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Abstract. In the present paper, we examine the strong law of large numbers (SLLN) for integrable
adapted sequences with values in a p-smooth (in Pisier's sense [11]) Banach space E. A general
SLLN theorem for integrable adapted sequences is proved and a special form for mils l4l and
martingales dffirence [10] is obtained. This leads to SLLN in Mosco corvergence for convex
weakly compact valued integrable adapted sequence including super-martingales and martingales
difference.

1. Introduction

We shall suppose throughout this paper that (Q, F , P) is a complete probability space,
Fo C Fr  C. . .C F, . . .wi thFo:  {4,  O} is  anincreasingsequenceof  sub-o-a lgebras
of F, (c) is a decreasing sequence in R+ such that 

,1*o 
cn : 0, E is a separable

Banach space, cc(E) (resp. cwk(E)) is the family of all nonempty closed (resp. weakly
compact) convex subsets of E, and t is the Effros tribe on cc(E). A closed convex
valued measurable multifunction (aJtas closed convex random ser) from g to cc(E) is a
(f, t)-measurable mapping from Qto cc(E). A measurable multifunction X from O
to cc(E) is integrable (resp. integrably bounded) if the real function d(0, X(.)) (resp.

lXl : a + szp{llxll : x e X(rr;)}) is integrable.
If X is a f-measurable and integrable closed convex random set and B is a

sub-o-algebraof F, then there is a B-measurable random closed convex random set
G such that

sLrn>: d{EBU): f e sr*(?)\,

wtrere S| (6) is the set of all B-measurable and integrable selections of G and the closure
being taken in Z!. Such a G is the multivalued conditional expectation of X relative to
6 and is denoted by EB X. Let Lr,rk(E\(F) be the set of all f-measurable integrably
bounded multifunction X from I to cwk(E).If the strong dual of E is separable, then by
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[4],theconditionalexpectationof arandomsetX € Lr"rk(E\(nbelongstol] rk(E\(B).
A sequence (Xn),,1 in L:rk(Eln is a super-martingale If Xn e Ltrnrrr{fr) and

EF" Xn4(a) C Xn(a) for all n > 1 and almost surely (a.s. for short) a; e g. Given
a super-martingale (X,) in LLkG\(n, then by [6], there is a martingale (fn, F) in

LL(n such that, for each n, fnk') e Xnko) a.s. Let us recall the following notions of
p-smooth Banach space due to Pisier [1 1]. Let E be a Banach space and p €ll, 21. We
say that E is a p-smooth space, if there exists an equivalent nonn on E for which the
modulus of smoothness p6 defined as

pnQ) --rrrp {ltttr * ryll + l lx - tyl l -2): l lxl l: l lyl l : 1}

satisfies the following .onlrrron, There exists a constant k such that pn|) < ktp for
each r elO, oo[.

Also, we shall use the following limit notions. Let C1, C2, . . . and C- be closed
convex subsets of E. We say that C, Mosco cotverges to Coo if the two following
inclusions are satisfi ed:

C* c s-li Cn :: {x e E : llx - x"ll + O; x" e Crl1

w - l s C r : - { x  e  E i x n ,  + x w e a k l y ;  x n k e C n k l  C C * .

We shall suppose throughout this paper that p ell,2l and E is a p-smooth Banach
space.

2. SLLN for Adapted Sequences

The following lemma is decisive in the statement of our main result.

Lemma 2.1. Let F be a Banach space and (En, Fn)r>t a martingale in Lrr(F) such
that
(a) l im cP, Els*1n : g'

k + m  '

fui 
*i_t"f 

- cf*r)Elsr,lP q 6s.

Thenr \ cngn :Oa .s .

Proof. By the Chow inequality [3], for positive integrable submartingales, we have

epPf max cl lst lp , ,of = cX Elc, l" * i  ,pn E(lsr, lp - lgr-r lp).' k>n 
k-n*l

By (a), it is enough to check th"t i cX E(lCklp - lgr-r lP) < m. But for all integers
k:2

m > l, we have

m  m - I

,or Elslp +Dt|- E(lsklp - ls*-t101 : lt l  - cf*;nlsr,lo + ,o* Els*lp .
k:2 k:L
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Then by (a) and (b), we obtain

)Y*<'i Elsl. +Dqo E(lsklP - lst-rlP)
k:2

: rl Elgrl" * i ,P* E(lsnl| - ls*-rlP)
K:Z

@

-  \ - , . P  - P  \  F r  -  r ,:  
/_ \c i  

-  cL+t)E lgk l .
k : l

< oo.

Now, we are ready to prove the main result in this section.

Theorem 2.2. IEt (X,)nr_t be a sequence in Lt (D. Assume that the following
conditions are satisfied:

n

(i) (S, : D Xi, Fnl is an adapted sequence;
i : l

@

(ii) ! c! n6ip < a;
i : l
m

(i i i) I c;(lE"t-r Xil) < oo 4.r.
t : l

n

Then lim cn X;(a) : Q a.s.

Proof. By Doob's decomposition for adapted sequence [4,p.144], there exist a
martingale (Y", f") andapredictablesequence(Zn, Fr) suchthatYn > 1, Sn : Yr*Zn,
where 51 : Yl,Zt :O,Yn+t-Yn : Sn+t-EF' Snll,andZnqt-Zn : EF, Sn4-Sn.

First Step. Claim. 
)igycnYn 

:0 a.s. It is enough to check that conditions (a) and (b) of

Lemma2.l are satisfied. Indeed, by Pisier's martingale inequality, there exists a positive
constant B such that

Yn > r ,  ElYnlP s uiElY; -  Y;-1lP e.r)
i : l

with Ys : 0. On the other hand,

ElY" -  Yn-r lP :  EI(S" -  Sr-r)  -  (2" -  Z"-) lp
< E(X"l -f lZ" - z"_tDp

: E(lx,l * lE""-' s, - s,-r l)P
< 2p ElX"lP Q.2)

using Hcilder's inequality. By (2.1) and(2.2), we have

ElY,lp < 2p BDtl", lo . (2.3)
;- |

3r7
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By (ii), (2.3) and. Kronecker's lemma, we obtain (a). Moreover, by (2.3), we have

o o @ n

Drrl - c!*r)rty,rp < zp BDG., - ,XiE(f tx, t")
n : l  n : l  i : l

@ @

- 2P BDtlr, l, l{cf - ,0,+)
i : l  n : t

@

- .p  D \ -c f  fqX; lp  <  oo ._ .  " ?
Then (b) is satisfied. Hence, Lemma 2.1 gives the desired conclusion.

Second Step. Claim. lim cnZn: 0 a.s. We have
u +oo

n

l cnZnl : lc , l {z t  -  Z i i l

n

: lr, lgrt-t S' - $-r) |

n

.  r , I  lEr 'u  x i l .- 7 -

Applying again Kronecker's lemma in connection with (iii) yields 
/lfg 

cnZn : Q a.s.,

thus proving the theorem. r

A special form of Theorem2.2 is the following result of SLLN for mils.

n
Corollary. Let (5" : D Xi, f") be an integrable mil such that

t : l

m 1

/-t iP

1
T h e n l i m l & : O o . t .

n+@ n

n

Proof. By applying Doob's decomposition to (Sn : D Xr , F) ,there exist a martingale
i = l

(Y",F") and a predictable sequence (Zn,.F") such thatYn, Sn : Yn * Z" and

Zn+r - Zn - frr,Sn+l - Sr. Set ,, :I,then (Sr, Fr)n>tsatisfies conditions (i)
I

and (ii) of Theorem 2.2.8y repeating the first step of the proof in Theorem 2.2,wehave
1 1

lim - Yn: 0 a.s. Now, we need to show that ltm - Zn : 0 a.s. Since (Sn, f") is a
n + 6  n  n + @  n

mil, lim sup lEr^ Sn - S^l: 0 a.s., then
m + @ n > m

l i m l Z " - 2 , - t l : O  ( 2 . 4 )
n-->@
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and since ! zn :
n

n m ! z n : o a . s .
n+6  n

1 n
:1.Q, - Zi-) with Zs : 0, so by Q.$, we deduce that
n z-r '

i : l

3. SLLN for Convex Weakly Compact Adapted Sequences

The following is a multivalued version of Theorem2.2.

Proposition 3.1. Let Xl be a random set in L!.orr(D, (X)i,_z a sequence in LrE(D
and (Sn : Xt I Xz I .. . * Xn, Fn) an adapted sequence. Assume the two following
conditions are satisfied:

oo

( i) I  c! slxi lP . oo;
i : L
oo

(i i) I c;lf,,Fi-r Xil < a a.s.
i : I

ThenO € s-l icrS, a.s.

Proof. Since X1 is f1-measurable, there exists an integrable selection ft 1 € S; (f1 ). So
(f" : ht * Xz + . . . * Xn, F") is anadapted sequence selection of Sr. By (i), (ii) and
Theorem 2.2, we deduce that 

Jg" 
cn fn : 0, then 0 e s-li c, S, a.s. I

The following proposition ensures the existence of convex weakly compact valued
adapted sequences having the form given in Proposition 3.1.

Proposition 3.2, lnt F be a Banach space with strongly separable dual F*. If (X") is

a sequence in L!r1r1D(D, such that ( I X;, Fil is a super-mnrtingale, then S, has the
i = l

form
S n = X r * f z + " ' * f n ,

where fi e LrF(n (i > 2).

Proof. Since (5", Jl"l is a super-martingale, it is easy to check that

foralln > 1. From [7], thereexists /,a1 € LrF(n suchthat Xn+r(a): {f i11(ar)} a.s.
ThenVn > 1

g _ - .
Sa(ar )  : :  LX i@) :  X( to )  - l  I z@)  + . . .+  f , (a )  a .s .  I

The followin, ,, u 
"oll"no"nce 

of Lemm a2.r andrtoposition 3.2.

3t9

t

I  X,41to1f @a): {OJ,
o
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Proposition 3.3. Assume E is separable. Let (X") be a sequence in L!*1,1s(D
satisfying the following two conditions:

n

(i) (t Xi, F) is a super-martingale;
; -  I

@

(ii) I c! n6;lr < oo.
i : l

Then
n

(a) 0 e s-l ic" I Xi(a) a.s.;
t : l

n
(b) t/(I Xi, Fil is amartingale, thenfor a.s. a e {2,

i - l

n

M-limc, f xi (r) : {o}.
n16 " Ll

j : l

Proof Claiml. 0 e s-li c, f X; a.s.
i : I

First Proof. By (i) and Proposition 3.2, there exists fi e LL(n (i > 2) such that Vn > 1,

n

Sp(a ; )  : :  D* ,@) :  X(a)  *  fz@)  + . . .+  fn (a)  a .s .
i =L

Since (Sr) is a super-martingale in Lt"rk*\(F), by [5], there exists an integrable
martingale selection (gr) for (Sn). Consequently, for each n Z 1, there exists an
integrable selection hi of Xl such that a.s.

B , : h \ *  f z + . . . t  f " .  ( 3 . 1 )

Since (gr, fn)nzr is a martingale, it is enough to check that conditions (a) and (b)
of Lemma 2.1 are satisfied. Indeed by (3.1), we have hi : hi*r * E3^fnal,then
8n+1 - 8n : fn+L - E3' fr+t where gs : 0, ft - 8t. On the other hand, by Pisier's
martingale inequality, there exists a positive constant B such that Vn > 1,

E l s , l P  = u D E l s i - g i - l .
i - l

:  Bf Elf i  -  s+-t y.Y

<2p BD,rrr,, (3.2)
t : 1

by using Hcilder's inequality. By (3.2), we have

Elg,lp <2P BD,urr,r. (3.3)
; - l
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By (ii), (3.3) and Kronecker's lemma, we obtain Lemma 2.1(a). Moreover, by (3.3), we
h a v e @ m o o

D<rf - cl*,)Els,lp < 2p BDI,X - ,,,*)E(f r,n r")
n:r 

"-t 
oo 

j:l

< 2p BD tl*,f Dkr, - ,r,+)

321

- , rp p \ - . f  f  ;X;  lp  < oo.-' " 
t-- '

Then Lemma 2.1(b) is satisfied. Hence, Lemma 2.1 gives the desired conclusion.

Second Proof. (Suggested by C. Hess) By (i), one can check that [" f,+t P (dco) : {Ol,
YB e Fnso that, for alln, Er'(fr+r): 0 a.s. Set 3, : 7, *"ir*'" * l, (where

Vt : o),then (3, , Fn)n>ris an adapted sequence, and by (ii), i ,! El filp < oo. so by
i :z

Proposition 3.1, we obtain 
,lim 

c"(fz * fz -t ' ' ' + f"): 0 a.s., and since c"lX1l --> 0

a.s., (a) is satisfied. It remains to prove:

n

Claim 2. w-lsc, L Xi@) : {0} a.s. Let (ei)et be a dense sequence in E*.
i : 1

Applying Theorem 2.2 to real valued martingales {6* (ei,S,)) yields

n\c"6" 1e1' S,(ar)) : 0 a's'

for all k > 1. Hence, Clum2 follows.
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