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In this note, we consider the differential inequality of the form
[ue] < k@A + |xDiux| + [, lul), 1)

where k(-) € L1(0, T), T > 0 and f(¢, |u|) is the right side of a comparison equation
satisfying the Carathéodory condition. Using the method based on the differential
comparison equations and the theory of multifunctions, we integrate the differential
inequality (1) and apply it to derive uniqueness results for global semiclassical solutions

of the Cauchy problem:

3 .
7”;- + Hi(t, x, u, Vyu;) =0, )

uj(O,x)=u?(x), j=1,...,m, 3)

where (¢,x) € Qr = (0,T) x R*;n,m € N; H;, j = 1,...,m are functions of
(t,x,p,q;) € Qr x R™ x R*. Vectors p = (p1, ..., pm) and g; = (qjl,...,qj?’) are

ou; ou; {
corresponding tou = (U, ..., Uy) and Viu; = (BT]’ i o5 %),respectively. Systems
1 n

of the form (2) are called weakly coupled systems.

1. Differential Equations of Comparison Type

In this section, we will give some theorems which generalize to the Carathéodory case
of Lemma 14.2 and the second Comparison Theorem in [4]. They will be used to prove
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some results in Sec. 2. For this aim, we consider the Cauchy problem on domain D C R?
y/=f(t’y)’ (I.D

y(t) = yo, (fo, yo) € D. (1.2)

We recall the definition of the Carathéodory equation (see [3]).

Definition 1.1. Equation (1.1) is said to be the Carathéodory equation provided:

(@) f(t, ) is a continuous function in 'y for almost all t;
) f(,y) is measurable in t for all y;
(c) there exists an integrable function (in Lebesgue’s sense) m = m(t) such that

[f (@ | <m@), Y, y) €D.

Here and in what follows, a function defined on an interval I/ C R and absolutely
continuous (a.c.) on every closed subinterval of 7 is said to be an absolutely continuous
function on 1.

By a solution of (1.1), we mean a function y = y(#) which is a.c. on interval (¢, 8)
and satisfies (1.1) for almost all ¢ € (a, 8). A solution m = m(¢) of (1.1) and (1.2)
defined on («, B) is said to be a minimal solution of the problem provided, for every
solution y = y(¢) of (1.1) and (1.2) defined on (o, "), we have

m(t) < y(), Vte€(@p)n,p).

Theorem 1.2. LetQ2, = (0, T)xRy ={(t,y) :t € (0,T),y > 0}and (ty, yo) € Q2.
Consider the problem (1.1)—(1.2) on the domain 2, where the function f satisfies the
Jfollowing conditions:

f@,y)=0, VY, y)eQy and f(:,0)=0, V1 € (0, T).

Then there exists a minimal solution m = m(t, to, yo) of the problem (1.1)—(1.2) defined
on (0, to]. In particular, m(t, ty, 0) = 0.

The proof of Theorem 1.2 is similar to the proof of Lemma 14.2 in [4]. For more
details, refer to [4].

Definition 1.3. A differential equation y' = f(t, y) defined on Q4+ = (0,T) x Ry is
called a comparison equation if the following conditions are satisfied:

(@) y = f(t,y) is the Carathéodory equation;

() f@,y)>0forall(t,y) e Q, and f(¢t,0)=0forallt € (0,T);

(¢) y = y(#) = 0 in every subinterval (0, y) C (0, T) is the unique solution of (1.1)
which satisfies tl_i)ngry(t) = 0.
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Example 1.4. Letk(-) be a nonnegative integrable function on (0, T'), then the following
functions:

@ f,y)=k@®) 5. y=201€(©T);
®) f@,»)=k®): 37, yz01e@©T),
are right sides of comparison equations.

Consider the Cauchy problem (1.1)—(1.2) on 2. Suppose (1.1) is a comparison
equation and ¢ is an a.c. function on [0, T'). Let G be a set of zero measure such that
@(-) is differentiable at every point of [0, T)\ Gand E :={t € (0,T)\ G : ¢(¢) > 0}.

Theorem 1.5, [f the following conditions
9©0) <0 and ¢'(t) < f(t, (1))
hold forallt € E, then o(t) <O0forallt €[0,T).

The proof is similar to the proof of the second Comparison Theorem in [4]. The details
are left to the reader.

2. Uniqueness of Global Semiclassical Solutions of the Cauchy Problem for
Weakly Coupled Differential Equation Systems of First Order

Let us denote by | - |, {-) the Euclid norm and the corresponding scalar product in R”,
respectively. Further, let

Lip (2r) := {u : Qr — R : u is locally Lipschitz continuous},
Lip ([0, T) x R™) := Lip (Q7r)N C (0, T) x R"),
V(Qr) = {u e Lip ([0, T) x R*) : u is differentiable for
all x € R" and for almost everywhere t € (0, T)}
Vu(Qr) =V (Qr) x--- xV(Qr).

-

m times

Theorem 2.1. Letu = (u1, us, ... ,Un) € Vu(Qr). Suppose there exist nonnegative
functions k = k(t) € LY(0,T) and f = f(t, y) defined on (0, T) x Ry, which is the
right side of a comparison equation such that the following conditions hold

u(0,x) =0, Vx e R", (2.1)

ou; g
|| < k()(A + |x)| Vx| + f (¢, max |u;]), i=1,...,m, (2:2)
ot 1<j<m

forall x € R" and for almost all t € (0, T). Thenu(t,x) =0 in Qr.
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Proof. Let (ty,xp) € Qr. It suffices to prove that u(f,xo) = 0. Consider the
multifunction F : Q7 ~— R” given by F(t,x) = Emk(t)(1+|x|), (t, x) € Qr, where
B, is a closed ball with the center at origin and radius r. By Theorem VI-13 in [2], it
follows that the set of a.c. solutions defined on I = [0, 79], X;(t, x0), of the differential

. . dx(t . 3 :
inclusion ) € F(t, x(¢)) subject to the constraint x (fy) = xo, is a nonempty compact

setin C(I, R").
Let us define a function ¢ : I — R as follow:

@(t) := max{lglja}mluj(t,x(t))l :x(-) € E[(l‘o,xo)}, t € [0, 1n]. 2.3)

To prove u(fy, x0) = 0, it is sufficient to prove that ¢(#) = 0.
By hypothesis of Theorem 2.1 and Lemma 3 in [5], there exists aset G C (0, T') of
zero measure, such that

e g =g = f(; k(z)dt is differentiable at every point (a.e.p.) in (0, #) \ G;
e u(-, ) is differentiable a.e.p. in ((0, %) \ G) x R”,
e ¢ is differentiable a.e.p. in (0, o) \ G.

Denote E = {f € (0,%) \ G : ¢(¢) > 0} and take #; € E (for the case
E = , immediately ¢(fp) = 0). By (2.3), there exist j € {1,2,...,m}and x;(-) €
X1 (to, x0) such that ¢(t1) = |u;(f1, x1(t1))|. Without restriction of generality, we can
assume

o) = lu1(tr, x1(01)|. 2.4)

We write, for short, x1 = x1(#;). If

o(t1) = w1t x1(t1) = u (1, x4, 2.5

then we choose e € R” such that [¢] = 1 and

(Veur(tr, x1), €) = = Veui (11, xH)|. (2.6)
Denote by y = y(p) a solution continuously differentiable on R of the system
d !
% = (1+ |y(p)I)e. Subject to y(g(r1)) = x' and put

x =x2(t) =y(g®) t€0,T], @7
we have x; being differentiable at = #; and the function X given by

x2(t) forO<t <4,
x1(t) fory <t <1,

x(t) = [

belongs to X1(ty, xo). Moreover, X(t1) = x! and ¥(t) = x2(t), Vt € [0, #].
By (2.5) and the continuity of u1 (-, x2(-)), for § < 0 small enough, we have

et + 8) — e(t1) L} ity +8,x2(t1 +8))  ui(ty, x2(21))
8 = 3 '
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Letting § — 0~ and applying (2.6)—~(2.7) yield
ad
¢/ (1) < 5w (11, XD = k@)1 + xH) I Vaun @, D)1

By (2.2), we obtain ¢'(t;) < f(t1, lm_aE( [u;(t1, xH]. From (2.4),
<j<m

¢'(t) < [, 9(t1))- 2.8)

If o(t1) = —u1(t1, x"), similarly to the case above, we also have (2.8). Since # is
arbitrary in E, we have ¢'(¢) < f(, ¢(t)), V¢t € E. Hence, by ¢(0) = 0 and by
Theorem 1.5, we deduce ¢(¢t) < 0, Vt € [0, 0], and consequently, ¢(f) = 0. By
the definition of ¢, we conclude u(fo, xo) = 0. Since (¢, xp) is an arbitrary point in
Qr,u(t,x)=0in Qr. ]

We now apply Theorem 2.1 to prove a uniqueness criterion for global semiclassical
solutions of the Cauchy problem (2)-(3), which is the main result of this paper.
First, we recall the definition of global semiclassical solutions for the problem (see [5]).

Definition 2.2. A vector functionu € Vp, (QT) is called a global semiclassical solution
of (2)—(3) if u satisfies the condition (3) for all x € R" and u satisfies the system (2) for
all x € R" and for almost all t € (0, T).

Theorem 2.3. Suppose H; = H;(t,x, p,q;), J = 1,...,m, satisfies the following
condition: There exist nonnegative functions k(t) € LI(O, T) and f(t,y) defined on
(0, T) x Ry which is the right side of a comparison equation such that the following
inequality holds for all x € R" and for almost allt € (0, T):

|H](t, X, D, q]) - PIj(tv X, P/, q]/)l

< k(@)1 + Ix)lg; — gjl + f(t, max |p; — pi), j=1,...,m,

1<i<m

where p = (p1,....,pm), P = (P},....,Pp), € R", q; = (qjl, e d), q; =
(q’jl-,...,q’;') ce R If u = (u,....um) and v = (v1, ..., Uy) are global semi-

classical solutions of (2)—(3), then u = v on Qr.

Proof. Putz = u — v = (21, ..., Zm). By hypothesis of Theorems 2.1 and 2.3, we
deduce z(t, x) = 0 for all (¢, x) € Qr.

For other recent results on the inequalities of type (1) and their applications, we refet
to [1] and to the bibliography quoted there.
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