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L. Introduction

The method for solving optimization problems in geometry and other problems by
using differential forms of comass one (calibrations) was adopted first by Dao Trong
Thi (cf. [14, 15]) and later proposed by Harvey and Lawson [7]. Conesponding to a
calibration is a geometry of minimal surfaces (cf. [5, 7]).

The constant coefficient calibrations have been studied by Harvey, Lawson, Morgan,
Dadok, etc. Only few examples of calibrations (especially of high degree) are known.
Such well-known calibrations are complex line, special Lagrangian, power of Kahler
forms (cf. [3,'7]).

By using the method of decomposition of a k - covector with respect to a vector, we
describe F* (S L AG) on R8 and construct new calibrations on p4n- I .

2. Decomposition of a t - covector with Respect to a Vector

Let O be a k-covector on Rn(k < n) and suppose {et, ez, . .. , er} is an orthonormal
basis of Rn. Denote

Q e ,  :  e i  f  ( D  i  : 1 , 2 ,  . . .  ,  n ,

and
O : ( O r , , Q r " , . . . , Q " , ) ,

We have

l l ,Dll. : l lol l : n.otT.*,, l lo(ry)l l,

and if l l<Dll* : 1, then G(O) : {O(t) n a I A(D : l}.
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Suppose O is a k-covector on Rz with span(<D)* : R'(span(O)* - {u e
l" I u JO : 0]') and let e be a unit vector on R'.

We have the following decomposition of <D with respect to e:

e : e * A g + V ,

vhere g and {r are (ft- 1) - covector and k - covector on el , respectively.
The following lemma gives a relationship between llOll., llpll* and llf ll-.

,emma 2.1.

max{ l l s l l * ,  l l f  l l - }  <  l lo l l .  <

More exacfly, we have the following theorem.

'heorem 2.2.

Z) G(O) = {(coscve*sincv/) nql,where
(i) p(il2 + rlr@)2 = A2;
(ii) ,f: i

The following corollary is deduced directly from the proof of Theorern2.2.

orollary 2.3. Suppose Q has the following decomposition with respect to e:

Q = e *  A g + V ,

here llgll* : llf ll* : l. Thenwe have ll<Dll* : 1 if and only if < 1
' r all 11 e G(k - 1, R').

Application

l .  F " (SLAG)onR8

enote by F* (S L AG) the set of all calibrations on Ru , whose faces contain a special

ryrangian face. The first Cousin principle shows that such calibrations must be of the
nn

(D:  oszac I  ) , (e*r+ *  e*2s *  e*ze)  Ae*t  *  a.e*1Ae*7g.

y using the decomposition of O with respect to a vector es, a direct computation shows
at O e F*(SIAG) if and only if a2 + ),2 < I.

2. Classification of F*(S.LAG) on R8

rch @ e F*(SLAG) is one of the four following types:

llpll*2 + llrbll*2
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(1)  Assoc-cal ibrat ion ( ) .  :  *1,  a:O);
(2)  Q :  Qsr7 'c  *  e*nB() .  :0 ,  o:  + l ) . In th is  case,  G(O) :  G(Osrac)  UCp' ;
(3) If 12 I a2 < 1, then G(O) : G(Qsrec);
( 4 )  I f  ) , 2  t a 2  -  I , ( L + 0 a n d  a  l 0 ) , t h e n c ( o ) :  G ( a s r e c ) U B . B  i s t h e s e t o f

all3-vector of the form (cosae * sincv/) A 4, where f : 
#rh,, 

and each 4 is of

the form e1 A (a2e2 I a3q I ases * a6e6 * atet) in which ot # O.

4. General Associative Calibrations and General Coassociative Calibrations

Let{e1,Jer ,e2,Je2, . . . ,e2r ,Je2r}denotetheorthonormalbasis  onC2n correspond-

ing to the complex structure /.

4.1. General Associative Calibrations

General associative calibrations are calibrations of degree (2n - I) on R4'-1, and

associative calibration is a special case when n :2.

Let f e G(Zn - I, Jen @ gzn-\. Suppose f has the canonical form with respect to

the subspace span(Je")
|  -  ( cosa len*s inu f )  n r7 ,

where / . g2n-r, q e G(2n - l, J e, @ Czn-tr.

Definition 4.1. $ is called G - associative if the following equality holds:

p - l

I  t ' l dZ I  nap- r0)12 :0 .
k:I lll:2k

By using the lemma on strengthening of the Wirtinger inequality (see [7]), we have

Theorem 4.2. The (2n-l) - covector on span(J en) @ Czn-r - p4n-1

Oc-" . .o"  :  Jet r  n{2n- t  *  RedZ

has comass one, i.e.,

Oc-",,o"(6) < l| l  for alt $ e G(2n - 1, R4"-r),

and the equality holds iff $ is G-associative.

4.2. Generul Coassociative Calibrations

General coassociative calibrations are calibrations of degree 2n on p4n-1, *6

coassociative calibration is a special case when n :2'

Let | < G(2n, J en 6 gzn-\. Suppose f has the canonical form with respect to the

subspace span(Je")
g :  ( c o s u J e n * s i n a f )  n 4 ,

where / a g2n-1, rt e G(2n - l, J en @ C'"-'r.
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Definition 4.3. { is called G - coassociative if the following equalities hold
(r) lRedZOD 12 = 0;

2(n-l)
(2 )  I  I  l dZ lnez r+ t?D l2 :0 .

k:l I:2k+1

Also, by using the lemma on strengthening of the Wirtinger inequality (see [7]), we
have

Theorem 4.4. The 2n-covector on span(J er) @ C2n-t - p4z-1

Oc-"ou.ro" : J eI n ImdZ * 9,

nas comass one, Le. .

Oc-"ou,.o.(6) < l t l  for at l  {  e G12n,R4"-17,

and the equality holds iff { is G - coassociative.
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