Borel's Lemma in the p-adic Case*

Nguyen Thanh Quang
Department of Mathematics, Training Teachers College of Vinh Vinh, Nghe An, Vietnam

Received June 28, 1997
Revised December 22, 1997

Abstract

By using the p-adic Nevanlinna-Cartan theory, we prove a version of p-adic Borel's lemma.

Recent studies suggest that the hyperbolicity of the complex variety X is related to the finiteness of the number of rational or integral points of X (see [2,5]). It is well known that complex Borel's lemma is one of the main tools in the construction of hyperbolic hypersurfaces. Let us recall it.

Borel's Lemma. Let $f_{1}, \ldots, f_{n}(n \geq 3)$ be holomorphic functions without zeros on C such that

$$
f_{1}+f_{2}+\cdots+f_{n}=0
$$

Then the functions f_{1}, \ldots, f_{n-1} are linearly dependent over C.
The most obvious analog would be to call a p-adic projective variety X p-adic Brody hyperbolic if the only p-adic holomorphic maps $f: C_{p} \rightarrow X$ are the constant maps, where C_{p} is the completion of the algebraic closure of Q_{p}, the field of p-adic numbers. In the p-adic case, since the holomorphic functions without zeros are constant (p-adic Picard's theorem [3]), p-adic Borel's lemma on C_{p}, if formulated as in the complex case, would be trivial. In this paper, we prove a version of p-adic Borel's lemma. The key of the proof is the p-adic Nevanlinna-Cartan theorem [4].

Theorem. (p-adic Borel's lemma) Let $f_{1}, f_{2}, \ldots, f_{n}(n \geq 3)$ be p-adic holomorphic functions without common zeros on C_{p} such that

$$
f_{1}+f_{2}+\cdots+f_{n}=0
$$

[^0]Then the functions f_{1}, \ldots, f_{n-1} are linearly dependent if, for $j=1, \ldots, n$, every zero of f_{j} is of multiplicity at least d_{j} and the following condition holds:

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{d_{j}} \leq \frac{1}{n-2} \tag{1}
\end{equation*}
$$

Proof. Following [4], we use the notations $h^{+}(f, t)$ for the height function of a meromorphic function f. The necessary properties of the height function can be found in [4].

We first claim that $f_{j}, 1 \leq j \leq n-1$ are linearly dependent over C_{p}. Assume f_{j}, $1 \leq j \leq n-1$ are linearly independent over C_{p}. We define a holomorphic curve g in $P^{n-2}\left(C_{p}\right)$ by

$$
g: z \mapsto\left(f_{1}(z), \ldots, f_{n-1}(z)\right)
$$

Then g is linearly non-degenerated. Take the following hyperplanes in a general position,

$$
\begin{aligned}
& H_{1}=\left\{z_{1}=0\right\}, \ldots, H_{n-1}=\left\{z_{n-1}=0\right\} \\
& H_{n}=\left\{z_{1}+\cdots+z_{n-1}=0\right\}
\end{aligned}
$$

Then by p-adic Cartan-Nevanlinna theorem [4], we have

$$
h^{+}(g, t) \leq \sum_{j=1}^{n} N_{n-2}\left(g \circ H_{j}, t\right)+\frac{(n-1)(n-2)}{2} t+0(1) .
$$

On the other hand, we have

$$
\begin{aligned}
& N\left(f_{j}, t\right) \geq d_{j} N_{1}\left(f_{j}, t\right), \quad(j=1, \ldots, n) \\
\Rightarrow & N_{n-2}\left(g \circ H_{j}, t\right)=N_{n-2}\left(f_{j}, t\right) \\
& \leq(n-2) N_{1}\left(f_{j}, t\right) \leq \frac{n-2}{d_{j}} N\left(f_{j}, t\right) \\
& \leq \frac{n-2}{d_{j}} \max _{1 \leq j \leq n-1} N\left(f_{j}, t\right), \quad(j=1,2, \ldots, n-1) .
\end{aligned}
$$

For $j=n$, we still have

$$
\begin{aligned}
N_{n-2}\left(g \circ H_{n}, t\right)= & N_{n-2}\left(f_{1}+\cdots+f_{n-1}, t\right)=N_{n-2}\left(f_{n}, t\right) \\
& \leq(n-2) N_{1}\left(f_{n}, t\right) \leq \frac{n-2}{d_{n}} N\left(f_{n}, t\right) \\
= & \frac{n-2}{d_{n}} N\left(f_{1}+\cdots+f_{n-1}, t\right) \\
& \leq \frac{n-2}{d_{n}} \max _{1 \leq i \leq n-1} N\left(f_{i}, t\right)+0(1) .
\end{aligned}
$$

By Lemma 3.8 in [4], we obtain

$$
\begin{aligned}
& h^{+}(g, t)=\max _{1 \leq j \leq n-1} h^{+}\left(f_{j}, t\right)=\max _{1 \leq j \leq n-1} N\left(f_{j}, t\right)+0(1) \\
\Rightarrow & \max _{1 \leq j \leq n-1} N\left(f_{j}, t\right) \leq \sum_{j=1}^{n} \frac{n-2}{d_{j}} \max _{1 \leq j \leq n-1} N\left(f_{j}, t\right)+\frac{(n-1)(n-2)}{2} t+0(1) \\
= & (n-2)\left(\sum_{j=1}^{n} \frac{1}{d_{j}}\right) \max _{1 \leq j \leq n-1} N\left(f_{j}, t\right)+\frac{(n-1)(n-2)}{2} t+0(1) \\
\Rightarrow & \left(\frac{1}{n-2}-\sum_{j=1}^{n} \frac{1}{d_{j}}\right) \max _{1 \leq j \leq n-1} N\left(f_{j}, t\right) \leq \frac{(n-1)}{2} t+0(1)
\end{aligned}
$$

By hypothesis

$$
\sum_{j=1}^{n} \frac{1}{d_{j}} \leq \frac{1}{n-2}
$$

we obtain a contradiction as $t \rightarrow-\infty$.
We have the following corollary, which is another statement of p-adic Borel's lemma.
Corollary. Let f_{1}, \ldots, f_{n} be p-adic holomorphic functions satisfying

$$
f_{1}+f_{2}+\cdots+f_{n}=1 \quad(n \geq 2)
$$

Then $f_{1}, f_{2}, \ldots, f_{n}$ are linearly dependent if every zero of f_{j} is of multiplicity at least d_{j} and the following condition holds:

$$
\sum_{j=1}^{n} \frac{1}{d_{j}} \leq \frac{1}{n-1}
$$

Acknowledgement. The author would like to thank his adviser, Professor Ha Huy Khoai, for suggesting these problems. He thanks the referee for pointing out Boutabaa's paper [1] where the author received similar (but less general) results. This note is a brief version of his original paper, following the referee's suggestions.

References

1. A. Boutabaa, Sur les courbes holomorphes p-adiques, Ann. Fac. Sci. Toulouse Math. 5(6) (1996) 29-52.
2. W. A. Cherry, Hyperbolic p-adic analytic spaces, Ph.D. Thesis, Yale University, 1993.
3. H. H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50 (1983) 695-711.
4. H. H. Khoai and M. V. Tu, p-adic Nevanlinna-Cartan theorem, Inter. J. Math. 6(5) (1995) 719-731.
5. S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. 14 (1986) 159-205.

[^0]: *This work was partially supported by the Association Auboune, Culture and Education FranceVietnam.

