proof. The statement of Lemma 1 is slightly different from that of [5, Theorem 3, p. 195] and [6, Theorem 6.2.1]. However, the proof can be done analogously. We proceed as in [5] and notify only those features which are different from [5].

First, we note that the problem (2.1) can have only real eigenvalues.

Now, we prove the existence of (λ_1, u_1) . Consider as in [5, pp. 195] the functional

$$\varphi(u) = \frac{a(u, u)}{(u, u)_H} = \frac{\|u\|_a^2}{\|u\|_H^2}, \quad u \in V.$$

Let

$$\lambda_1 = \inf\{\varphi(u) : u \in V\}.$$

Since the imbedding $V \hookrightarrow H$ is continuous and the bilinear form a(., .) is V-elliptic, $\lambda_1 \geq c = \text{const} > 0$. As in [5, pp. 195–196], we can prove the existence of a sequence $\{v_n \in V\}$ which is a Cauchy sequence in H such that

$$\|v_n\|_H = 1, \quad \|v_n\|_a^2 \to \lambda_1 \text{ as } n \to \infty,$$
 (2.3)

$$a(v_n, \eta) - \lambda_1(v_n, \eta)_H \to 0 \quad \forall \eta \in V \text{ as } n \to \infty,$$
 (2.4)

$$\|v_n - v_{n'}\|_q^2 - \lambda_1 \|v_n - v_{n'}\|_H^2 \to 0 \text{ as } n, n' \to \infty.$$
 (2.5)

Since $\{v_n\}$ is a Cauchy sequence in H, (2.5) shows that it is also a Cauchy sequence in V_a . Since V_a is a Hilbert space, there exists an element $u \in V_a$, that is, $u \in V$, such that $\|v_n - u\|_{a} \to 0$, and hence, $\|v_n - u\|_{V} \to 0$ as $n \to \infty$ because a(.,.) is V-elliptic. By (i), $u \in H$. Since the imbedding $V \hookrightarrow H$ is continuous, $\|v_n - u\|_{H} \to 0$ as $n \to \infty$. Hence, by passing to the limit, (2.4) yields

$$a(u, \eta) = \lambda_1(u, \eta)_H \quad \forall \eta \in V.$$

Moreover, Eq. (2.3) proves that $||u||_H = 1$ and $||u||_a^2 = \lambda_1$.

So the existence of λ_1 and $u_1 = u \in V$, $u_1 \neq 0$, $||u_1||_H = 1$, $||u_1||_a = \sqrt{\lambda_1}$ satisfying (2.1) is established.

The remainder of the proof can be done analogously to that in [5, pp. 189–198].

3. First Eigenvalue Problem with Singularity for Second Order Ordinary Differential Equations

3.1. Statement of the Problem in a Strong Form

Let p(x), q(x), r(x) be given functions on [0, 1] and σ_0 , σ_1 , s_0 , s_1 be given constants satisfying

$$p(x), p'(x), q(x), r(x) \in C^{\mu}[0, 1], \quad \mu = \text{integer} \ge 0,$$
 (3.1)

$$0 < c_0 \le p(x) \le c_1, \ 0 \le q(x) \le c_2, \ 0 < c_3 \le r(x) \le c_4, \tag{3.2}$$

$$\sigma_0 \ge 0, \ \sigma_1 \ge 0, \ \sigma_0 + \sigma_1 > 0, \ s_0 > 0, \ s_1 > 0,$$

$$c_i = \text{const}, \ i = 0, 1, 2, 3, 4.$$
(3.3)

Consider the eigenvalue problem in a strong form: Find a scalar λ , called eigenvalue, and a function $u(x) \in C^2[0, 1]$ not identically equal to zero, called eigenfunction, satisfying

$$Lu := -(pu')' + qu = \lambda ru, \quad 0 < x < 1,$$
 (3.4)

$$l_0 u := -p(0)u'(0) + \sigma_0 u(0) = \lambda s_0 u(0), \qquad (3.5)$$

$$l_1 u := p(1)u'(1) + \sigma_1 u(1) = \lambda s_1 u(1). \tag{3.6}$$

We note that in the problem (3.4)–(3.6), the parameter λ is also present in the boundary conditions and that is why it is called an eigenvalue problem with singularity [2, pp. 446–447].

3.2. Problem in Weak Form

Denote by $H^k(0, 1)$ the Sobolev spaces $W_2^{(k)}(0, 1)$ (see Sobolev spaces in [6, 8] for instance).

Let

$$V = H^1(0,1), \ H = \{v | v \in L_2(0,1), \ |v(0)| < \infty, \ |v(1)| < \infty\}.$$

In other words, H is a subset of $L_2(0, 1)$ consisting of $v \in L_2(0, 1)$ such that traces v(0) and v(1) are well defined and

$$(u,v)_H = \int_0^1 r(x)u(x)v(x)dx + s_0u(0)v(0) + s_1u(1)v(1), \quad ||u||_H = (u,u)_H^{1/2}.$$

 $V = H^1(0, 1)$ is a Hilbert space; it is obvious that H is also a Hilbert space (on R) and $V \subset H$.

If $u \in H^1(0, 1)$, then $u \in L_2(0, 1)$, and by the trace theorem [6, 8], u(0) and u(1) are well defined: $|u(0)| < \infty$, $|u(1)| < \infty$. Hence, $V = H^1(0, 1) \subset H$.

From [8, pp. 360–361], we deduce the following:

Lemma 2. In $H^1(0, 1)$, the norms

$$||u||_{H^1(0,1)} := \{||u'||_{L_2(0,1)}^2 + ||u||_{L_2(0,1)}^2\}^{1/2},$$

$$||u||_{L_2(0,1)} + ||u||_{L_2(0,1)}, \quad ||u||_2 := ||u'||_{L_2(0,1)} + |u(0)| + |u(1)|$$

$$||u||_1 := ||u'||_{L_2(0,1)} + ||u||_{L_2(0,1)}, \quad ||u||_2 := ||u'||_{L_2(0,1)} + |u(0)| + |u(1)|,$$
$$||u||_3 := ||u'||_{L_2(0,1)} + |u(0)|, \quad ||u||_4 := ||u'||_{L_2(0,1)} + |u(1)|$$

are equivalent to one another.

Let $u \in H^1(0, 1)$. From Lemma 2, we have

$$||u||_{L_2(0,1)} \le ||u||_{H^1(0,1)}$$
, $|u(0)| + |u(1)| \le ||u||_2 \le c_5 ||u||_{H^1(0,1)}$, $c_5 = \text{const.}$

Then by addition we see that the imbedding $V = H^1(0, 1) \hookrightarrow H$ is continuous.

Now, by the imbedding theorem [8, pp. 359, 372], the imbedding $H^1(0, 1) \hookrightarrow L_2(0, 1)$ is compact, and by Lemma 2, if the set $\{u\}$ is bounded in $H^1(0, 1)$, the sets $\{u(0)\}$ and $\{u(1)\}$ are bounded and therefore possess Cauchy subsequences. Hence, the imbedding $V = H^1(0, 1) \hookrightarrow H$ is compact.

Consider in $V = H^1(0, 1)$ the bilinear form

$$a(u,v) = \int_0^1 [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_0 u(0)v(0) + \sigma_1 u(1)v(1), \ u, \ v \in V.$$

Then the general weak eigenvalue problem (2.1) takes the form

$$\int_{0}^{1} [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_{0}u(0)v(0) + \sigma_{1}u(1)v(1) =$$

$$\lambda \Big[\int_{0}^{1} r(x)u(x)v(x)dx + s_{0}u(0)v(0) + s_{1}u(1)v(1) \Big] \quad \forall v \in V = H^{1}(0, 1).$$
(3.7)

It is obvious that a(u, v) is symmetric. We have

$$|a(u,v)| \le c_6 \left[\int_0^1 (|u'|.|v'| + |u|.|v|) dx + |u(0)|.|v(0)| + |u(1)|.|v(1)| \right], \ c_6 = \text{const.}$$

Then, from Lemma 2 and the Cauchy-Schwarz inequality, we have

$$|a(u, v)| \le c_7 \{ ||u||_V ||v||_V \}, \quad c_7 = \text{const},$$

that is, a(u, v) is continuous on $V = H^1(0, 1)$.

Next, we assume under restriction (3.3) that $\sigma_0 > 0$ for fixing the idea. Let $u \in H^1(0, 1)$. We have

$$a(u, u) \ge \int_0^1 p(x) [u'(t)]^2 dt + \sigma_0 [u(0)]^2 \ge c_8 \{ \|u'\|_{L_2(0, 1)}^2 + [u(0)]^2 \}$$

$$\ge c_9 \{ \|u'\|_{L_2(0, 1)} + |u(0)| \}^2, \quad c_8, c_9 = \text{const.}$$

Then, by Lemma 2, a(., .) is $V = H^1(0, 1)$ -elliptic.

So assumptions (i) and (ii) are verified, and by Lemma 1, we have the following:

Theorem 1.

- (1) The problem (3.7) has countably many eigenvalues which are real, have no finite limit points and can be arranged as (2.2).
- (2) The corresponding eigenfunctions $\{u_m(x) \in V = H^1(0, 1)\}$ form an orthonormal base in V_H ; the functions $\{\lambda_m^{-1/2}u_m\}$ form an orthonormal base in V_a .

Note that

$$||u_m||_H = 1$$
, $||u_m||_a = \sqrt{\lambda_m}$.

3.3. Results Concerning the Problem in Strong Form

We have the following:

Theorem 2.

- (1) Each solution $(\lambda, u(x))$ of the strong problem (3.4)–(3.6) is a solution of the weak problem (3.7).
- (2) To the solution $(\lambda_1, u_1(x))$ of the weak problem (3.7) corresponds a solution $(\lambda_1, v_1(x))$ of the strong problem (3.4)–(3.6) such that

$$v_1 \in C^{\mu+2}[0, 1], \|v_1 - u_1\|_{V = H^1(0, 1)} = 0, \|v_1\|_{H^{\mu+2}(0, 1)} \le c_{10} \lambda^{[(\mu+1)/2]+1},$$
(3.8)

where c_{10} is a constant independent of u_1 and v_1 .

For the proof, we consider at first the boundary problem:

$$Lz := -(p(x)z'(x))' + q(x)z(x) = f(x), \quad 0 < x < 1,$$
(3.9)

$$l_0 z := -p(0)z'(0) + \sigma_0 z(0) = g_0, \qquad (3.10)$$

$$l_1 z := p(1)z'(1) + \sigma_1 z(1) = g_1,$$
 (3.11)

where p(x), p'(x), q(x) verify (3.1)–(3.3) and

$$f(x) \in C^{\nu}[0, 1], \quad 0 \le \nu = \text{integer} \le \mu, \ g_0, \ g_1 \in R.$$
 (3.12)

Then we have

Lemma 3. The boundary problem (3.9)-(3.12) has a unique solution z:

$$z \in C^{\nu+2}[0, 1], \tag{3.13}$$

$$||z||_{H^1(0,1)} \le c_{11}\{||f||_{L_2(0,1)} + |g_0| + |g_1|\},$$
 (3.14)

$$||z||_{H^{j+2}(0,1)} \le c_{12}\{||f||_{L_2(0,1)} + |g_0| + |g_1| + \sum_{k=0}^{j} ||f^{(k)}||_{L_2(0,1)}\}, \quad j = 0, ..., \nu,$$
(3.15)

where c_{11} and c_{12} are constants independent of z.

Proof. For the existence and uniqueness of z(x) satisfying (3.9)–(3.11) and (3.13), see [4, pp.79–80]. Thereafter, taking the inner product in $L_2(0, 1)$ of (3.9) by z(x) and taking into account (3.10) and (3.11), we have

$$a(z, z) = (F, z)_H,$$
 (3.16)

where

$$F = F(x) = \begin{cases} f(x)/r(x), & \text{if } 0 < x < 1, \\ g_0/s_0, & \text{if } x = 0, \\ g_1/s_1, & \text{if } x = 1. \end{cases}$$

Then, by (i) and (ii), Equation (3.16) yields

$$||z||_V^2 \le c_{13} ||F||_H \cdot ||z||_H \le c_{14} ||F||_H \cdot ||z||_V, \quad c_{13}, c_{14} = \text{const.}$$

This implies (3.14).

Since z verifies (3.13), we can differentiate (3.9) successively and with the help of (3.14), we get (3.15) step by step.

Proof of Theorem 2. The first part is obvious — it follows from the inner product in $L_2(0, 1)$ of (3.4) by $v(x) \in V = H^1(0, 1)$ and the boundary conditions (3.5) and (3.6). For the second part, let $(\lambda_1, u_1(x))$ be the solution of the weak problem (3.7). Then

$$u_1 \in V = H^1(0, 1), \quad a(u_1, u_1) = \lambda_1, \quad ||u_1||_H = 1.$$

By the trace theorem [6, 8], $u_1(0)$, $u_1(1)$ are well defined, and by the imbedding theorem [8, pp. 359, 372], u_1 is equal almost everywhere (a.e.) on [0, 1] to a function $\tilde{u}_1 \in C[0, 1]$.

Consider the auxiliary boundary value problem.

$$Lw_1 := -(p(x)w_1'(x))' + q(x)w_1(x) = \lambda_1 r(x)\tilde{u}_1(x), \quad 0 < x < 1, \tag{3.17}$$

$$l_0 w_1 := -p(0)w_1'(0) + \sigma_0 w_1(0) = \lambda_1 s_0 u_1(0), \qquad (3.18)$$

$$l_1 w_1 := p(1)w_1'(1) + \sigma_1 w_1(1) = \lambda_1 s_1 u_1(1). \tag{3.19}$$

By Lemma 3, this problem has a unique solution w_1 :

$$w_1 \in C^2[0, 1] \tag{3.20}$$

$$||w_1||_{H^1(0,1)} \le c_{15}\lambda_1\{||\tilde{u}_1||_{L_2(0,1)} + |u_1(0)| + |u_1(1)|\}$$

$$= c_{15}\lambda_1\{||u_1||_{L_2(0,1)} + |u_1(0)| + |u_1(1)|\}$$

$$= c_{15}\lambda_1||u_1||_{H} \le c_{15}\lambda_1, \quad c_{15} = \text{const.}$$
(3.21)

Analogously, Lemma 3 yields

$$||w_1||_{H^2(0,1)} \le c_{16}\lambda_1\{||\tilde{u}_1||_{L_2(0,1)} + |u_1(0)| + |u_1(1)|\}$$

$$= c_{16}\lambda_1\{||u_1||_{L_2(0,1)} + |u_1(0)| + |u_1(1)|\}$$

$$= c_{16}\lambda_1||u_1||_{H} \le c_{16}\lambda_1, \ c_{16} = \text{const.}$$
(3.22)

Taking the inner product in $L_2(0, 1)$ of two members of (3.17) by $v(x) \in V = H^1(0, 1)$, we have after integration by parts

$$\int_0^1 [p(x)w_1'(x)v'(x) + q(x)w_1(x)v(x)]dx + p(0)w_1'(0)v(0) - p(1)w_1'(1)v(1)$$

$$= \lambda_1 \int_0^1 r(x) \tilde{u}_1(x) v(x) dx.$$

Then taking into account boundary conditions (3.18) and (3.19), we have

$$\int_0^1 [p(x)w_1'(x)v'(x) + q(x)w_1(x)v(x)]dx + \sigma_0 w_1(0)v(0) + \sigma_1 w_1(1)v(1)$$

$$= \lambda_1 \left[\int_0^1 r(x)\tilde{u}_1(x)v(x)dx + s_0u_1(0)v(0) + s_1u_1(1)v(1) \right]. \tag{3.23}$$

From (3.7), where u is replaced by u_1 , and (3.23), where $\tilde{u}_1 = u_1$ a.e. on [0, 1], we obtain

$$a(u_1, v) = a(w_1, v), \quad \forall v \in V.$$

So we have $||w_1 - u_1||_a = 0$, and hence,

$$||w_1 - u_1||_{H^1(0, 1)} = 0. (3.24)$$

From (3.24) and Lemma 2, we have

$$w_1(0) = u_1(0), \quad w_1(1) = u_1(1).$$

From (3.24), we also have $u_1 = w_1$ a.e. on [0, 1]. Since $u_1 = \tilde{u}_1$ a.e. on [0, 1], then $\tilde{u}_1 = w_1$ a.e. on [0, 1]. Hence, $\tilde{u}_1 = w_1$ everywhere on [0, 1] because they are both continuous on [0, 1]. We also deduce that $u_1(0) = \tilde{u}_1(0)$, $u_1(1) = \tilde{u}_1(1)$. Therefore, Eqs. (3.17)–(3.19) coincide with Eqs. (3.4)–(3.6). So λ_1 and w_1 satisfy the problem (3.4)–(3.6) and the relations (3.20)–(3.22) and (3.24) prove that (3.8) is verified for $\mu = 0$ with $v_1 = w_1$.

If $\mu > 0$, we put $K = [(\mu + 1)/2]$ and consider auxiliary problems:

$$Lw_{k+1} = \lambda_1 r(x)w_k(x)$$
, $0 < x < 1$, $l_0 w_{k+1} = \lambda_1 s_0 w_k(0)$, $l_1 w_{k+1} = \lambda_1 s_1 w_k(1)$,

$$k = 1, 2, ..., K$$
.

Using Lemma 3, we can prove step by step that w_k , k = 2, ..., K + 1, exist and

$$w_k \in C^{2k}[0, 1], \quad k = 2, ..., K,$$

$$w_{K+1} \in \left\{ \begin{array}{l} C^{2K+1}[0, \ 1] & \text{if } \mu \text{ is odd} \\ C^{2K+2}[0, \ 1] & \text{if } \mu \text{ is even} \end{array} \right., \quad \text{that is, } w_{K+1} \in C^{\mu+2}[0, \ 1] \,,$$

$$\|w_{K+1}\|_{H^{\mu+2}(0,1)} \le c_{17}\lambda_1^{K+1} = c_{17}\lambda_1^{[(\mu+1)/2]+1}, \quad c_{17} = \text{const}.$$

THU VIÊN VIỆN TOÁN Học Now, by subtraction, we have for k = 1, 2, ..., K and $w_0 = u_1$

$$L(w_{k+1} - w_k) = \lambda_1 r(x) [w_k(x) - w_{k-1}(x)], \quad 0 < x < 1,$$

$$l_0(w_{k+1} - w_k) = \lambda_1 s_0 [w_k(0) - w_{k-1}(0)],$$

$$l_1(w_{k+1} - w_k) = \lambda_1 s_1 [w_k(1) - w_{k-1}(1)].$$

By Lemma 3, we have

$$\begin{aligned} \|w_{K+1} - w_K\|_{H^1(0, 1)} &\leq c_{18} \|w_K - w_{K-1}\|_{H^1(0, 1)} \leq \cdots \\ &\leq c_{19} \|w_1 - w_0\|_{H^1(0, 1)} = c_{19} \|w_1 - u_1\|_{H^1(0, 1)} = 0 \,, \quad c_{18} \,, \ c_{19} = \text{const} \,. \end{aligned}$$

Therefore,

$$||w_{K+1} - u_1||_{H^1(0, 1)} \le ||w_{K+1} - w_K||_{H^1(0, 1)} + ||w_K - w_{K-1}||_{H^1(0, 1)} + \cdots + ||w_1 - w_0||_{H^1(0, 1)} = 0.$$

So (3.8) is verified with $v_1 = w_{K+1}$.

3.4. On Finite Element Approximation

From the above results, to approximate the first solution of the strong problem (3.4)–(3.6) under assumptions (3.1)–(3.3), we only have to approximate the solution $(\lambda_1, u_1(x))$ of the weak problem (3.7).

For this problem, we can apply the finite element method [7].

4. Other Problems with Singularity

We can consider problems with other boundary conditions, for instance, when the boundary condition (3.5) is replaced by one of the following:

$$w(0) = 0, (4.1)$$

$$-p(0)w'(0) + \sigma_0 w(0) = 0, (4.2)$$

or when the boundary condition (3.6) is replaced by one of the following:

$$w(1) = 0, (4.3)$$

$$-p(1)w'(1) + \sigma_1 w(1) = 0. (4.4)$$

These problems are presented in [2] as problems arising from mechanics. Concerning the problem (3.4), (3.6) and (4.1), we put

$$V = \{v | v \in H^1(0, 1), v(0) = 0\}, \quad H = \{v | v \in L_2(0, 1), |v(1)| < \infty\}. \tag{4.5}$$

The corresponding weak eigenvalue problem is

$$\int_0^1 [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_1 u(1)v(1)$$

$$= \lambda_1 \left[\int_0^1 r(x)u(x)v(x)dx + s_1 u(1)v(1) \right], \quad \forall v \in V.$$
 (4.6)

Concerning the problem (3.4), (3.6) and (4.2), we put

$$V = H^{1}(0, 1), \quad H = \{v | v \in L_{2}(0, 1), \quad |v(0)| < \infty, \quad |v(1)| < \infty\}. \tag{4.7}$$

Then the corresponding weak eigenvalue problem is

$$\int_0^1 [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_0 u(0)v(0) + \sigma_1 u(1)v(1)$$

$$= \lambda_1 \left[\int_0^1 r(x)u(x)v(x)dx + s_1 u(1)v(1) \right], \quad \forall v \in V.$$
 (4.8)

Concerning the problem (3.4), (3.5), and (4.3), we put

$$V = \{v | v \in H^1(0, 1), v(1) = 0\}, \quad H = \{v | v \in L_2(0, 1), |v(0)| < \infty\}.$$
 (4.9)

The corresponding weak eigenvalue problem is

$$\int_0^1 [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_0 u(0)v(0)$$

$$= \lambda_1 \left[\int_0^1 r(x)u(x)v(x)dx + s_0 u(0)v(0) \right], \quad \forall v \in V.$$
 (4.10)

Concerning the problem (3.4), (3.5), and (4.4), we put

$$V = H^{1}(0, 1), \quad H = \{v | v \in L_{2}(0, 1), \quad |v(0)| < \infty, \quad |v(1)| < \infty\}.$$
 (4.11)

Then the corresponding weak eigenvalue problem is

$$\int_0^1 [p(x)u'(x)v'(x) + q(x)u(x)v(x)]dx + \sigma_0 u(0)v(0) + \sigma_1 u(1)v(1)$$

$$= \lambda_1 \left[\int_0^1 r(x)u(x)v(x)dx + s_0 u(0)v(0) \right], \quad \forall v \in V.$$
 (4.12)

By the same method, we obtain results similar to Theorems 1 and 2, respectively, for eigenvalue problems in weak form (4.6), (4.8), (4.10), and (4.12), and in strong form (3.4), (4.1), (3.6); (3.4), (4.2), (3.6); (3.4), (3.5), (4.3); (3.4), (3.5), (4.4). Note that the spaces V and H in these weak problems are defined by (4.5), (4.7), (4.9), and (4.11), respectively.

As in Subsec. 3.4, we can also apply the finite element method to approximate the solution.

References

- P.G. Ciarlet, M.H. Schultz, and R. S. Varga, Numerical method of high-order accuracy for nonlinear boundary value problems, III. Eigenvalue problems, *Numer. Math.* 12 (1968) 120–133.
- L. Collatz, Eigenwertaufgaben mit Technischen Anwendungen, Nauka, Leipzig, 1963; Nauka, Moscow, 1968 (Russian).
- R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique, T.5, in: Spectre des Opérateurs, Masson, Paris, 1988.
- G.I. Marchuk and V.V. Shaydurov, Increase of Accuracy of Solution to Difference Schemes, Nauka, Moscow, 1979 (Russian).
- 5. S.G. Mikhlin, Méthodes Variationnelles en Physique Mathématique, Gostekhizdat, Moscow, 1957 (Russian).
- P.A. Raviart, Introduction à L'analyse Numérique des Équations aux Dérivées Partielles, Masson, Paris, 1992.
- 7. M.H. Schultz, Spline Analysis, Prentice-Hall Inc., London, 1973.
- 8. V.I. Smirnov, Cours of Higher Mathematics, Vol. 5, Gostekhizdat, Moscow, 1959 (Russian).