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Abstract. It is shown that every weakly holomorphic function on a compact set of uniqueness
in a Frechet space E e (O) with values in a Frechet space F e (DN) is holomorphic. A
characterization of a Frechet space with (ZB-) is also established.

1. Introduction

Let E,F be locally convex spaces and X acompact setin E. A function f : X --+ F is
called holomorphic on X if it can be extended holomorphically to a neighborhood of X
in E. In the case where this request holds for all u o f , u e Ft,the dual space of F, we
say that / is weakly holomorphic on X. By']1(X, F) (resp.7{.(X, F)), we denote the
vector space of holomorphic (resp. weakly holomorphic) functions on X with values in
F. Write H(X) for F : C.

The aim of the present paper is to find sufficient conditions such that

11(X, F) :'.Jl.(X, F).

Recently, Hai t4l has proved that a Frechet space F has the property (DN) if and only
if (o) holds for every Z regular compact set X in a Frechet space E. In this paper, we
shall prove the following two theorems.

Theorem A. Izt E, F be Frechet spaces and X a compact set of uniqueness in E. Then
(a) holds if E e (A) and F e (DN).

(at)
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Theorem B. Let F be a Frechet space. Then F e (LB*) if and only if (a) holds

for every compact set X which is either of uniqueness in a nuclear Frechet space E
isomorphic to a quotient space of the nuclear space lt*(a), or a cornpact set in C.

2. Preliminaries

2.I. Linear Topological Invariants

Let E be a Frechet space with a fundamental system of semi-norms

{ll ' llr}Er. For each subset B of E, define the general semi-norm ll ' ll} : E' -->

[0, *m] on E/, the dual space of E, by

l lu l l l  =  sup{ la( . r ) l  i  x  e Bl ,  u  e Et .

Instead of ll . ll},, we write ll . ll), where

U n : l x e E : l l x l l n < 1 ) .

We say that E has the property

(o)  i f  vp 1qYk1d,  C > 0 :  l l  . lu t+d s  c l l  . l l i  l l  . l l ld ;

( D N )  i f  l p Y q , d > o f k ,  C  > 0 :  l l  . l [ t + d  < C l l  . l l * l l . l l ! ;

( D N )  i f  3 p Y q l k Y d  > o l c  >  0 ,  l l .  l l ; t * '  <  c l l  .  l h  l l .  l l f .

Finally, we say that E has the property

i f  V 0 <  p k  |  = p Y q l k n ,  C > 0 V ;  e E l q < k S k q

ll*lltr+or < cllxlll,llxll.ok .

The above properties were introduced and investigated by Vogt in the 1980s (see, e.g.,
[8,9]) .

2.2. Sequence spaces A(A)

If A: 1u1;)T.er is a Kdthe matrix satisfying the conditions given by Pietsch [6], th6n
we denote by A(A) the sequence space

A(A) :  {(x;)  c C: pr,@),:  D lx i la i ,n < oo Vk > 1}.
j > l

Obviously, A(A) is a Frechet space with natural locally convex topologies induced
by the semi-norms pft.

For0 < R < +oo, wewrite An(o) insteadof A(A) forai,n - f i j ,wherco: (ai)
is an increasing sequence of positive numbers with limoT : *oo andrp / R. An(a)

is called the power series space of finite type if R < oo and of infinite type if R : +oo.

(LB*)
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2.3. Holomorphic Functions

Let E andF be locally convex spaces and D an open set in E. A function f : D --+ F
is said to be holomorphic if / is continuous and z o / is Gateaux holomorphic for all
u e Ft .By 11(D, F) (resp. '11*(D, F)), we denote the space of F-valued holomorphic
(resp. bounded holomorphic) functions on D. A compact set X in E is called a set of

uniqueness if
A ( X ) :  { f  e 1 1 ( X ) :  f  l x  =  0 } : 0 .

For more details concerning holomorphic functions, we refer the reader to [3].

3. The Boundedness of Continuous Linear Maps

In this section, we prove the following:

Proposition 3.1. Let E and F be Frechet spaces with E e (Q) and F e (DIl)' Then
every continuous linear map from E into F is bounded on a neighborhood of0 e E.

Proof. Given f : E -+ F, a continuous linear map. By [8], we can find an index set /
and a continuous linear map R from 11(l)6os onto E, where s is the space of rapidly
decreasing sequences. Since R is open, it suffices to show that g : / o R is bounded on
a neighborhood of 0 € 11(1)8os.

Note that 11(l)6os e (A) and

11( l )6os :  lz  :  (z ; j ) i . r ,  j ,_r

where

with

It follows that

_r, ,r t I if (k.
6 l , i ' :  

l o , r t o ,

f (z): D siik)f (sii)
i e I , i > l

t ) :  ( i ,  j )

t )  +  ( i ,  j ) .

for z e 11(l)6os.

6i1k): zi1 and 6;; =lt'i,:lt: 1 x N]

c C :  D  l z i i l i Y . o o V y > l ) .
i e I ,  j > I

Hence, every z e ll (l)6os can be written in the form

z: I si ik)sii,
i e I ,  j > l

Takea > 1 suchthat

M(a, p):  sup{l l " f (z) l lp :  l lz l l "  < 1} < oo,

where p > I is chosen such that (DN) holds.
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Let B > cv satisfy the following:

yy > f l36y,  Cy > 0:  l l  .  l l | t+o < cy l l .  l l ;  l l  .  l l ;E (1)

on ( /1( l )Sos) ' .
From the relations

l l 6 i ; l l i : - + ,  i  e  I ,  j ,  p >  1'  |o i j  |p

and (l), it implies that

--l-- = 
c' 

u fori e I, i. r. (2)
l lar;l l i*" 

- 
l l6iylly l l6r;l l7

We check that / is bounded on {z € E : llzllp < ll.
Indeed, given q > p, choose kq ,_ Q such that

Y d . > 0 3 D a  > 0 :  l l  ' l l t n + d  S D a l l . l l * , l l . l l ! .  ( 3 )

Let yn > B such that
M(kn ,yn)  <  a .

By applying (2) and (3) to yq, dro, Crn and D6,0, we obtain the following estimates

I la,|(z)l l l .f(d;;)l ls
i < 1 ,  j > l

/_r rq oyq ll " \ / llk-
i e I ,  j > l

l l ^ /  6 ;  ' " 6 ' q
x 1/ t *+) l l ' . ' ,  | r , t , tz ) l  l la i ; l l

i l  \  l ld ; ;  l lo .z i lp

1 l

<Cl"n n]) j" t t<tcn,yi l@ M(p,a) I l6, i l(z)l  116;;1pu r q  u , q  

i e l ,  j > l

r = = | - I
: Ct*d,n D;*' M(kq, Tq)'*o,n M(p, q) l lx l lp .

This means that / is bounded on {z € E : llzllp < l} I

The following was proved by Vogt [9].

Proposition 3.2. IEt F be a Frechet space. Then

(1) every continuous linear map from lt*(a) into F e (LB*) is bounded on a
neighborhood of 0 e A*(cv) for every increasing sequence of positive numbers
o : (a1) satisfying

d , i  L l

rimai : x and 
;l?; 

. *, (x)
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(i1) if, for some sequence of positive nurnbers o : (a1) satisfiing (*), every continuous
linear map from 4l*(u) into F is bounded on a neighborhood of O e lv*(a), then
F e (LB*) .

4. ProofofTheoremA

We need the following

Proposition 4.l,I2l Let E be a Frechet space having (Q). Then 111(X)l' e (9) for
every compact set X in E.

Lemma 4.2. Let F be a Frechet space with F e (DM). Then lFdo)' e (DIl), where
F{o, is the space F' equipped with the bornological topologies associated with the strong
topologies of F'.

Proof. Since F e (DN), we have

S p Y q J k v d > o l c  > 0 :  l l  ' l l q . r d l l  . l l p +  l l  . l l p  v r  > 0 ,

or in an equivalent form

lpYq lkYd > ofc > o :  u l  grdul  +lul  v,  -  o.

For a € [do.l' and r > 0, we have

llulll* : sup lz(x*)l'  
x-eUf

. ,d sup lr.r(x*)l + 9 ,op la(x*)l
x*et\ r  x.eU!

: rd 11u11i* + llzlli. .

Hence, [do.J'e (DN). I

Now, we are able to prove Theorem A.
Given / e Tla(X, F), by Vogt [8], there exists for some Banach space B a continuous

linear map R from B6zs onto E. Take a compact set Y in B6os for which X : R(y).
Consider the linear map S : F{o, - '11(X) givenby

S( r , r ) : u f  f o r  ueFdo , ,

whereij is a holomorphic extension of uf to a neighborhood of X in E.
It follows that S has a closed graph. By virtue of the closed graph theorem of

Grothendieck [7], S is continuous. Applying Propositions 3.1 and4.1 to RS : 4o. +
'11(Y), we can find a neighborhood V of I in B6os such that frS continuously maps

do, into 11*(V). Hence, by Lemma 4.2, S continuously maps F(o. into ft@(W) for
some neighborhood W of X in E. This implies that the formula

i k ) @ ) : ( S u ) ( z )  f o r  z e l V  a n d  u e F l

defines a holomorphic extension of f to W. T
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5. ProofofTheoremB
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Sufficiency of Theorem B in the case where X is a compact set of uniqueness in a nuclear
Frechet space E which is isomorphic to a quotient space of the nuclear space A-(a) is
proved as in Theorem A.

By applying Proposition 3.2(1) and by [1, 5], we deduce thatfll(X)ltis isomorphic
to a quotient space of the nuclear space A- (B (a)) where f (cv) is stable. Here, note that
Ft = F{otby the reflexivity of F.

Now, we consider the case where X is a compact set in C. Denote by X' the set
consisting of all limit points of X. Choose a neighborhood basis {%} of X' such that

X n A V " : A f o r n > 1 .

Put
Y ,  :  X  \Vn .

Then, we obtain the exact sequence

0 + limind?loo(y,)/A(Y) --+ Tt(x)/A(x1 3 H1x'1 -+ o,

with
?7* (Y,) / A(Y) = Ck,,

k n : # Y n  f o r  n > - l

and R is the restriction map.
As in Theorem A, we consider the linear map

where

given by

S: F/ -+ 11(X)/A(X)

S ( a ) : i i + e 1 . y . , f o r u e F ' .

It is easy to check that S has the closed graph and hence, it follows from the closed graph
theorem of Grothendieck [7] that S is continuous.

Thus, R o S is factorized through F/ for some continuous semi-norm p on Ft.Here,
Fi stands for the Banach space associated with p, i.e., there exists a continuous linear
map

T : F', --> 11(x')

verifying
R o S : T o a o ,

where a;o : Ft --> Fj is the canonical map.
Consider the continuous linear map

S - Tao : F' --> 1(s1P = g(N).

Since F has a continuous nonn, we infer that S - Ta, can be factorized through Fj,
for some continuous semi-norm pt > p on Ft.
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Replacing pby pt if necessary, we may assume p1 : p. We let

G: F'0, -> KerR

be a continuous linear map satisfying

S - Ta, - Gc,to or equivalently, S : (Z -f G)oo.

This means that S can be factorized through Fj.
Because R is a surjection between dual nuclear Frechet spaces, we can find a

continuous linear map 
S : F,, -_+ H(X)

satisfying
3rr :  5r"  ,

where rr;a : 11(X) -> 11(X) lA(X) is the canonical projection.

Choose a neighborhood V of X in C such that S continuously maps F[ inlo 11* (V).

This implies that the function defined by

ik)@) : Srop(u)(z) for z eV and u e Fl

is a holomorphic extension of f to V.
Conversely, by Proposition3.2(11), it suffices to check that every continuous linear

map Z : A*(j) -+ F is compact. Choose X : C, the polar compact set of uniqueness
in C. Then by virtue of [0], we have

111(X)l' = 11(C I X) = TI(C) = A-(i).

Def ineafunct ion f  :X--> Fby

"f (z)(u) : T' (u)(z) fot z e X. u e F' .

Obviously, f e 
'11r(X, F). Thus, / is extended to a bounded holomorphic function / on

a neighborhood V of X in C. It follows thatTtis bounded on t/(y)1", a neighborhood
o f O e  F .  r
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