Some Characterizations of V-modules and Rings

Ayse Çiğdem Özcan

Hacettepe University, Department of Mathematics, 06532 Beytepe Ankara, Turkey

Received March 19, 1997

Revised September 5, 1997

Abstract. A module M has the property (V) if, for every $K \leq M$, $K \neq M$ and $m \in M - K$, any submodule L maximal, with respect to the property that it contains K but does not contain the element m, is maximal in M. It has the property (Ve) if (V) holds for every essential proper submodule K and $m \in M - K$. It is shown that M is a V-module if and only if M has the property (V). M/SocM is a V-module if and only if M has the property (Ve). Some further characterizations of V-rings and GV-rings are given.

All rings considered are associative and have an identity, and all modules are unitary right modules. Let R be a ring and M a module. We write RadM, $\mathbf{Z}(M)$, SocM and E(M) for the radical, the singular submodule, the socle and the injective envelope of M, respectively. Let M and N be modules. N is called M-injective if, for each submodule K of M, every homomorphism from K into N can be extended to an K-homomorphism from K into K is called a K-module by Hirano [6] (or cosemisimple by Fuller [2]). Every proper submodule of K is an intersection of maximal submodules. K is called a K-ring if the right module K is a K-module. K is a K-module if and only if every simple module is K-injective. Following Hirano [6], K is called a K-module or a K-module if every simple singular module is K-injective. If the module K-module K-module, K

In this note we give some characterizations of V-modules and GV-modules in terms of certain maximal submodules.

We write $N \leq M$ if N is a submodule of M. A right R-module M is said to have property (V) and (Ve), respectively, if

- (V) for every $K \leq M$, $K \neq M$ and $m \in M K$, any submodule L maximal, with respect to the property that it contains K but does not contain, the element m is maximal in M;
- (Ve) (V) holds for every essential proper submodule K and $m \in M K$.

1. Modules with Properties (V) and (Ve)

In [8], it is proved that R is a right V-ring if and only if the right R-module R has the property (V).

Theorem 1. Let M be a module. Then the following are equivalent:

- (1) M is a V-module;
- (2) M has the property (V).
- *Proof.* (1) \Rightarrow (2) Let $K \leq M$, $K \neq M$, $m \in M K$ and let L be a maximal submodule with respect to the property that L contains K but does not contain the element m. Then (mR+L)/L is a simple R-module. By (1), it is M-injective and so M/L-injective. Also, (MR+L)/L is an essential submodule of M/L. Hence, (mR+L)/L = M/L. Thus, L is a maximal submodule of M.
- $(2)\Rightarrow (1)$ Let X be a simple module, N an essential proper submodule of M, f a non-zero homomorphism from N to X and let $x\in N-\ker f$. Let L be a submodule of M maximal with respect to $x\notin L$ and $\ker f\leq L$. Then xR+L=M=N+L by (2). Hence $N\cap L$ is maximal in N. Since $\ker f$ is a maximal submodule of N, then $N\cap L=\ker f$. Thus f extends to M.

Theorem 2. Let M be a module. Then the following are equivalent:

- (1) M/SocM is a V-module;
- (2) M has the property (Ve).
- *Proof.* (1) \Rightarrow (2). Let $m \in M$ and let N be an essential submodule of M maximal with respect to $m \notin N$. Then (mR + N)/N is a simple module and essential in M/N. By (1) it is M/SocM-injective. Since $\text{Soc}M \leq N$, then (mR + N)/N is M/N-injective. Thus M = mR + N. This implies that N is a maximal submodule of M.
- $(2)\Rightarrow (1)$. Let X be any simple module. To prove X is $M/\operatorname{Soc} M$ -injective, let $N/\operatorname{Soc} M$ be an essential submodule of $M/\operatorname{Soc} M$ and f a non-zero homomorphism from $N/\operatorname{Soc} M$ to X. Set $\operatorname{Ker} f = K/\operatorname{Soc} M$ for some $K \leq M$. Then N is an essential submodule of M and K is a maximal submodule of N. We consider two cases: Assume K is essential in N. Then K is essential in M. Let $K \in N K$ and let $K \in M$ be a submodule of $K \in M$ maximal with respect to $K \notin M$ and $K \in M$ be a submodule of $K \in M$ maximal with respect to $K \notin M$ and $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$. Then $K \in M$ be a submodule of $K \in M$

2. Co-singular Submodule $Z^*(M)$ and V-rings

A submodule N of M is called *small* in M such that, whenever N + L = M for some submodule L of M, we have M = L. A module M is said to be small if M is small

in E(M) [7]. Let M be an R-module. We set $\mathbf{Z}^*(M) = \{m \in M : mR \text{ is small}\}$. We call $\mathbf{Z}^*(M)$ a co-singular submodule of M. In this note, we consider the classes $\underline{X} = \{R\text{-module } M : \mathbf{Z}^*(M) = 0\}$ and $\underline{X}^* = \{R\text{-module } M : \text{ whenever } Q \leq P \leq M, \ P/Q \in X \text{ implies } P/Q = 0\}$ following [5]. Submodules and homomorphic images of small modules are small [7] and \underline{X} is closed under submodules, direct products, direct sums, essential extensions and module extensions. \underline{X}^* is closed under submodules, homomorphic images and direct sums. Any member of \underline{X} is called an \underline{X} -module. $\underline{X} \cap \underline{X}^* = 0$ and since RadM is the sum of all small submodules of M, Rad $M \leq \mathbf{Z}^*(M)$ and $\mathbf{Z}^*(M) = M \cap \text{Rad } E(M)$. $\mathbf{Z}^*(E) = \text{Rad } E$ for any injective module E. In general, $\mathbf{Z}^*(M) \neq \text{Rad } M$ (e.g., Example 11).

Lemma 3. Let M be a module and $N \leq M$. Then $(\mathbf{Z}^*(M) + N)/N$ is a submodule of $\mathbf{Z}^*(M/N)$.

Proof. Let $m \in \mathbb{Z}^*(M)$. Then mR is small in $\mathbb{E}(mR)$ so that (mR + N)/N is small in $(\mathbb{E}(mR) + N)/N$. Hence, (m + N)R = (mR + N)/N is small. Thus, $m + N \in \mathbb{Z}^*(M/N)$.

Lemma 4. Let M be a module. Then

- (1) if M is small then $\mathbb{Z}^*(M) = M$;
- (2) if $\mathbf{Z}^*(M) = M$ then $M \in \underline{X}^*$;
- (3) if M is semisimple injective, then $M \in \underline{X}$.

Proof. (1) It is clear from the definitions.

- (2) Let M be a module and $Q \le P \le M$ be such that $\mathbb{Z}^*(M) = M$ and $P/Q \in \underline{X}$. Let $x \in P$. Then xR and (xR + Q)/Q are small and $(xR + Q)/Q \in \underline{X}$. By (1), $(xR + Q)/Q \in \underline{X}^*$. Hence, xR + Q = Q and $x \in Q$. Thus, $M \in \underline{X}^*$.
- (3) Assume M is semisimple injective. Since \underline{X} is closed under direct sums, without loss of generality, we may assume M is simple injective. If $\mathbf{Z}^*(M) = M$, then M is small in M. This is a contradiction. Hence $\mathbf{Z}^*(M) = 0$ and so $M \in \underline{X}$. This completes the proof.

Lemma 5. For any module M, $\mathbb{Z}^*(M) = 0$ if and only if RadE(M) = 0.

Proof. M is essential in E(M).

Proposition 6. Let R be a ring such that R/J(R) is right Artinian. Then $\mathbb{Z}^*(M) = 0$ if and only if M is semisimple injective.

Proof. Sufficiency is clear from Lemma 4(3). Conversely, suppose $\mathbb{Z}^*(M) = 0$. Then $0 = \operatorname{Rad} E(M) = \operatorname{E}(M)\operatorname{J}(R)$. Hence, $\operatorname{E}(M)$ is semisimple and so $M = \operatorname{E}(M)$. Thus, M is semisimple injective.

Example 7. Let R be a prime right Goldie ring which is not right primitive (e.g., a commutative domain which is not a field). Then $\mathbb{Z}^*(R) = R$.

Proof. Let $r \in R$ and E = E(rR). Suppose E = rR + L for some $L \le E$. If r is not in L, then E/L is nonzero and a cyclic module so that there exists a maximal submodule P of E with L contained in P. The module U = E/P is simple, and if I is its annihilator in R, we know that I is a nonzero ideal of R by our hypothesis. But in this case, I contains a nonzero divisor by Goldie's Theorem [4, Proposition 5.9] and then E = EI by [9, Proposition 2.6] so that E = P, a contradiction. Hence, $r \in L$ and so E = L and rR is small. Thus, $\mathbb{Z}^*(R) = R$.

Lemma 8. Let R be a ring such that $\mathbb{Z}^*(R) = R$. Then, for every module M, $\mathbb{Z}^*(M) = M$.

Proof. Let M be a module and $m \in M$. Let r(m) denote the right annihilator of m in R. Then $mR \cong R/r(m)$ and $\mathbb{Z}^*(R) = R$ imply that mR is small and so $m \in \mathbb{Z}^*(M)$. We combine Example 7 and Lemma 8.

Corollary 9. Let R be a prime right Goldie ring which is not a right primitive ring. Then, for every module M, $\mathbb{Z}^*(M) = M$.

Theorem 10. Let R be a ring. Then the following are equivalent:

- (1) R is a right GV-ring;
- (2) every \underline{X}^* -module is projective;
- (3) every simple \underline{X}^* -module is projective;
- (4) for every R-module M with $\mathbf{Z}^*(M) \neq 0$, $\mathbf{Z}^*(M)$ is projective;
- (5) every small module is projective;
- (6) for every R-module M with $\mathbf{Z}^*(M) = M$, M contains a nonzero projective submodule;
- (7) for every R-module M, $\mathbf{Z}(M) \cap \mathbf{Z}^*(M) = 0$;
- (8) for every right ideal I of R, $\mathbb{Z}(R/I) \cap \mathbb{Z}^*(R/I) = 0$;
- (9) for every R-module M with $\mathbf{Z}(M)$ essential in M, $\mathbf{Z}^*(M) = 0$;
- (10) R/SocR is a V-module and $\mathbf{Z}(R) \cap \mathbf{Z}^*(R) = 0$;
- (11) every proper essential right ideal of R is an intersection of maximal right ideals and $\mathbb{Z}(R) \cap \mathbb{Z}^*(R) = 0$;
- (12) for every essential right ideal K of R, $\mathbb{Z}^*(R/K) = 0$ and $\mathbb{Z}(R) \cap \mathbb{Z}^*(R) = 0$.
- *Proof.* (1) \Rightarrow (2). Let $M \in \underline{X}^*$ and $m \in M$, $m \neq 0$. Let K be a maximal submodule of mR. Then mR/K is injective or projective. If mR/K is injective, then by Lemma 4(3), $mR/K \in X$. Hence, mR/K = 0. Thus, it is projective. It follows that K is a direct summand of mR, and so mR is semisimple and so is M. As before, it can be shown that every simple submodule of M is projective.
 - $(2) \Rightarrow (3)$. This is clear.
- (3) \Rightarrow (4). Since $\mathbb{Z}^*(M)$ is in \underline{X}^* , by Lemma 4(2), every simple module is injective or small; the proof is the same as that of $(1 \Rightarrow 2)$.
- $(4) \Rightarrow (5)$. Let M be a nonzero small module. Then $\mathbb{Z}^*(M) = M$ by Lemma 4(1). Thus, M is projective by (4).
- (5) \Rightarrow (6). Let M be a module with $\mathbb{Z}^*(M) = M$. Let $m \in M$, $m \neq 0$. Since mR is small, then mR is projective by (5).

- $(6) \Rightarrow (7)$. Let $m \in \mathbf{Z}(M) \cap \mathbf{Z}^*(M)$. Then $\mathbf{Z}^*(mR) = mR$. Assume $m \neq 0$. Then by (6), mR contains a nonzero projective submodule L. Hence, L is isomorphic to I/r(m) for some right ideal I of R. Thus, r(m) is a direct summand of I. But since $m \in \mathbf{Z}(M)$, r(m) is essential in R, and therefore, in I, L = 0, a contradiction.
 - $(7) \Rightarrow (8)$. This is clear.
- $(8)\Rightarrow (9)$. Let M be a module with $\mathbf{Z}(M)$ essential in M. Let $x\in \mathbf{Z}^*(M)$. Assume $x\neq 0$. There exists a nonzero $m\in xR\cap \mathbf{Z}(M)$. Then $mR\leq \mathbf{Z}^*(M)\cap \mathbf{Z}(M)$. Hence, $mR\cong R/r(m)\leq \mathbf{Z}^*(R/r(m))\cap \mathbf{Z}(R/r(m))$ which is zero by (8). This is a contradiction.
- $(9)\Rightarrow (10)$. Let X be a simple module, $I/\operatorname{Soc} R$ a right ideal of $R/\operatorname{Soc} R$ and f a nonzero homomorphism from $I/\operatorname{Soc} R$ to X. Set $\operatorname{Ker} f = K/\operatorname{Soc} R$ for some right ideal K of R. Then K is a maximal right ideal of I. If K is not essential in I, then $I=K\oplus T$ for some $T\leq I$. Hence, $T\leq \operatorname{Soc} R\leq K$. This is a contradiction. It follows that K is essential in I, and so I/K is singular. By (9), $\mathbf{Z}^*(I/K)=0$ and then $\mathbf{Z}^*(X)=0$. Since X is simple, then X is injective and is therefore $R/\operatorname{Soc} R$ -injective. It follows that f extends to $R/\operatorname{Soc} R$.
- $(10) \Rightarrow (11)$. $R/\operatorname{Soc} R$ is a V-module if and only if every proper essential right ideal of R is an intersection of maximal right ideal [10].
- $(11)\Rightarrow (12)$. Let K be an essential right ideal of R. Let $0\neq x+K\in \mathbf{Z}^*(R/K)$. By (11), there exists a maximal right ideal L of R such that $x\notin L$ and $K\leq L$. Then (xR+L)/L is small and a singular module. Next, we prove (xR+L)/L is an injective module. Let I be an essential right ideal of R and f a nonzero homomorphism from I to (xR+L)/L. Set $T=\mathrm{Ker}\,f$. Assume T is essential in I. Then T is an essential right ideal in R. By (11), we may find a maximal right ideal I of I so that $I \leq I$ and $I \not\leq I$. Hence, I is not an essential right ideal in I, then I is not an essential right ideal I of I is not an essential right ideal in I, then I is I is a simple singular and a small module. Thus, I is a contradiction for I is a nonzero mapping. It follows that I is an injective module. This is a contradiction because I is a small module. Hence, I is a small module. Hence, I is a small module.
- $(12)\Rightarrow (1)$. Let X be a simple singular module and I an essential right ideal of R. Let f be a nonzero homomorphism from I to X with kernel K. Then K is a maximal submodule of I. If K is not essential in I, then $I=K\oplus L$ for some $L\leq I$. Then L is a simple singular right ideal of R. Hence, $L^2=0$ or L=eR for some idempotent e of R. Assume L=eR. Then r(e)=(1-e)R is essential in R. This is a contradiction. Hence, $L^2=0$ and so $L\leq \operatorname{Rad} R$. Since L is singular then $L\leq \mathbf{Z}(R)$. Since $\operatorname{Rad} R\leq \mathbf{Z}^*(R)$, then by (12), L=0. Hence, K is essential in I and thus in I too. By (12), I0. This and I1 is injective. Since I1 is injective. This completes the proof.

Example 11. Let $R = \begin{vmatrix} F & 0 \\ F & F \end{vmatrix}$ be lower triangular matrices over a field F. $J(R) = \begin{vmatrix} 0 & 0 \\ F & 0 \end{vmatrix}$, $Soc(R_R) = \begin{vmatrix} F & 0 \\ F & 0 \end{vmatrix}$ and by [1, Example 4.b], R is a right and left GV-ring and not a V-ring. $\mathbf{Z}^*(R)$ is semisimple by the proof of Theorem 10 (1 \Rightarrow 2) and $J(R) \leq \mathbf{Z}^*(R) \leq Soc R$. Set $K = \begin{vmatrix} 0 & 0 \\ F & F \end{vmatrix}$ and $L = \begin{vmatrix} F & 0 \\ 0 & 0 \end{vmatrix}$. By [3, Exercise 3.B.20–21] K is an injective right ideal and every injective right ideal of R is contained in K. Since

the simple right ideal L is injective or small and L is not in K, then L is small. Hence, $\mathbf{Z}^*(R) = \operatorname{Soc}(R_R)$ and $J(R) \neq \mathbf{Z}^*(R)$.

Theorem 12. Let R be a ring. Then the following are equivalent:

- (1) R is a right V-ring;
- (2) for every R-module M, $\mathbb{Z}^*(M) = 0$;
- (3) for every simple R-module M, $\mathbb{Z}^*(M) = 0$.

Proof. (1) \Rightarrow (2). By (1), Rad $\mathbf{E}(M) = 0$. Hence, $\mathbf{Z}^*(M) = 0$.

- $(2) \Rightarrow (3)$. This is clear.
- $(3) \Rightarrow (1)$. Let M be a simple module. By (3), $\mathbb{Z}^*(M) = 0$. Since M is simple, M is injective or small. Assume M is small, then by Lemma 4, $M \in X^*$. This is a contradiction. Hence, M is injective.

We combine Theorems 1 and 12.

Corollary 13. Let R be a ring. Then R_R has the property (V) if and only if $\mathbb{Z}^*(M) = 0$ for every R-module M.

Acknowledgement. The author is indebted to Professor P.F. Smith, University of Glasgow, Scotland, and his supervisor A. Harmanci for his very helpful comments and suggestions.

- 1. G. Baccella, Generalized V-rings and von Neumann regular rings, Rend. Sem. Math. Padova **72** (1984) 117–133.
- 2. K. R. Fuller, Relative projectivity and injectivity classes determined by simple modules, J. London Math. Soc. 5 (1972) 423-431.
- 3. K.R. Goodearl, Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
- 4. K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Student Texts, Vol. 16, Cambridge University Press, 1989.
- 5. A. Harmanci and P.F. Smith, Relative injectivity and module classes, Comm. in Alg. 20(9) (1992) 2471–2501.
- 6. Y. Hirano, Regular modules and V-modules, Hiroshima Math. J. 11 (1981) 125-142.
- 7. W. W. Leonard, Small modules, Proc. Amer. Math. Soc. 17 (1966) 527-531.
- 8. W. Pinsan and H. Xianhui, Some new characterizations of V-rings, Proc. 2nd Japan-China Symp, Ring Theory, Okayama, Japan, 1995, pp. 147–149.
- 9. D. W. Sharpe and P. Vamos, *Injective Modules*, Cambridge University Press, 1972.
- 10. M.F. Yousif, V-modules with Krull dimension, Bull. Austral. Math. Soc. 37 (1988) 237-240.