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1. Introduction

Let K be a compact set in a Frechet space E and X a Banach space. By H(K, X),we
denote the space of germs of X-valued holomorphic functions on K equipped with the
inductive topology. This means that

H (K, X) : l imind(I/6 (U, X)),
U)K

where U ranges over all neighborhoods of K and H@(U, X) is the Banach space of
bounded holomorphic functions on U.

The completeness of H (K, X) was investigated by some authors. First, Dineen [2]
proved that H(K) : H(K, C) is complete, where C denotes the complex plane. Later,
Bonet, Domanski and Mujica [1] showed that H(K, X) is complete if either X is
complemented in its bi-dual or E is quasi-normable. This result can be obtained from
the proof of Dineen's result. In the present note, we shall prove the followingi '

Theorem. Let K be a balanced compact set in a Frechet space E and X a Banach space.
Then H (K, X) is complete.

2. ProofofTheorem

Choose an index set 1 such lhat X C l-*(I). Consider the commutative diagram
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H(K, X) ---:----> IH(K, X)]''

I*I R"J

H(K ,  t@( I ) )  
t ,  

IH (K ,  t * ( I ) ) 1 "

where R, S and ,3 are canonical maps.
Note that R is injective and S, S are imbeddings because ff (K , X) and I/- (K, {* (I))

are barrelled spaces.

(D We first check that lH(K,X)l/is dense in lH(U,X)lt for every balanced
neighborhood U of K.It suffices to show this for lH*(V,X)l', where V is
aba lancedne ighbo rhoodo fKsa t i s f y i ng6 -1V  C  Uw i th0  <  6  <  l . Le t
pt elH@(U, X)l/ ande > 0. WritetheTaylorexpansionof every f e H*(U,X)

sa
f  (z ) :  LP, f  ( r ) ,

n > O

where

P , f  ( z ) : :  [  i l . .
zlt t  JV\l : l

Since6-rV c U with0 < 6 < l,itfollows thatlllP,f llv < *oo. Takem suchthat

F  r rp  f  l l v  <  e  fo r  f  e  H* (u ,X)  w i th  l l , f  l l u  <  1 .
L | ' n r

Put  t t ^ ( f )  : * ;  t rQ, f ) .Then p . *  e  lH@(V,X) l /because lP(nE,x ) ;  l l . l l v l  =
O<n<m

\P("E,X); ll.l lul for n > 0, where P(E,X) stands for the space of continuous
n-homogeneous polynomials from E into X and

lQ.r - tt^)(f)l S t llP,f llv < e for f e H*(U, X) with ll.f l lu < 1.

(ii) We now show ,^;; map R" is injective. Since tI@(U, X) is imbedded in
H* (U, .L* (I)) for every neighborhood U of K in E, from (i) and the relations

lH(K, x)l' = limproj lH6(U, x)l'

lH (K, l* (I))l ' = limproj [I1* (U, 16 Q))l',

we infer that R/ : IH(K,l*(I))l' --+ [FI€(K, X)]/ has the dense range. Hence,
Rtt : lH@ (K, X)1" --> lH (K, l* (I))1" is injective.

Note that IH (K , X)1" and lH (K ,l* (/))] are complete because lH (K , X)l// is the
dual of the Frechet space [11(K, X)]' and l€(1) is complemented in its bi-dual.

(ii i) Now,let{f,1" be aCauchy netin H(K, X). Since lH(K, X)l" and H(K,{@(I))
are complete, we have

Sfo --> pt and Rf" -+ g

in lH (K , X)f" and H (K , 16 (I)), respectively.
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Letfi : H(K,16(I)) --> H(K,16(I)lX) be the map induced by the canonical
projection n : l@ (I) --> {@ (I) lX. Since f" e H (K, X), there exists a ne-ighbourhood
!V containing K and a holomorphic function fo e H* (W, X) sugh that f, defines the

Eem f" on H(K,X). Because f"(x) e X for every x e W ffid fo e He (W,X) with
germ fo,we have fi ni"@): 0. Hence,

f rg : l im f fR fo :0 .

Thus, we can find f e H (K, X) for which R/ - g. From the relations

R" l" : lyr R" Sfo: lim SR6 - ,3g : SRy : n" S7

and the injectivity of R", we obtain S/ - 1t.Hence, f" + f in H (K, X),so H (K, X)
is complete. r
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