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Abstract. It is shown that every weakly holomorphic function on a compact set of uniqueness

in a Frechet space E € (§2) with values in a Frechet space F € (DN) is holomorphic. A
characterization of a Frechet space with (L Bs) is also established.

1. Introduction

Let E, F be locally convex spaces and X a compact setin E. A function f : X — F'is
called holomorphic on X if it can be extended holomorphically to a neighborhood of X
in E. In the case where this request holds for all u o f, u € F’, the dual space of F, we
say that f is weakly holomorphic on X. By H(X, F) (resp. H, (X, F)), we denote the
vector space of holomorphic (resp. weakly holomorphic) functions on X with values in
F. Write H(X) for F =C.

The aim of the present paper is to find sufficient conditions such that

H(X, F) = Ho(X, F). (w)

Recently, Hai [4] has proved that a Frechet space F has the property (DN) if and only
if (w) holds for every L regular compact set X in a Frechet space E. In this paper, we
shall prove the following two theorems.

Theorem A. Let E, F be Frechet spaces and X a compact set of uniqueness in E. Then
(w) holds if E € (Q) and F € (DN).
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Theorem B. Let F be a Frechet space. Then F € (LBy) if and only if (w) holds

Jor every compact set X which is either of uniqueness in a nuclear Frechet space E
isomorphic to a quotient space of the nuclear space Ao (), or a compact set in C.

2. Preliminaries

2.1. Linear Topological Invariants
Let E be a Frechet space with a fundamental system of semi-norms
{Il - lle}g2;. For each subset B of E, define the general semi-norm | - ||} : E' —
[0, +00] on E’, the dual space of E, by
lull} = sup{|u(x)| : x € B}, uckE'.
Instead of || - [|7; , we write || - [|7, where
q

Uy={xekE:|x|; <1}

We say that E has the property

(Q) if YpIg Vk3d, C>0: |- IEH <Cll- 511 I3
(DN) if 3pVg, d>03k, C >0 : |- [IZ* < Cl- el - 1%
(DN) if 3pV¥q3kV¥d >03C >0 : |- 2 < C|l - [ | - 112,

Finally, we say that E has the property

ifVO<por *» 3pV¥q 3k, C>0Vx € E3g <k <k,
Il < Clixl lxll2. (LBw)

The above properties were introduced and investigated by Vogt in the 1980s (see, e.g.,
[8, 9D).

2.2. Sequence spaces A(A)

fA=(u J',k);'),ok=1 is a Kothe matrix satisfying the conditions given by Pietsch [6], thén
we denote by A(A) the sequence space

AA) ={(x;)) cC: pr(x) := Z [xjlajx < oo Vk > 1}.
j=1

Obviously, A(A) is a Frechet space with natural locally convex topologies induced
by the semi-norms py.

For 0 < R < 400, we write Ag(«) instead of A(A) fora;; = r,?j, where @ = (o)
is an increasing sequence of positive numbers with li]I_naj = 4ocandry / R. Ar(@)

is called the power series space of finite type if R < 0o and of infinite type if R = +o0.
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2.3. Holomorphic Functions

Let E and F be locally convex spaces and D an open setin E. A function f : D — F
is said to be holomorphic if f is continuous and u o f is Gateaux holomorphic for all
u € F'.By H(D, F) (resp. H*(D, F)), we denote the space of F-valued holomorphic
(resp. bounded holomorphic) functions on D. A compact set X in E is called a set of
uniqueness if

AX)={f eHX): flx=0}=0.

For more details concerning holomorphic functions, we refer the reader to [3].

3. The Boundedness of Continuous Linear Maps
In this section, we prove the following:

Proposition 3.1. Let E and F be Frechet spaces with E € (Q) and F € (DN). Then
every continuous linear map from E into F is bounded on a neighborhood of 0 € E.

Proof. Given f : E — F, a continuous linear map. By [8], we can find an index set [
and a continuous linear map R from I! (7)&®, s onto E, where s is the space of rapidly
decreasing sequences. Since R is open, it suffices to show that g = f o R is bounded on
a neighborhood of 0 € I1(I)®s.

Note that I1(I)&®,s € () and

ND&zs = 2= @ierjz1 CC: Y lzyjlj¥ < oo ¥y = 1}.
iel,j>1

Hence, every z € ' (I)®, s can be written in the form

iel,j=1
where o
3?}-(2) = Zij and 3,']' = [3,[:”[]] I x N]
with . e
S[i‘j] el 1 lf (k, l) = (l, ])
Kl 0 if (k, 1) # G, ).
It follows that

f@= Y &@fGy) for ze€l'(D&us.

iel,j>1
Take o > 1 such that
M(a, p) = sup{ f@)lp : llzlla <1} < 00,

where p > 1 is chosen such that (DN) holds.
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Let 8 > « satisfy the following:

*1+4

s
Vy 2838, Cp>0: 0 llg " <Cyll- 131 lla” 1

on (I1(I)&xs)'.
From the relations

1 . :
|I3ijllf§=m’ iel, j, =1

and (1), it implies that
1 - C,

1+s, — 3
I8ijllg ™ N8ijlly N18ijlle

foriel, j>1. o)

We check that f is boundedon {z € E : ||z|lg < 1}.
Indeed, given g > p, choose k; > g such that
Vd > 03Dy > 0: || l;* < Dall - [, 1| - 1. 3)

Let y; > B such that
M(ky, yq) < 00.

By applying (2) and (3) to y4, d,,, C,, and Dy, , we obtain the following estimates

> I8@UF G,

iel,j>1
1
Z C1+dyq l+dyq f( ‘Sr'j ) Trdyg
iel,j>1 *n ”51".1 ”) kq

_‘1_
185 @) 118 u g

Hf( |8,]|}a)

<c5*""’ D;"m Mg, ) ™7 M(p, ) > 185 @1 18i1p
iel,j>1

= CT DI Mg, )™ M(p.) ™ ]
8y CERL D B
This means that f is bounded on {z € E : ||z]lg < 1} [
The following was proved by Vogt [9].

Proposition 3.2. Let F be a Frechet space. Then

(1) every continuous linear map from Ax(a) into F € (LBy) is bounded on a
neighborhood of 0 € A () for every increasing sequence of positive numbers
a = («;) satisfying
lime; =00 and sup]—Jrl < 00, *)
j=1 %
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(ii) if; for some sequence of positive numbers o = (0;;) satisfying (x), every continuous
linear map from A () into F is bounded on a neighborhood of 0 € A (), then
F € (LBw).

4. Proof of Theorem A
‘We need the following

Proposition 4.1. [2] Let E be a Frechet space having (). Then [H(X)] € () for
every compact set X in E.

Lemma 4.2. Let F be a Frechet space with F € (DN). Then [F. ' € (DN), where
Fp, is the space F' equipped with the bornological topologies associated with the strong
topologies of F'.

Proof. Since F € (ﬁﬁ), we have
3pV¥q 3k ¥d > 03C > 0: |-l <re- I, + gll e ¥Vr >0,
or in an equivalent form
3p Vg 3k ¥d > 03C > 0: UY grdU2+—€—U,? vr > 0.
Foru € [F; ] and r > 0, we have

Jully = sup luGx)|
x*el)

C
<r? sup Ju(x®)|+ = sup |u(x*)|

x*EU‘? E x*EU,?
C
=r il + — "
Hence, [F; ] € (DN). ]

Now, we are able to prove Theorem A.

Given f € H, (X, F), by Vogt [8], there exists for some Banach space B a continuous
linear map R from B®, s onto E. Take a compact set ¥ in B® s for which X = R(Y )
Consider the linear map S : F]; — H(X) given by

Sw)=uf for ue Fo

where ﬁ is a holomorphic extension of #f to a neighborhood of X in E.
It follows that S has a closed graph. By virtue of the closed graph theorem of
Grothendieck [7], S is continuous. Applying Propositions 3.1 and 4.1 to RS : F; , —

H(Y), we can find a neighborhood V of ¥ in B®,s such that RS continuously maps
F. . into H*(V). Hence, by Lemma 4.2, S continuously maps F,, into H*(W) for
some neighborhood W of X in E. This implies that the formula

f@)@) = (Su)z) for ze W and u e F’

defines a holomorphic extension of f to W. [
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5. Proof of Theorem B

Sufficiency of Theorem B in the case where X is a compact set of uniqueness in a nuclear
Frechet space E which is isomorphic to a quotient space of the nuclear space Aoo() is
proved as in Theorem A.

By applying Proposition 3.2(i) and by [1, 5], we deduce that [H(X)]’ is isomorphic
to a quotient space of the nuclear space Ao (8(«)) where B(«) is stable. Here, note that
F’ = F,_, by the reflexivity of F.

Now, we consider the case where X is a compact set in C. Denote by X' the set

consisting of all limit points of X. Choose a neighborhood basis {V,} of X’ such that
XNnov,=0 for n>1.
Put
Y, =X\V,.

Then, we obtain the exact sequence

0 — Limind H®(Y,)/ A(Y,) — H(X)/AX) B H(X)) — 0,

with
H®(Y,)/A(Yy) = Chr,

where
k, = #Y, for n > 1

and R is the restriction map.
As in Theorem A, we consider the linear map

§:F — HX)/AX)

given by -
Sw)=uf + AX) for u e F'.

It is easy to check that S has the closed graph and hence, it follows from the closed graph
theorem of Grothendieck [7] that § is continuous.

Thus, R o § is factorized through F ,; for some continuous semi-norm o on F’. Here,
F, stands for the Banach space associated with p, i.e., there exists a continuous linear
map 7

T:F //) — HX)

verifying
Ro S =To C()p,

where @, : F' — F is the canonical map.

Consider the continuous linear map
S—Tw,: F — KerR=CW,

Since F has a continuous norm, we infer that § — T, can be factorized through F,,
for some continuous semi-norm p; > p on F’.
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Replacing p by p; if necessary, we may assume p; = p. We let
G:F, — KerR
be a continuous linear map satisfying
S — Tw, = Gw, orequivalently, § = (T + G)w,.

This means that S can be factorized through F’ /’,.

Because R is a surjection between dual nuclear Frechet spaces, we can find a
continuous linear map )

S:F, - H(X)
satisfying )
Sw, = Swyx ,

where wy : H(X) — H(X)/A(X) is the canonical projection.

Choose a neighborhood V of X in C such that § continuously maps F /’, into H=(V).
This implies that the function defined by

F@)(Ww) = Swp(u)(z) for z€V and u € F'

is a holomorphic extension of f to V.

Conversely, by Proposition 3.2(ii), it suffices to check that every continuous linear
map T : Axo(j) — F is compact. Choose X = C, the polar compact set of uniqueness
in C. Then by virtue of [10], we have

[H(X)] = H(C/X) = H(C) = A ())-
Define a function f : X — F by
f@)(w) =T (u)(z) for ze X, ue F.

Obviously, f € H, (X, F). Thus, f is extended to a bounded holomorphic function f on
a neighborhood V of X in C. It follows that T’ is bounded on [ f (V)]°, a neighborhood

of 0 € F. [ ]
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