Vietnam Journal of Mathematics 26:3 (1998) 217-228

Vietnam Journal of MATHEMATICS © Springer-Verlag 1998

Sufficient Conditions for the Existence of a Hamilton Cycle in Cubic (6,*n*)-metacirculant Graphs II*

Ngo Dac Tan

Institute of Mathematics, P.O. Box 631, Bo Ho, 10.000 Hanoi, Vietnam

Received September 26, 1995 Revised November 28, 1996

Abstract. The smallest value of m for which we are still unsure if all connected cubic (m, n)-metacirculant graphs have a Hamilton cycle is m = 6. In this paper, we shall prove that a connected cubic (6,n)-metacirculant graph $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ has a Hamilton cycle if either one of the numbers $\alpha + 1$, $\alpha - 1$, or $1 - \alpha + \alpha^2$ is relatively prime to n, or the order of α in \mathbb{Z}_n^n is not equal to 6. As an application of these results, we shall show that every connected cubic (6,n)-metacirculant graph has a Hamilton cycle if either $n = p^a q^b$, where p and q are distinct primes, $a \ge 0$ and $b \ge 0$, or n is such that $\varphi(n)$ is not divisible by 3 where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and gcd(z, n) = 1.

1. Introduction

This paper is a sequel to the first paper [12] in which it was shown that a connected cubic (6, n)-metacirculant graph $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ has a Hamilton cycle if $\emptyset \neq S_1 = \{s\}$ and $(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5)s \equiv 0 \pmod{n}$. As in [12], we consider here only finite undirected graphs without loops or multiple edges. If G is a graph, then V(G) and E(G) denote its vertex-set and its edge-set, respectively. If n is a positive integer, then we write Z_n for the ring of integers modulo n and Z_n^* for the multiplicative group of units in Z_n .

Let *m* and *n* be two positive integers, $\alpha \in \mathbb{Z}_n^*$, $\mu = [m/2]$ and let $S_0, S_1, ..., S_{\mu}$ be subsets of \mathbb{Z}_n satisfying the following conditions:

(1) $0 \notin S_0 = -S_0;$

(2) $\alpha^m S_r = S_r$ for $0 \le r \le \mu$;

(3) if m even, then $\alpha^{\mu}S_{\mu} = -S_{\mu}$.

Then we define the (m, n)-metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, ..., S_{\mu})$ to be the graph with vertex set $V(G) = \{v_i^i : i \in Z_m, j \in Z_n\}$ and edge set

^{*}This work was supported in part by the National Basic Research Program in Natural Sciences, Vietnam.

 $E(G) = \{v_j^i v_h^{i+r} : 0 \le r \le \mu; i \in Z_m; h, j \in Z_n; (h-j) \in \alpha^i S_r\}$, where superscripts and subscripts are reduced modulo *m* and modulo *n*, respectively.

The concept of (m, n)-metacirculant graphs was introduced in [1]. It was asked if all connected (m, n)-metacirculant graphs, other than the Petersen graph, have a Hamilton cycle. For $n = p^t$ with p a prime, an affirmative answer was obtained in [2]. Connected cubic (m, n)-metacirculant graphs, other than the Petersen graph, are also proved to be Hamiltonian for m odd [7], m = 2 [4, 7], and m divisible by 4 [8, 10]. Thus, the smallest value of m, for which we are unsure if all connected cubic (m, n)-metacirculant graphs have a Hamilton cycle, is m = 6.

This paper is a continuation of the first paper [12] in this series and is geared towards the resolution of the problem of the existence of a Hamilton cycle in connected cubic (6, n)-metacirculant graphs. Using the results obtained in [12], we will prove in Sec. 3 two sufficient conditions for connected cubic (6, n)-metacirculant graphs to be hamiltonian, namely, we will prove that a connected cubic (6, n)-metacirculant graph $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ has a Hamilton cycle if either one of the numbers $\alpha + 1$, $\alpha - 1$, or $1 - \alpha + \alpha^2$ is relatively prime to n or the order of α in \mathbb{Z}_n^* is not equal to 6. As an application of these results, we will obtain in Sec. 4 a partial affirmative answer to the question whether all connected cubic (6, n)-metacirculant graph have a Hamilton cycle, proving that every connected cubic (6, n)-metacirculant graph has a Hamilton cycle if either $n = p^a q^b$, where p and q are distinct primes, $a \ge 0$ and $b \ge 0$, or n is such that $\varphi(n)$ is not divisible by 3 where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and $\gcd(z, n) = 1$.

The rest of the party of the pa

2. Preliminaries

First, we recall a method used in [10, 11] for lifting a Hamilton cycle in a quotient graph \overline{G} of a graph G to a Hamilton cycle in G. This method will be used in Sec. 3 to prove Theorem 1.

A permutation β is said to be semiregular if all cycles in the disjoint cycle decomposition of β have the same length. If a graph G has a semiregular automorphism β , then the quotient graph G/β with respect to β is defined as follows [3]. The vertices of G/β are the orbits of the subgroup $\langle \beta \rangle$ generated by β and two such vertices are adjacent if and only if there is an edge in G joining a vertex of one corresponding orbit to a vertex in the other orbit.

Let β be of order t and $G^0, G^1, ..., G^h$ the subgraphs induced by G on the orbits of $\langle \beta \rangle$. Let $v_0^i, v_1^i, ..., v_{t-1}^i$ be a cyclic labeling of the vertices of G^i under the action of β and let $C = G^0 G^i G^j ..., G^r G^0$ be a cycle of G/β . Consider a path P of G arising from a lifting of C, namely, start at v_0^0 and choose an edge from v_0^0 to a vertex v_a^i of G^i . Then take an edge from v_a^i to a vertex v_b^j of G^j following G^i in C. Continue in this way until returning to a vertex v_d^0 of G^0 . The set of all paths that can be constructed in this way using C is called in [3] the coil of C and is denoted by coil (C).

The following lemma is easy to prove. However, it has been proved in [8].

Lemma 1. [8] Let t be the order of a semiregular automorphism β of a graph G and G^0 the subgraph induced by G on an orbit of $\langle \beta \rangle$. If there exists a Hamilton cycle C in G/β such that coil(C) contains a path P whose terminal vertices are distance d apart in the G^0 where P starts and terminates and gcd(d, t) = 1, then G has a Hamilton cycle.

218

The following lemmas are particular cases of Theorem 2 in [9] and Lemmas 5 and 6 in [11], respectively. Therefore, we omit their proofs here.

Lemma 2. [9] Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a cubic (6, n)-metacirculant graph with $S_0 = \emptyset$. Then G is connected if and only if one of the following conditions holds:

- (i) $S_1 = \{s\}, S_2 = \emptyset, S_3 = \{k\}$ and gcd(e, n) = 1 where e is $[k s(1 + \alpha + \alpha^2)]$ reduced modulo n;
- (ii) $S_1 = \emptyset$, $S_2 = \{s\}$, $S_3 = \{k\}$ and gcd(g, n) = 1 where g is $[k(1+\alpha) s(1+\alpha+\alpha^2)]$ reduced modulo n.

Lemma 3. [11] Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph such that $S_0 = S_1 = \emptyset$, $S_2 = \{s\}$ and $S_3 = \{k\}$. Let $\overline{n} = gcd(\alpha - 1, n)$ and $\overline{\overline{n}} = gcd(1 - \alpha + \alpha^2, n)$. Then G has a Hamilton cycle if any one of the following conditions holds:

(i) Either $gcd(n / (\overline{n} \ \overline{n}), 3 \ \overline{n} - 1) = 1;$ (ii) $\overline{\overline{n}} = 1.$ Gar^2 , $S_1 = R_1(S_1) = 1$ and $|S_2| = 1$.

Lemma 4. [11] Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph such that $S_0 = \emptyset$, $S_1 = \{s\}$, $S_2 = \emptyset$ and $S_3 = \{k\}$. Then G has a Hamilton cycle if n is even.

We now recall the definition of a brick product of a cycle with a path defined in [4]. This product plays a role in the proof of Theorem 2 in the next section.

Let C_n with $n \ge 3$ and P_m with $m \ge 1$ be the graphs with vertex sets $V(C_n) = \{u_1, u_2, ..., u_n\}, V(P_m) = \{v_1, v_2, ..., v_{m+1}\}$ and edge sets $E(C_n) = \{u_1u_2, u_2u_3, ..., u_nu_1\}, E(P_m) = \{v_1v_2, v_2v_3, ..., v_mv_{m+1}\}$, respectively. The brick product $C_n^{[m+1]}$ of C_n with P_m is defined in [4] as follows. The vertex set of $C_n^{[m+1]}$ is the cartesian product $V(C_n) \times V(P_m)$. The edge set of $C_n^{[m+1]}$ consists of all pairs of the form $(u_i, v_h)(u_{i+1}, v_h)$ and $(u_1, v_h)(u_n, v_h)$, where i = 1, 2, ..., n - 1 and h = 1, 2, ..., m + 1, together with all pairs of the form $(u_i, v_h)(u_i, v_{h+1})$, where $i + h \equiv O \pmod{2}, i = 1, 2, ..., n$ and h = 1, 2, ..., m.

The following result has been proved in [4].

Lemma 5. [4] Consider the brick product $C_n^{[m]}$ with n even. Let $C_{n,1}$ and $C_{n,m}$ denote the two n-cycles in $C_n^{[m]}$ on the vertex-sets $\{(u_i, v_1) : i = 1, 2, ..., n\}$ and $\{(u_i, v_m) : i = 1, 2, ..., n\}$, respectively. Let F denote an arbitrary perfect matching joining the vertices of degree 2 in $C_{n,1}$ with the vertices of degree 2 in $C_{n,m}$. If X is a graph obtained by adding the edges of F to $C_n^{[m]}$, then X has a Hamilton cycle.

3. Sufficient Conditions

Using results obtained in [12], we will prove in this section two sufficient conditions for connected cubic (6, n)-metacirculant graphs to be hamiltonian which are expected to be helpful in further investigation of the problem of the existence of a Hamilton cycle in connected cubic (6, n)-metacirculant graphs. As an application of these conditions, we

will prove in Sec. 4 that every connected cubic (6, n)-metacirculant graph has a Hamilton cycle if either $n = p^a q^b$ where p and q are distinct primes, $a \ge 0$ and $b \ge 0$ or n is such that $\varphi(n)$ is not divisible by 3, where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and gcd(z, n) = 1.

Theorem 1. Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph. If one of the numbers $\alpha + 1$, $\alpha - 1$ or $1 - \alpha + \alpha^2$ is relatively prime to n, then G possesses a Hamilton cycle.

Proof. Let G=MC(6, $n, \alpha, S_0, S_1, S_2, S_3$) be a connected cubic (6, n)-metacirculant graph, $\overline{n} = \gcd(\alpha - 1, n), \overline{\overline{n}} = \gcd(1 - \alpha + \alpha^2, n)$ and $\overline{n} = \gcd(\alpha + 1, n)$. If $S_0 \neq \emptyset$, then by [7], G has a Hamilton cycle. Therefore, we may assume from now on that $S_0 = \emptyset$. Since G is a cubic (6, n)-metacirculant graph, only the following cases may happen:

Case 1. $|S_1| = 1$, $S_2 = \emptyset$ and $|S_3| = 1$.

Case 2. $S_1 = \emptyset$, $|S_2| = 1$ and $|S_3| = 1$.

Case 3. $S_1 = S_2 = \emptyset$ and $|S_3| = 3$.

Since G is connected, Case 3 does not occur. Now, consider Cases 1 and 2 in turn.

Case 1. $|S_1| = 1$, $S_2 = \emptyset$ and $|S_3| = 1$.

Let $S_1 = \{s\}$ with $0 \le s < n$ and $S_3 = \{k\}$ with $0 \le k < n$. By the definition of (6, n)-metacirculant graphs, we have

(1) $\alpha^{6}s \equiv s \pmod{n}$ $\Leftrightarrow (\alpha^{3}+1)(\alpha-1)(1+\alpha+\alpha^{2})s \equiv 0 \pmod{n}$, and (3.1) (2) $\alpha^{3}k \equiv -k \pmod{n}$ $\Leftrightarrow (\alpha^{3}+1)k \equiv 0 \pmod{n}$. (3.2)

Let $z = n/\gcd(\alpha^3+1, n)$. From (3.1) and (3.2), it follows that z is a divisor of both k and $(\alpha-1)(1+\alpha+\alpha^2)s$. Since G is connected, by Lemma 2(i), $\gcd(k, (1+\alpha+\alpha^2)s, n) = 1$. Therefore, z must be a divisor of $\alpha - 1$. Thus, we have

$$(\alpha^{3} + 1)(\alpha - 1) \equiv 0 \pmod{n}.$$
 (3.3)

Assume first that $\overline{n} = \gcd(\alpha - 1, n) = 1$. Then (3.3) implies that $(\alpha^3 + 1) \equiv 0 \pmod{n}$. By [12], G has a Hamilton cycle.

Assume next that $\tilde{n} = \gcd(\alpha + 1, n) = 1$. Let $\rho : V(G) \to V(G) : v_j^i \mapsto v_{j+1}^i$. Then $\rho^{\alpha-1}$ is a semiregular automorphism of G and therefore, we can construct the quotient graph $G/\rho^{\alpha-1}$ which is isomorphic to the cubic $(6, \overline{n})$ -metacirculant graph $\overline{G} = MC$ $(6, \overline{n}, \overline{\alpha}, \overline{S}_0, \overline{S}_1, \overline{S}_2, \overline{S}_3)$, where $\overline{n} = \gcd(\alpha - 1, n), 1 = \overline{\alpha} \equiv \alpha \pmod{\overline{n}}, \overline{S}_0 = \emptyset$, $\overline{S}_1 = \{\overline{s}\}$ with $0 \le \overline{s} < \overline{n}$ and $\overline{s} \equiv s \pmod{\overline{n}}, \overline{S}_2 = \emptyset$ and $\overline{S}_3 = \{\overline{k}\}$ with $0 \le \overline{k} < \overline{n}$ and $\overline{k} \equiv k \pmod{\overline{n}}$. We identify $G/\rho^{\alpha-1}$ with \overline{G} and in order to avoid the confusion between vertices of G and \overline{G} , we assume $V(\overline{G}) = \{w_i^i : i \in Z_6, j \in Z_{\overline{n}}\}$.

Sufficient Conditions for the Existence of a Hamilton Cycle

If *n* is even, then by Lemma 4, *G* has a Hamilton cycle. If *n* is odd, then we can repeat here the proof of the main theorem in [10] for the case of *n* odd in order to construct a Hamilton cycle of \overline{G} such that the path *P* of coil(*C*), which starts at v_0^0 , terminates at v_f^0 with $f \equiv (\alpha - 1)d \pmod{n}$, where

(3-4)

$$d = -[k - s(1 + \alpha + \alpha^2)](1 + \alpha + \alpha^2 + \alpha^3)$$

= -[k - s(1 + \alpha + \alpha^2)](\alpha + 1)(1 + \alpha^2).

Let t be the order of the automorphism $\rho^{\alpha-1}$. It is not difficult to see that $t = n/\overline{n}$. Since (3.3) holds, it follows that t is a divisor of $gcd(\alpha^3+1, n) = gcd((\alpha+1)(1-\alpha+\alpha^2), n)$. By our assumption, $gcd(\alpha+1, n) = 1$. Therefore, t must be a divisor of $gcd(1-\alpha+\alpha^2, n)$. Since G is connected, by Lemma 2(i),

$$gcd([k - s(1 + \alpha + \alpha^2)], n) = 1.$$

Therefore, $gcd([k - s(1 + \alpha + \alpha^2)], t) = 1$. Since $gcd(\alpha, n) = 1$, it is also clear that $gcd(1 + \alpha^2, 1 - \alpha + \alpha^2, n) = 1$. So $gcd(1 + \alpha^2, t) = 1$ because t is a divisor of $gcd(1 - \alpha + \alpha^2, n)$ as we have shown in the preceding paragraph. Further, $gcd(\alpha + 1, n) = 1$ by our assumption. Thus, gcd(d, t) = 1. By Lemma 1, G has a Hamilton cycle.

Finally, assume $\overline{\overline{n}} = \gcd(1 - \alpha + \alpha^2, n) = 1$. Since the automorphism ρ of G with $\rho(v_j^i) = v_{j+1}^i$ is semiregular, we can construct the quotient graph G/ρ . It is easy to see that G/ρ is isomorphic to the circulant graph $\overline{\overline{G}} = C(6, \{1, 3, 5\})$, the vertex set and the edge set of which are

$$V(\overline{G}) = \{w_j : j \in Z_6\} \text{ and} \\ E(\overline{\overline{G}}) = \{w_j w_h : j, h \in Z_6; (h - j) = 1 \text{ or } 3 \text{ or } 5 \pmod{6}\},\$$

respectively. Therefore, we can identify G/ρ with \overline{G} . It is also clear that \overline{G} possesses the following Hamilton cycle D:

 $D = w_0 w_3 w_2 w_5 w_4 w_1 w_0.$

Let P be the path of coil(D) which starts at v_0^0 . This path terminates at v_f^0 with

$$f \equiv k - \alpha^2 s + \alpha^2 k - \alpha^4 s + \alpha^4 k - s$$

$$\equiv (1 - \alpha + \alpha^2)k - s(1 - \alpha + \alpha^2)(1 + \alpha + \alpha^2)$$

$$\equiv (1 - \alpha + \alpha^2)[k - s(1 + \alpha + \alpha^2)] \pmod{n}.$$

It is clear that ρ has order t = n and terminal vertices of P in G^0 are v_0^0 and v_f^0 which are distance d = f apart in G^0 . Since G is connected, by Lemma 2(i), $gcd([k-s(1+\alpha+\alpha^2)], n) = 1$. By our assumption, $gcd(1-\alpha+\alpha^2, n) = 1$. Therefore, gcd(d, t) = gcd(f, n) = 1. By Lemma 1, G has a Hamilton cycle.

Case 2. $S_1 = \emptyset$, $|S_2| = 1$ and $|S_3| = 1$.

Let $S_2 = \{s\}$ with $0 \le s < n$ and $S_3 = \{k\}$ with $0 \le k < n$. If $\overline{\overline{n}} = \gcd(1 - \alpha + \alpha^2, n) = 1$, then G has a Hamilton cycle by Lemma 3. Let

$$\overline{n} = \gcd(\alpha - 1, n) = 1. \tag{3.4}$$

Since $gcd(\alpha, n) = 1$, equality (3.4) holds only if *n* is odd. Therefore, $n/(\overline{n}\,\overline{n})$ is odd. This implies that $gcd(n/(\overline{n}\,\overline{n}), 3\overline{n} - 1) = gcd(n/(\overline{n}\,\overline{n}), 2) = 1$. By Lemma 3, *G* again has a Hamilton cycle. Finally, let $\tilde{n} = gcd(\alpha + 1, n) = 1$. As in Case 1 but using Lemma 2(ii), we can show that, for the graph *G*,

$$(\alpha^3 + 1)(\alpha - 1) \equiv (\alpha + 1)(1 - \alpha + \alpha^2)(\alpha - 1) \equiv 0 \pmod{n}.$$
 (3.5)

Since $gcd(\alpha + 1, n) = 1$, this implies that $(1 - \alpha + \alpha^2)(\alpha - 1) \equiv 0 \pmod{n}$. Therefore, $n/(\overline{n}\,\overline{\overline{n}}) = 1$ and $gcd(n/(\overline{n}\,\overline{\overline{n}}), 3\overline{n} - 1) = gcd(1, 3\overline{n} - 1) = 1$. Again, by Lemma 3, G has a Hamilton cycle.

The proof of Theorem 1 is complete.

Theorem 2. Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph. Then G possesses a Hamilton cycle if the order of α in \mathbb{Z}_n^* is not equal to 6.

Proof. Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph. If $S_0 \neq \emptyset$, then by [7], G has a Hamilton cycle. Therefore, we may assume from now on that $S_0 = \emptyset$. Since G is a cubic (6, n)-metacirculant graph, only the following cases may happen:

Case 1. $|S_1| = 1$, $S_2 = \emptyset$ and $|S_3| = 1$.

Case 2. $S_1 = \emptyset$, $|S_2| = 1$ and $|S_3| = 1$.

Case 3. $S_1 = S_2 = \emptyset$ and $|S_3| = 3$.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we have $\alpha^6 \equiv 1 \pmod{n}$. This means that the order of α in Z_n^* is a divisor of 6. Therefore, it is equal to one of the numbers 1, 2, 3 or 6. Thus, to prove Theorem 2, we need only to consider the possibilities where the order of α in Z_n^* is equal to 1, 2 or 3. We consider these possibilities in turn.

- (i) The order of α in Z_n^* is 1, i.e., $\alpha = 1$. Then $1 \alpha + \alpha^2 = 1$ and $gcd(1 \alpha + \alpha^2, n) = 1$. By Theorem 1, G has a Hamilton cycle.
- (ii) The order of α in Z_n^* is 2.

Assume first that G is a connected cubic (6, n)-metacirculant graph of Case 1. Let $S_1 = \{s\}$ and $S_3 = \{k\}$. An edge of G of the type $v_j^i v_{j+\alpha' s}^{i+1}$ is called an S_1 -edge, and of the type $v_j^i v_{j+\alpha' k}^{i+3}$ an S_3 -edge. A cycle C in G is called an S_1 -cycle if every edge of C is an S_1 -edge. Consider S_1 -cycles in G. Since every vertex of G is incident with just two S_1 -edges, any S_1 -cycle B_j in G can be represented in the form $B_j = P(v_y^0)P(v_{y+2}^0)P(v_{y+22}^0)...$, where

 $P(v_h^0) = v_h^0 v_{h+s}^1 v_{h+s+\alpha s}^2 v_{h+2s+\alpha s}^3 v_{h+2s+2\alpha s}^4 v_{h+3s+2\alpha s}^5$, and z is $3s + 3\alpha s$. Further, it is clear that all S_1 -cycles in G are isomorphic to each other and have an even length l. Moreover, two vertices v_f^i and v_g^{i+2} of G are vertices distance 2 apart in the same S_1 -cycle B_j if and only if $g = f + s + \alpha s$ in Z_n .

If G has only one S_1 -cycle, then this cycle is trivially a Hamilton cycle of G. Therefore, we assume G has at least two S_1 -cycles. Let v_f^i and v_g^{i+2} , with *i* even being two vertices distance 2 apart in the same S_1 -cycle B_j . Then the vertices of G adjacent to v_f^i and v_g^{i+2} by S_3 -edges are $v_{f'}^{i+3}$ and $v_{g'}^{i+5}$, respectively, where $f' = f + \alpha^i k = f + k$ and $g' = g + \alpha^{i+2}k = g + k$. Since $g = f + s + \alpha s$, we have $g' = g + k = f + s + \alpha s + k =$ $f' + s + \alpha s$. Thus, $v_{f'}^{i+3}$ and $v_{g'}^{i+5}$ are vertices distance 2 apart in the same S_1 -cycle $B_{j'}$. Moreover, the superscripts i + 3 and i + 5 of respectively $v_{f'}^{i+3}$ and $v_{g'}^{i+5}$ are odd. Using this property and the fact that G is a connected cubic graph, it is not difficult to see that G is isomorphic to the graph X obtained from a brick product $C_l^{[r]}$ by adding the edges of a perfect matching joining the vertices of degree 2 in $C_{l,1}$ with the vertices of degree 2 in $C_{l,r}$ of $C_l^{[r]}$, where C_l is isomorphic to an S_1 -cycle B_j , r is the number of distinct S_1 -cycles in G, and $C_{l,1}$ and $C_{l,r}$ are two l-cycles in $C_l^{[r]}$ on the vertex sets $\{(u_i, v_1) : i = 1, 2, ..., l\}$ and $\{(u_i, v_r) : i = 1, 2, ..., l\}$, respectively. By Lemma 5, X has a Hamilton cycle. Therefore, G has a Hamilton cycle.

Assume next that G is a connected cubic (6, n)-metacirculant graph of Case 2. Let $S_2 = \{s\}$ and $S_3 = \{k\}$. An edge of G of the type $v_j^i v_{j+\alpha' s}^{i+2}$ is called an S_2 -edge, and of the type $v_j^i v_{j+\alpha' k}^{i+3}$ an S_3 -edge. A cycle C in G is called an S_2 -cycle if every edge of C is an S_2 -edge.

Since the order of α in \mathbb{Z}_n^* is 2, we have $\alpha^2 - 1 \equiv 0 \pmod{n} \Leftrightarrow (\alpha+1)(\alpha-1) \equiv 0 \pmod{n}$. On the other hand, $\gcd(1 - \alpha + \alpha^2, \alpha - 1, n) = 1$ because $\gcd(\alpha, n) = 1$. Therefore, $\overline{n} = \gcd(1 - \alpha + \alpha^2, n)$ is a divisor of $\gcd(\alpha + 1, n)$. Since $1 - \alpha + \alpha^2 = t(\alpha + 1) + 3$ for some integer t, it follows that \overline{n} is a divisor of 3. Thus, $\overline{n} = 1$ or 3.

If $\overline{n} = 1$, then G has a Hamilton cycle by Theorem 1.

If $\overline{n} = 3$, then $n = 3^a x$ and $\alpha + 1 = 3^a y$ with $a \ge 1$. Since G is connected, by Lemma 2, $gcd([k(1 + \alpha) - s(1 + \alpha + \alpha^2)], n) = 1$. On the other hand, by the definition of (6, n)-metacirculant graphs, $(\alpha^3 + 1)k \equiv (\alpha + 1)k \equiv 0 \pmod{n}$. Therefore, gcd(s, n) = 1. Let $G' = MC(6, n, \alpha', S'_0, S'_1, S'_2, S'_3)$ be a cubic (6, n)-metacirculant graph such that $\alpha' = \alpha$, $S'_0 = S'_1 = \emptyset$, $S'_2 = \{1\}$, $S'_3 = \{0\}$ and $V(G') = \{x_j^i : i \in Z_6, j \in Z_n\}$. Then it is not difficult to verify that the mapping

$$\Psi : V(G') \to V(G) : \begin{cases} x_j^i \mapsto v_{j_s}^i & \text{if } i = 0, 2, 4\\ x_j^i \mapsto v_{j_{s+k}}^i & \text{if } i = 1, 3, 5 \end{cases}$$

is an isomorphism of G' and G. Therefore, without loss of generality, we may assume G is a cubic (6, n)-metacirculant graph MC $(6, n, \alpha, S_0, S_1, S_2, S_3)$ such that $n = 3^a x$, $\alpha + 1 = 3^a y$ with $a \ge 1$, $S_0 = S_1 = \emptyset$, $S_2 = \{1\}$ and $S_3 = \{0\}$. Such a graph has six disjoint S_2 -cycles, namely, C^0 , C^1 , C^2 , D^0 , D^1 and D^2 which contain $v_0^0, v_0^2, v_0^4, v_0^3, v_0^5$ and v_0^1 , respectively. It is not difficult to see that, for each S_2 -cycle C' or D', (t = 0, 1, 2), each element of Z_n appears as a subscript of one and only one vertex of this cycle.

Let ρ and τ be the automorphisms of G defined by $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$. Set $\beta = \rho \tau^2$. Then

$$\beta(v_j^i) = \rho \tau^2(v_j^i) = \rho(v_{\alpha^2 j}^{i+2}) = \rho(v_j^{i+2}) = v_{j+1}^{i+2}.$$
(3.6)

So, β maps every vertex of C^t , t = 0, 1, 2, to the vertex following it in C^t . Further, since $\alpha + 1 = 3^a y$ with $a \ge 1$, $\alpha \equiv 2 \pmod{3}$. Therefore,

$$\beta(D^0) = D^2, \ \beta(D^2) = D^1, \ \text{and} \ \beta(D^1) = D^0.$$
 (3.7)

From (3.6) and (3.7), it is not difficult to see that G is isomorphic to the graph H such that

$$V(H) = \{u_j^i, w_j^i : i \in Z_3, j \in Z_n\}$$
 and
 $E(H) = E_1 \cup E_2 \cup E_3 \cup E_4,$

where

$$E_{1} = \{u_{j}^{i}u_{j+1}^{i}, w_{j}^{i}w_{j+\alpha}^{i} : i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{n}\},\$$

$$E_{2} = \{u_{j}^{i}w_{j}^{i} : i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{n} \text{ and } j \equiv 0 \pmod{3}\},\$$

$$E_{3} = \{u_{j}^{i}w_{j}^{i+2} : i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{n} \text{ and } j \equiv 1 \pmod{3}\},\$$

$$E_{4} = \{u_{i}^{i}w_{i}^{i+1} : i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{n} \text{ and } j \equiv 2 \pmod{3}\}.$$

We now show that H possesses a Hamilton cycle. Let U^i and W^i , where i = 0, 1, 2, be the subgraphs induced by H on $\{u_j^i : j \in Z_n\}$ and $\{w_j^i : j \in Z_n\}$, respectively. By the definition of H, it is clear that U^i and W^i , where i = 0, 1, 2, are cycles of length n. First, assume w_0^0 , $w_{3\alpha}^0$ and w_3^0 of W^0 are pairwise distinct (Fig. 1). This implies that the vertices u_{α}^2 , $u_{4\alpha}^2$ and $u_{\alpha+3}^2$ of U^2 are also pairwise distinct. Further, the edge $w_{4\alpha}^0 w_{5\alpha}^0$ is an edge of the subpath P of W^0 not containing w_0^0 and connecting w_{α}^0 with w_3^0 . Moreover, $w_{4\alpha}^0$ and $w_{5\alpha}^0$ are not the endvertices of P. Such a graph H possesses a Hamilton cycle shown in Fig. 1.

Next, assume $w_{3\alpha}^0 = w_3^0$ but $w_{3\alpha}^0 \neq w_0^0$ (Fig. 2). If $w_0^0 \neq w_6^0$, then since $3\alpha \equiv 3 \pmod{n}$, $4\alpha = 3\alpha + \alpha \equiv 3 + \alpha \pmod{n}$ and $4\alpha + 1 \equiv 4 + \alpha \pmod{n}$. Therefore, $w_{4\alpha}^0 = w_{3+\alpha}^0$ and $w_{4\alpha+1}^2 = w_{4+\alpha}^2$. Further, the edge $w_{4\alpha}^0 w_{5\alpha}^0$ is an edge of the subpath Pof W^0 not containing w_0^0 and connecting w_{α}^0 with $w_6^0 = w_{6\alpha}^0$. Moreover, $w_{4\alpha}^0$ and $w_{5\alpha}^0$ are not the endvertices of P. Such a graph H possesses a Hamilton cycle shown in Fig. 2. If $w_0^0 = w_6^0$, then $6 \equiv 0 \pmod{n}$. So n = 3 or 6. But $w_{3\alpha}^0 \neq w_0^0$ by our assumption. Hence, $3\alpha \neq 0 \pmod{n} \Leftrightarrow 3 \neq 0 \pmod{n}$. If follows that $n \neq 3$, whence n = 6. We leave it to the reader to verify that, for this value of n, the graph H also has a Hamilton cycle.

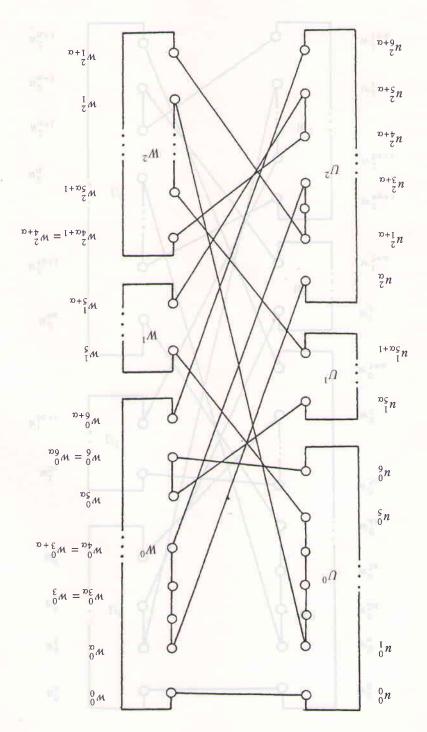
Finally, assume $w_0^0 = w_{3\alpha}^0$ or $w_0^0 = w_3^0$. It follows in both cases that $3 \equiv 0 \pmod{n}$. So n = 3. We again leave it to the reader to verify that for this value of n, H also has a Hamilton cycle.

Thus, the graph H possesses a Hamilton cycle in any of the cases. Since G is isomorphic to H, the graph G also has a Hamilton cycle.

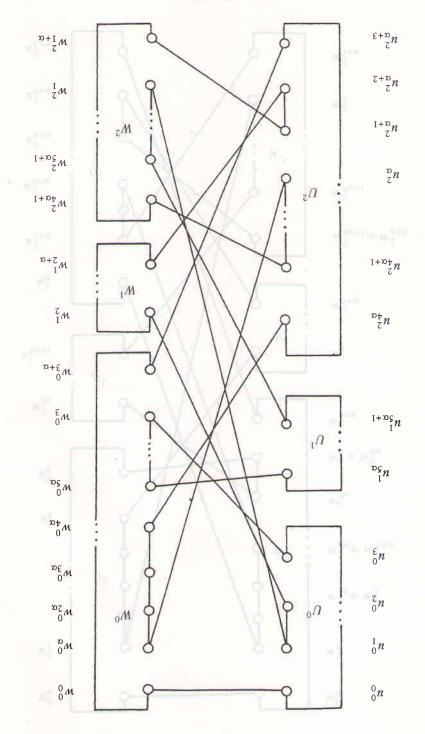
(iii) The order of α in Z_n^* is 3.

By (3.3) and (3.5), we have $(\alpha^3 + 1)(\alpha - 1) = 2(\alpha - 1) \equiv 0 \pmod{n}$. If *n* is odd, then this implies that $\alpha - 1 \equiv 0 \pmod{n} \Leftrightarrow \alpha = 1$, contradicting the fact that α has order 3. If *n* is even, then $\alpha - 1 = t(n/2)$ for some integer *t*. Therefore, $\alpha = 1$ or $\alpha = n/2 + 1$. The case $\alpha = 1$ cannot occur as before. Suppose $\alpha = n/2 + 1$. Since *n* is even and $gcd(\alpha, n) = 1$, α must be odd. So n/2 must be even. We have

$$x^{3} = (n/2 + 1)^{3} = n^{3}/8 + 3n^{2}/4 + 3n/2 + 1$$
$$= (n/2)(n^{2}/4 + 3n/2 + 3) + 1.$$



I.gil



Since n/2 is even, $n^2/4 + 3n/2 + 3$ is odd. Hence, $\alpha^3 = (n/2)(n^2/4 + 3n/2 + 3) + 1 \equiv n/2 + 1 \neq 1 \pmod{n}$, contradicting again the fact that α has order 3. Thus, the possibility (iii) never occurs. This completes the proof of Theorem 2.

4. Applications

In this section, we will use the results obtained in Sec. 3 in order to obtain a partial affirmative answer to the question: Do all connected cubic (6, n)-metacirculant graphs have a Hamilton cycle? Namely, we will prove the following result.

Theorem 3. Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph. Then G possesses a Hamilton cycle if either $n = p^a q^b$, where p and q are distinct primes, $a \ge 0$ and $b \ge 0$ or n is such that $\varphi(n)$ is not divisible by 3, where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and gcd(z, n) = 1.

Proof. Let $G = MC(6, n, \alpha, S_0, S_1, S_2, S_3)$ be a connected cubic (6, n)-metacirculant graph. If $S_0 \neq \emptyset$, then by [7], G has a Hamilton cycle. Therefore, we may assume from now on that $S_0 = \emptyset$. Since G is a cubic (6, n)-metacirculant graph, only the following cases may happen:

Case 1. $|S_1| = 1$, $S_2 = \emptyset$ and $|S_3| = 1$.

Case 2. $S_1 = \emptyset$, $|S_2| = 1$ and $|S_3| = 1$.

Case 3. $S_1 = S_2 = \emptyset$ and $|S_3| = 3$.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we have $\alpha^6 \equiv 1 \pmod{n}$. This means that the order of α in Z_n^* is a divisor of 6.

Assume first that $n = p^a q^b$, where p and q are distinct primes, $a \ge 0$ and $b \ge 0$. If either p or q is equal to 2, then by [2, 11], G has a Hamilton cycle. Therefore, we may assume $p \ne 2$ and $q \ne 2$. Since the order of α in Z_n^* is a divisor of 6, by [1], G is a Cayley graph of the group

$$\mathcal{G} = \langle \rho, \tau : \rho^n = \tau^6 = 1, \ \tau \rho \tau^{-1} = \rho^\alpha \rangle,$$

where ρ and τ are automorphisms of G with $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$. If $gcd(\alpha - 1, n) = 1$, then by Theorem 1, G has a Hamilton cycle. Since n is odd, we have $gcd(\alpha^3 + 1, \alpha - 1, n) = 1$. Therefore, if $gcd(\alpha - 1, n) \neq 1$, then (3.3) and (3.5) imply that $gcd(\alpha - 1, n)$ is equal to either $p^a q^b$ or p^a or q^b . It is not difficult to verify that the commutator subgroup $[\mathcal{G}, \mathcal{G}]$ of \mathcal{G} is the subgroup $\langle \rho^{\alpha - 1} \rangle$ generated by $\rho^{\alpha - 1}$. So, the order of $[\mathcal{G}, \mathcal{G}]$ is 1 or q^b or p^a depending on whether $gcd(\alpha - 1, n)$ is equal to $p^a q^b$ or p^a or q^b . In any cases, by [6], G has a Hamilton cycle.

Assume now that *n* is such that $\varphi(n)$ is not divisible by 3, where $\varphi(n)$ is the number of integers *z* satisfying $0 \le z < n$ and gcd(z, n) = 1. Since $|Z_n^*| = \varphi(n)$ and the order of α in Z_n^* is a divisor of 6, our assumption implies that the order of α in Z_n^* is 1 or 2. By Theorem 2, *G* has a Hamilton cycle. This completes the proof of Theorem 3.

References with the solution of the solution o

- 1. B. Alspach and T. D. Parsons, A construction for vertex-transitive graphs, *Canad. J. Math.* 34 (1982) 307–318.
- 2. B. Alspach, Hamilton cycles in metacirculant graphs with prime power cardinal blocks, Annals of Discrete Math. 41 (1989) 7-16.
- 3. B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989) 25-36.
- B. Alspach and C. Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989) 101-108.
- 5. K. Bannai, Hamilton cycles in generalized Petersen graphs, J. Combin. Theory B24 (1978) 181-188.
- 6. K. Keating and D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Annals of Discrete Math. 27 (1985) 89-102.
- 7. N. D. Tan, On cubic metacirculant graphs, Acta Math. Vietnam. 15(2) (1990) 57-71.
- N. D. Tan, Hamilton cycles in cubic (4,n)-metacirculant graphs, Acta Math. Vietnam. 17(2) (1992) 83–93.
- 9. N. D. Tan, Connectedness of cubic metacirculant graphs, Acta Math. Vietnam. 18(1) (1993) 3-17.
- 10. N. D. Tan, Hamilton cycles in cubic (m, n)-metacirculant graphs with m divisible by 4, Graphs Combin. 10 (1994) 67-73.
- N. D. Tan, On Hamilton cycles in cubic (m, n)-metacirculant graphs, Austral. J. Combin. 8 (1993) 211-232.
- 12. N. D. Tan, Sufficient conditions for the existence of a Hamilton cycle in cubic (6,n)metacirculant graphs, Vietnam J. Math. 25(1) (1997) 41-52.

Case I. $[S_1] = 1, S_2 = E and [S_1] =$

 $C_{abs} \gtrsim S_{b} \equiv W_{abs} \gg 1$ and $|S_{b}| = 1$ and $|S_{b}| = 1$.

 $C = 12 \mod 10 = 5_1 = 11 \mod 15_1 = 3$

States G is consistent. Case 2 thes not occur. Earther, since (7.1) and (3.5) huid, we have $\alpha^4 \Rightarrow 1 \pmod{N}$. This means that the order of α to ZT is a divisor of 6

Assume that $h = p^{2}q^{2}$, where p and q are difficult primes, $a \ge 0$ and $b \ge 0$. If either p or q is separate 2, then by [2, 11], G from a function cycle. Therefore, we may auromat $p \ne 2$ and $q \ne 2$. Since the tarket of a to Z_{1}^{2} is a divisor of 0, by [1], G into Cayley graph of the group

where p and t are untercorphisms of G with $p(p) = p_{n,0}^{-1}$ and $r(p) = p_{n,1}^{-1}$. If prd(p - 1, n) = 1, then by Theoretti 1, G has a Hamilton rack. Since n is odd, we have $prd(p^{-1} \pm 1, n - 1, n) = 1$. Therefore, if $prd(q - 1, n) \neq 1$, (intr (h.3) and (7.3) imply that prd(p - 1, n) is aqual to initiar $p^{n}q^{n}$ or p^{n} or q^{n} . It is not difficult to variely that the community unique (0, G) of G is the independe (p^{n-1}) , generated by q^{n-1} . So, the order of [G, G] is q^{n} or p^{n} distance gradies -1, n is equal to $p^{n}q^{n}$ or q^{n} or q^{n} . It may cases, by (6), G has a Hamilton cycle.

Putting now the *n* is such that $\varphi(n)$ is not dependence by λ , where $\varphi(n)$ is the number of integers *n* which and $0 \le i \le n$ and $\gcd(\lambda, n) = 1$. Since $|X_{ij}^{n}| = \varphi(n)$ and the order of *n* in Z_{ij}^{n} is a divisor of *6*, our monophon implies that the meter of φ_{ij} is 1 and By Theorem 2, 67 has a formitten cycle. This completes the meter of φ_{ij} is 1 and 2.