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Abstract. The smallest value of m for which we are still unsure if all connected cubic
(m, n)-metaciculant graphs have a Hamilton cycle is m : 6. In this paper, we shall prove that a
connected cubic (6,n)-metacirculant graph G=MC n,u, Ss, Sr, Sz, Ss) has a Hamilton cycle
i fe i theroneof  thenumbersa+L,d-1 ,or1-a*  i s re la t i ve lypr imeton,or theordero fo in
Zfi is not equal to 6. As an application of these results, we shall show that every connected cubic
(6,n)-metackculant graph has a Hamilton cycle if either n : po qb , where p and q arc distinct
p r imes,a>0andb>0,orn issuchtha tg(n) isno td iv is ib leby3wherep( r ) i s thenumbero f
integers z satisfying 0 < z < n and, gcd(2, n) : 1.

1. Introduction

This paper is a sequel to the first paper ll2l in which it was shown that a connected
cubic (6, n)-metacirculant graph G MC(6, fl, ot, Ss, Sr, Sz, Sg) has a Hamilton cycle if
0 # & : {s} and (1 * cv * a2 + a + aa +as)s : 0 (modz). As in l l2l,weconsider
here only finite undirected graphs without loops or multiple edges. If G is a graph, then
V(G) and E(G) denote its vertex-set and its edge-set, respectively. If n is a positive
integer, then we wite Z, for the ring of integers modulo n and 7.| for the multiplicative
group of units in Zn.

Letm and ru be two positive integers, a e Z;, 11 : lm/2|and let So, Sr, ..., S, be
subsets of Zn satisfying the following conditions:

( 1 )  0 d S o = - S o ;
( 2 )  a * S r : S ' f o r 0 < r < p , i
(3) itm even, then uPS*: -$r.

Then we define the (m,n)-metacirculant graph G=MC(m,n,c, 56, 51 ,..., Sr) to
be the graph with vertex set V(G) : [ui : i € Z*, j e Zn] and edge set

*This work was supported in part by the National Basic Research hogram in Natural Sciences,
Vietnam.
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E ( G ) : { u i r L * '  :  0  <  r .  t " i i  e  Z ^ ; h , i  e  Z " i ( h - i )  e  a ' S , } , w h e r e

superscripts hnd subscripts are reduced modulo z and modulo n, respectively.

The concept of (m, n)-metacirculant graphs was introduced in [1]. It was asked if all

connected (m, n)-metacirculant graphs, other than the Petersen graph, have a Hamilton

cycle. For n - pt with p apime, an affirmative answer was obtained in [2]. Connected

cubic (m,n)-metacirculant graphs, other than the Petersen graph, are also proved to be

Hamiltonian for rc odd l/l,m : 214,71, and lz divisible by 4 [8, 10]. Thus, the smallest

value of m, for which we are unsure if all connected cubic (m, n)-metacirculant graphs

have a Hamilton cycle, is m :6.

This paper is a continuation of the first paper [12] in this series and is geared

towards the resolution of the problem of the existence of a Hamilton cycle in connected

cubic (6, n)-metacirculant graphs. Using the results obtained in ll2l, we will prove in

Sec. 3 two sufficient conditions for connected cubic (6, n)-metacirculant graphs to be

hamiltonian, namely, we will prove that a connected cubic (6, n)-metacirculant graph

G=MC(6,n,a,Ss,Sr ,Sz,S:)hasaHami l toncycle i fe i theroneof thenumberscv*1,
s - 1, or | - a I cv2 is relatively prime to n or the order of cv in Z| is not equal to 6. As

an application of these results, we will obtain in Sec. 4 a partial affirmative answer to the

question whether all connected cubic (6, n)-metacirculant graphs have a Hamilton cycle,

proving that every connected cubic (6, n)-metacirculant graph has a Hamilton cycle if

e i thern :  poqb,wherep andqarc d is t inctpr imes,a > 0and b> O, orn is  suchthat
rp(n) is not divisible by 3 where q@) is the number of integers z satisfying O < z < n

and gcd(2, n) : L

2. Preliminaries

First, we recall a method used in [0, 11] for lifting a Hamilton cycle in a quotient graph

G of a graph G to a Hamilton cycle in G. This method will be used in Sec. 3 to prove

Theorem 1.
A permutation B is said to be semiregular if all cycles in the disjoint cycle decom-

positionof Bhavethesamelength. If agraphGhasasemiregularautomorphism B,Ihen
the quotient graph G I B with respect to B is defined as follows [3]. The vertices of G I B
are the orbits of the subgroup (B) generated by B and two such vertices are adjacent if

and only ifthere is an edge in G joining a vertex ofone corresponding orbit to a vertex

in the other orbit.
Let B be of order t and G0, Gr , ..., Gh the subgraphs induced by G on the orbits of

(flj.Let r'0, ,\, ..., ,1-t be a cyclic labeling of the vertices of G' under the action of B
andlet  C :  GoGiGj  . . .G'G0 beacycle otGl f r .Considerapath P of  G ar is ingfrom

a lifting of C, namely, start at u$ and choose an edge from u! to a vertex ul of Gi. Then

take an edge from u'oto avertex uf of Gr folowing Gt in C. Continue in this way until

returning to a vertex voo of G0. The set of all paths that can be constructed in this way

using C is called in [3] the coil of C and is denoted by coil (C).

The following lemma is easy to prove. However, it has been proved in [8].

Lemma l. [8] Let t be the order of a semiregular automorphism B of a graph G and

Go the subgraph induced by G on an orbit of (F). If there exists a Hamilton cycle c in

G I p such that coil(C) contains a path P whose terminal vertices are distance d apart in

the Go where P starts and terminates and gcd(d, t) : I, then G has a Hamilton cycle'
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The following lernmas are particular cases of Theoremz in [9] and Lemmas 5 and 6
in [11], respectively. Therefore, we omit their proofs here.

Lemma 2. l9l Let G=MC(6,n,4, So, Sr, Sz, Si be a cubic (6,n)-metacirculant
graph with So : 0. Then G is connected if and only if one of the following conditions
holds:

5 1  :  { s } ,  5 2 : A ,  5 3 :  { k }  a n d g c d ( e , n ) : l w h e r e e  i s [ k - s ( 1  * c v  + o 2 ) l
reduced modulo n:
St  :  A,  52 :  {s} ,  53 :  {k}  andgcd(g,n)  :  lwhere g ls lk(1*a)-s(1+a+cv2) l
reduced modulo n.

Lemma 3. [11] Let G=MC(6,n,a., Ss, Sr, Sz, S) be a connected cubic (6,n)-meta-
circulant graphsuchthat^So - 51 : A, 52: {sJ and 53 : {k}. Letn: gcd(a - l,n)
andi : gcd(l - a j az, n). Then G has a Hamilton cycle if any one of the following
conditions holds:

(l) Either gcd(n I @D, 3i - 1) : l;
( i i )  Z :  1 .

Lemma 4.  [1 ]  LetG=MC(6,n,a,50,  Sr ,  Sz,  S)  be aconnectedcubic (6,n)-meta-
circulant graph such that Ss : A, St : {s}, 52 : A and 53 : {k}. Then G has a
Hamilton cycle if n is even.

We now recall the definition of a brick product of a cycle with a path defined in [4].
This product plays a role in the proof of Theorem 2 in the next section.

Let C, with n
V(C")  :  {ut ,  u2, . . . ,  ur } ,  V(P-)  :  {u1,  u2, . . . ,  umtr l  and edge sets E(Cn) :

{u1u2,  u2u3, . . . ,  unul } ,  E(P^)  -  {utuz,  u2u3, . . . ,  umum+t l ,  respect ive ly .  The br ick
product gtm+r] of C, with P- is defined in [4] as follows. The vertex set of Cj'+11 is

the cartesian product V(C,) x V(P*), The edge set of C!+11 consists of all pairs
of  the form (u i ,up)(u;a1,vp)  and (u1,u1)(un,  u7,) ,  where i  :  1 ,2, . . . ,  n  -  I  and
h : 1,2,..., m * l, together with all pairs of the form (u;,up)(ui, u7,a1), where
i  *  h  :  O  ( m o d  Z ) , i  :  I ,  2 , . . . ,  n  a n d h  :  l ,  2 , . . . ,  m .

The following result has been proved in [4].

Lemma 5. l4l Consider the -brick product C[{] with n even. Let C,J and Cn,*

denote the two n-cycles in CY) on the vertex-sets {(u;,u) : i : I,2,..., n} and

{(ui, u*) '. i : l, 2, ..., n}, respectively. Let F denote an arbitrary perfect matching
joining the vertices of degree 2 in Cr,1 with the_vertices of degree 2 in Cr,^. If X is a
graph obtained by adding the edges of F to CIi), then X has a Hamilton cycle.

3. Sufficient Conditions

Using results obtained in [2], we will prove in this section two sufficient conditions for
connected cubic (6, n )-metacirculant graphs to be hamiltonian which are expected to be
helpful in further investigation of the problem of the existence of a Hamilton cycle in
connected cubic (6, n)-metacirculant graphs. As an application of these conditions, we

2t9

(i)

(ii)
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will prove in Sec. 4 that every connected cubic (6, n)-metacirculant graph has a Hamilton
cycle if eilher n : poqb where p and q aredistinctprimes, a > 0 and b > 0 or n is
such that 9(n) is not divisible by 3, where rp(n) is the number of integers z satisfying
0 < z < n a n d g c d ( z , n ) : 1 .

Theorem l. Let G=MC(6,n,u, Ss, Sr, 52, S) be a connected cubic (6,n)-meta-
circulant graph. If one of the numbers a I l, a - I or | - a I a2 is relatively prime to
n, then G possesses a Hamilton cycle.

Proof. Let G=MC(6, n,d,, Ss, Sr, Sz, S:) be a connected cubic (6, n)-metacirculant
graph,i - gcd(cv - I, n),i : gcd(l - a I a2, n) and fi : gcd(a * I, n).It So + 0,
thenby[7],GhasaHamiltoncycle.Therefore,wemayassumefromnowonthat56 - 0.
Since G is a cubic (6, n)-metacirculant graph, only the following cases may happen:

Case l .  lSr l  :  1 ,  Sz:  A and lS: l  :  1 .

Case 2.  Sr :  A, lSzl  :  I  and lS3l  :  l .

Case  3 .  S r :  Sz :Aand  lS3 l  =  3 .

Since G is connected. Case 3 does not occur. Now. consider Cases I and 2 in tum.

C a s e  1 ,  l S r l : 1 ,  S z : A  a n d  l S 3 l  : 1 .

Let 51 : {s} withO < s < n and 53 = {k} with0 < ft < n. Bythedefinit ion of
(6, n)-metacirculant graphs, we have

(1) a6s : s (mod n)

<+ (a3 + t ) (cv -  l ) (1 + a +az)s :  0(mod n) ,and
(2)  u3k:  -k  (mod n)

<+ (a3 + t)t<: 0 (mod n).

Let z : nlgcd(ar +L,n ). From (3.1) and (3.2), it follows that z is a divisor of both /c and
(a - 1) (1*a *a2;s. Since G is connected, by Lemma 2(1), gcd,(k, (I+a aa2)s, n) = l.
Therefore, z must be a divisor of a - 1. Thus, we have

(a '*  l ) (cv -  1)  = 0 (modn). (3.3)

Assume first thatD : gcd(a - l, n) : 1. Then (3.3) implies that (cv3 + 1) : 0 (mod
n).By |21, G has a Hamilton cycle.

Assume next that f i -- gcd(a * l,n) : 1. Let p: V(G) --> V(G): uj r-> u]*r.

Then po-l is a semiregular automorphism of G and therefore, we can construct the
quotient graph Glp"_t yhr"h is isomorphic to the cubic (6,D)-metacirculant graph

9=IvtC (6, i ,a ,  So,  Sr ,  Sz,  Sr) ,where7=gcj l (cv -1," ) ,J :d =a (modD) So = 0,
Sr : {s} with 0 < s < 7 and s : s (mod n), Sz - A and Sz : {k} with 0 < k < D and
E : k (modn). We identify G / pa-t with G and in order to avoid the confusion between
ve r t i ceso f  GandG,weassumeV(G) : {w ' ,  :  i eZe ,  j  eZ " } .

(3 .1 )

(3.2)
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If n is even, then by Lemma4, G has a Hamilton cycle. If n is odd, then we can repeat
here the proof of he main theorem in [10] for the case of n odd in order to construct a
Hamilton cycle of G such that the path P of coil(C), which starts at u$, terminates at u!
with / = (d - l)d (mod n), where

o::-1I-:III::::"ii:..",1,,**];i"
Let/betheorderoftheautomorphismpd-l.It isnotdiff iculttoseethatt:n/i.Since

(3.3) holds, it follows that t is a divisor of gcd(c3 + 1, n) = gcd((cv* I)(l -a +a2), n).By
ourpssumpt ion,gcd(a * l ,n) :  l .Therefore, /mustbeadiv isorof  gcd( l  -a*a2,n) .

Since G is connected, by Lemma 2(i),

gcd( tk  -  s( l  *  a  + a2) f ,  n)  :  l .

Therefore, gcd(t/< - s(l * u + uz)'l,t) : l. Since gcd(a, n) : l, it is also
clear  that  gcd(1 *  o?,1 -  a I  az,n)  :  l .So gcd(1 *  az, t )  = I  because t  is  a
divisor of gcd(l - a * u2,n) as we have shown in the preceding paragraph. Further,
gcd(cv * l,n) - 1by our assumption. Thus, gcd(d, t) : l. By Lemma l, G has a
Hamilton cycle.

Finally, assumeT= gcd(l - a *a2,n): l since the automorphism p of G with

o@l : uj*t is semiregular, we can construct the quotient graph G I p. It is easy to see

thatG/p isisomorphictothecirculantgraph G = C(6, {1,3,5}),thevertexsetandthe
edge set of which are

V ( G ) = { w i  :  j  e Z e } a n d

E(G) :  {wiw6 :  j ,h  e 26;  (h -  j )  :  1  or3 or5 (mod6)} ,

respectively. Therefore, we can identify G/ p with G. It is also clear that G possesses the
following Hamilton cycle D:

D :  wow3u2w5w4w lwo .

Let P be the path of coil(D) which starts at u$. This path terminates at u! with

f = k - a2s + a2k - a4s * aak - s

= (1 - ot + az)k- s(l - a + az)(l + a + a2)

=  ( 1 -  a + o ? ) l k  - s ( l  *  a + a 2 ) l ( m o d n ) .

It is clear that p has order / : n and terminal vertices of P in G0 are u$ and

ul which are distance d = f apart in G0. Since G is connected, by Lemma 2(i),

gcd( t f t -s( l *c+cvt) l ,n)  = l .Byourassumpt ion,gcd( l  -cv*cv2,n) :  l .Therefore,
gcd(d, t) = gcd(f , n) : l. By Lemma 1, G has a Hamilton cycle.
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Case 2.  Sr :  A, lSzl  :  1  and lS3l  :  l .

L e t 5 2 :  { s } w i t h 0  <  s  < n a n d S s  -  { k } w i t h 0  < k  < n . I f  
= n :  

g c d ( l - a  * a 2 , n )
: 1, then G has a Hamilton cycle by Lemma 3. Let

i -- gcd(a - I,n) : l. (3.4)

Since gcd(cv, n) : I, equality (3.4) holds only if n is odd. Therefore, n/@n) is odd.
This implies that gcd(nl(ni),3n - l) = gcd(nl@n),2) : 1. By Lemma 3, G agun
has a Hamilton cycle. Finally, ls1 ff = gcd(a + 1, n) : 1. As in Case I but using Lemma
2(ii), we can show that, for the graph G,

(cy3 + t ) (cv -  l )  = (cy + 1)(1 -ot+q2)(a -  1)  = 0 (modn).  (3.5)

Sincegcd(a * l ,n) :  l , th is impl iesthat(1-  u+u2)1a -  1)  = 0(modn).Therefore,
nl@D : 1 and ecd(nl@D,3n - D = gcd(l, 3n - l) : 1. Again, by Lemma 3, G
has a Hamilton cycle.

The proof of Theorem 1 is complete. l

Theorem 2, Let G=MC(6,n,a, Sg, 51, 52, Si be a connected cubic (6,n)-meta-
circulant graph. Then G possesses a Hamilton cycle if the order of a in Zf, is not
equal to 6.

Proof. Let G=MC(6, n,ot, Ss, Sr, 52, Sa) be a connected cubic (6, n)-metacirculant
graph. If So * A, then by [7], G has a Hamilton cycle. Therefore, we may assume from
now on that 56 : 0. Since G is a cubic (6, n)-metacirculant graph, only the following
cases may happen:

Case 1.  lSr l  :  1 ,  Sz:  A and lS3l  :  1 .

Case 2. Sr : O, lSzl : 1 and lS3l : l.

Case 3. Sr : Sz : A and lS:l : 3.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we
have cv6 : I (mod n ). This means that the order of c in Zl is a divisor of 6. Therefore,
it is equal to one of the numbers 1,2,3 or 6. Thus, to prove Theorem 2, we need only !o
consider the possibilities where the order of cv in Z) is equal to 1,2 or 3. We consider
these possibilities in turn.

(i) The order of a in Zl is 1, i.e., a : 1. Then I - a * a2 : I and
gcd(l - a I a2, n) : !. By Theorem l, G has a Hamilton cycle.

(ii) The order of cy in Zi is 2.

AssumefirstthatGisaconnectedcubic(6,n)-metactrculantgraphofCasel.LetSl -

{s} and 53 : {ft}. An edge of G of the type ujujll,,, is called an 51-edge, and of the type

,jrj l lr,oanS3-edge.Acycle CinGiscalledanSl-cycleifeveryedgeofCisanSl-edge.
Consider Sl-cycles in G. Since every vertex of G is incident with just two S1-edges, any
51 -cycle B 1 in G can be represented in the form \ : P @9) P @l *; f @l *rr)..., where
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P@fl) : uflul*ru/,*r*o,r1+2,*o,rt+zs+zo,ui+3s+2a,, ffid z is 3s * 3cvs. Further, it
is clear that all S1-cycles in G are isomorphic to each other and have an even length
/. Moreover, two vertices u', and u'r+z of G are vertices distance 2 apart in the same
S1-cycle 81 if and only if g : f + s I us in Zn.

If G has only one 51-cycle, then this cycle is trivially a Hamilton cycle of G. Therefore,
we assume G has at least two 51-cycles. Let u', and u'r+2 , with I even being two vertices

distance 2 apart in the same S1-cycle B;. Then the vertices of G adjacentto ul and

,L*' ay S3-edges *" r'i' and u!ls, respectively, where /' : f + ui k : f * k and

g '  :  g + q i + 2 k  -  g * k . S i n c e g  :  / * s * c v s , w e h a v e g '  -  g + k :  f  + s  * c v s * k :

f' * s * as. Thus, u'rf3 and r'/s *" vertices distance 2 apart in the same S1-cycle

.87,. Moreover, the superscripts i * 3 and i * 5 of respectively uirl3 and uils are odd.
Using this property and the fact that G is a connected cubic graftr, it is not difficult to
see that G is isomorphic to the graph X obtained from a brick product Cl'l Ay adding
the edges of a perfect matching joining the vertices of degree 2 in Ctl with the vertices

of degree 2 in C1,, of Cl' , where C7 is isomorphic to an St -cycl e Bi , r is the number

of distinct S1-cycles in G, and CtJ and C1,7 &re two l-cycles in Cl'l on the vertex sets

{ (u i , u r )  :  i  :  I , 2 , . . . ,  l }  and  { (a ; ,  u , )  :  i  :  I , 2 , . . . ,  l } ,  f espec t i ve l y .  By  Lemma 5 ,
X has a Hamilton cycle. Therefore, G has a Hamilton cycle.

Assume next that G is a connected cubic (6, n )-metacirculant graph of Case 2. Let
52 : {s} and Ss - {ft}. An edge of G ofthe type viujli,, is called an S2-edge, and of

thetype r j r l l l " ,oanS3-edge.Acycle CinG iscal ledans2-cycle i f  everyedgeof  Cis
an S2-edge.

Since the order of a in Zfi is 2,we have cv' - 1 : 0 (mod n ) <+ (a * l) (cv - l) = 0 (mod
n). On the other hand, gcd(l - a I d', d - l, n) : I because gcd(cv, n) : l. Therefore,
n=gcd , ( l  - a  l a2 ,n )  i s  ad i v i so ro f  gcd (a  + l , n ) .  S ince  1  -a  l a2  :  t ( a  * I )  *3
for some integer t, it follows that Z is a divisor of 3. Thus, i = | or 3.

If i : l, then G has a Hamilton cycle by Theorem 1.
I fn :3, thenn :  3"x anda*I  - -3"ywrtha > 1.  Since Gisconnected,byLemma

2, gcd(fk(l * cv) - s(l * a + o2)l,n) : I. On the other hand, by the definition of
(6, n)-metacirculant graphs, (a3 + t)k: (cv * l)ft : 0 (mod n ). Therefore, gcd(s, n) :
1. Let G/=MC(6,n, a', S[, Si, Si, Si) be a cubic (6,n)-metacirculant graph such that

a t : d , S 6 : S i  : A , S ; : { 1 } , S l : { 0 } a n d V ( G ' ) : { x j  :  i  e Z e ,  j  e Z n } . T h e n i t
is not difficult to verify that the mapping

v  :  v ( G ' )  - - +  v ( G ) ,  l * i ' - ' i '  
l f i  : o ' 2 '  4

t  " j  
+ uj ,u,  i f  l :1,  3,  5

is an isomorphism of G' and G. Therefore, without loss of generality, we may assume
G is a cubic (6,n)-metacirculant graph MC(6, n,a, Ss, Sr, Sz, Sg) such thatn :34x,
o t + l  -  3 a y w i t h  a  2  l ,  S o :  S r  : A , S z :  { 1 } a n d 5 3 :  { 0 } . S u c h a g r a p h h a s
six disjoint ,S2-cycles, namely, Co, CL , C2, Do, Dl and D2 which contain u$, uf,, u[,

uf, uj and uf, respectively. It is not difficult to see that, for each .i2-cycle Ct or Dt,
(r : 0, l, 2), each element of Zn appears as a subscript of one and only one vertex of
this cycle.

Let p and z be the automorphisms of G defined by p(uj) - u'i+r and r(uj) : ,',I' .

Setp -  prz.Then

f(uj) : pt21uj) : p1u'"t) : pluj+2) : rJ 2r (3.6)
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So, B maps every vertex of Ct, t : 0, 1, 2, to the vertex following it in Cr. Further,
s i ncecy  * l : 3oy  w i tha  >  l , u=2  (mod3) .The re fo re ,

f l (Do) :  o ' ,  p(o ' ) :  Dl ,  and B(n\ :  oo. (3.7)

From (3.6) and (3.7), it is not difficult to see that G is isomorphic to the graph 11 such
that

V(H) : {"i, r j : i  e 23, i e Z"l and

E ( H ) :  E 1 U  E 2 U  E 3 U  E a ,

where
fu :  {u"u j* r ,  wjw}+o 

"  
i  e  23,  i  e  Z"} ,

E2:  {u"wj  :  i  €  Zz,  j  e  Z"  and 7 :0 (mod3)} ,

fu = {ujwj+z : i e Zz, i € Zn and j : 1 (mod3)}, and

Ea:  {u jwj+r  :  i  e  Zz,  i  €  Zn and i  :2  (mod3)} .

We now show that I/ possesses a Hamilton cycle. Let U' and W' ,where i : 0, l, 2,
be the subgraphs induced by F1 on {"j t i e Z"l and {wj , i e Znl, respectively.

By the definition of H,it is clear thatUt andW', where i : 0, 1, 2, are cycles of
length n. First, assume ,3, r3o and ur! of I4z0 are pairwise distinct (Fig. 1). This implies

that the vertices ,7, u?o and uzo*, of U2 are also pairwise distinct. Further, the edge

,2rr'r" is an edge of the subpath P of W0 not containing ur$ and connecting ur! with

,!. Moreover, wfu and wlo are not the endvertices of P. Such a graph I/ possesses a
Hamilton cycle shown in Fig. 1.

Next, assume *3o : r! tut ,9" + uf Gis.z).rt w$ + *2, then since 3a = 3
(mod n), 4a : 3a I ot = 3 * a (mod n) and 4o + | = 4 + a (mod n). Therefore,
*jqo : n,!*o and w?o+r : wl*o.Further, the edge ,2"r3" is an edge of the subpath P

of I4z0 not containing ur$ and connecting u,,! with ,2 : ,L. Moreover, w!* and w!"
are not the endvertices of P. Such a graph H possesses a Hamilton cycle shown in Fig.
2.rt w$: u3, then 6 : 0 (mod n). So n = 3 or 6. But ulo + ,3bv our assumption.
Hence,3a t 'O (modn) + 3 # 0 (modn). I f  fo l lows thatn t '  3 ,  whencen :6.  We
leave it to the reader to verify that, for this value of n, the graph H also has a Hamilton
cycle.

Finally, assume wf; : wlo or u$ : ,!. lt fouows in both cases that 3 : 0 (mod n).
So n : 3. We again leave it to the reader to verify that for this value of n, H also has a
Hamilton cycle.

Thus, the graph H possesses a Hamilton cycle in any of the cases. Since G.is
isomorphic to 11, the graph G also has a Hamilton cycle.

(i i i) Theorderof cY inZf,is3.

By (3 .3 )and (3 .5 ) ,wehave  (a3  + t ) (a  -  l )  :  2 (q - I ) : 0 (modn) . I f  n i sodd , then
this implies that a - 1 : 0 (mod n) + u : 1, contradicting the fact that cv has order 3.
If n is even, then cv - I: t(n12) for some integer /. Therefore, cY : 1 or a: n12 * l.
The case a : I cannot occur as before. Suppose a : n/2 * 1. Since n is even and
gcd(cv, n) : l, d must be odd. So n12 must be even. We have

o3 :  1n12+ 1)3  :  n3  18  +2n214 +3n12 *  |

: (nl2)(n2 /4 -f3n/2 * 3) + t.
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Sufficient Conditions for the Existence of a Hamilton Cycle 22'l

Snce n /2is even, n2 1 + + 3n 12 *3 is odd. Hence, u3 : 1n 1211n2 1 + + zn 1z+ 3) + 1 :

nl2-lI I 1(modn),contradicting again the factthata has order 3. Thus, the possibility
(iii) never occrus. This completes the proof of Theorem 2. r

4. Applications

In this section, we will use the results obtained in Sec.3 in order to obtain a partial

affirmative answer to the question: Do all connected cubic (6, n)-metacirculant graphs

have a Hamilton cycle? Namely, we will prove the following result.

Theorem 3. Let G =MC(6,n,q, So, Sr, Sz, $) be a connected cubic (6,n)-meta-

circulant graph. Then G possesses a Hamilton cycle if either n : po Qo,where p and q

are distinct pimes, a > 0 and b > 0 or n is such that 9@) is not divisible by 3, where
q@) is the numberof integers z satisfying 0 < z < n and gcd(z,n): l.

Proof. Let G=MC(6, n,q, So, Sl , ,S2, S:) be a connected cubic (6, n)-metacirculant
graph. If So # A, then by [7], G has a Hamilton cycle. Therefore, we may assume from

now on that So : 0. Since G is a cubic (6,n)-rnetacttculant graph, only the following
cases may happen:

Case 1.  lSr l  :  l ,  Sz:  A and lS3l  :  l .

Case 2.  Sr  :  A, lS2l  :  1  and lS3l  :  1 '

Case 3. Sr : Sz : A andlS3l : 3.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we
have a6 : I (mod n). This means that the order of cv in Zfi is a divisor of 6'

Assumef i rs t that  n:  poqb,wherep andq arc d is t inctpr imes,a > 0and b > O. I f
either p or 4 is equal to 2, thenby [2, lI], G has a Hamilton cycle. Therefore, we may

assume p +2ndq *  2.  Sincetheorderof  cv in  Zf i isadiv isorof  6,by [1] ,  Gis a

Cayley graph of the group

g  :  ( p , T  I  p n  :  1 6  :  l ,  r p t - l  :  p " ) ,

where p and r are automorphisms of G with p(uj) : uj+r and r(uj) : u;jt.it
gcd(cv - I, n) : 1, then by Theorem 1, G has a Hamilton cycle. Since n is odd, we have
gcd(a3 * l, a - l, n) : 1. Therefore, if gcd(a - | z n) I l, then (3.3) and (3.5) imply
that gcd(a - I, n) is equal to either po qo or po or qo . It is not difficult to verify that the

conrmutator subgroup 19 . Ql of 9 is the subgroup (p"-t ) generated by p"-I . So, .the
order of tQ , 9l is I or qb or po depending on whether gcd(cv - I, n) is equal to pa qb or
po or qb .In any cases, by [6], G has a Hamilton cycle.

Assume now that n is such that q(n) is not divisible by 3, where g(n) is the number

ofintegersz satisfying 0 < z < n andgcd(z,n): l.SincelZ[l: q(n) andthe order

of cr in Zfr is a divisor of 6, our assumption implies that the order of a in Zfi is 1 or 2.

By Theorem 2, G has a Hamilton cycle. This completes the proof of Theorem 3. I
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