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Abstract. In the present paper, we examine the strong law of large numbers (SLLN) for integrable
adapted sequences with values in a p-smooth (in Pisier’s sense [11]) Banach space E. A general
SLLN theorem for integrable adapted sequences is proved and a special form for mils [4] and
martingales difference [10] is obtained. This leads to SLLN in Mosco convergence for convex
weakly compact valued integrable adapted sequence including super-martingales and martingales
difference.

1. Introduction

We shall suppose throughout this paper that (2, F, P) is a complete probability space,
Fo CF1 C--- CFp... with Fo = {#, Q} is an increasing sequence of sub-o-algebras
of F, {cn) is a decreasing sequence in R* such that nlgl;o ¢n = 0, E is a separable

Banach space, cc(E) (resp. cwk(E)) is the family of all nonempty closed (resp. weakly
compact) convex subsets of E, and £ is the Effros tribe on cc(E). A closed convex
valued measurable multifunction (alias closed convex random set) from Q to cc(E) is a
(F, £)-measurable mapping from 2 to cc(E). A measurable multifunction X from Q
to cc(E) is integrable (resp. integrably bounded) if the real function d(0, X (.)) (resp.
|X|: @ > sup{||x] : x € X(w)}) is integrable.

If X is a F-measurable and integrable closed convex random set and B is a
sub-o-algebra of F, then there is a B-measurable random closed convex random set
G such that

SE(B) = cHEPB(f) : f € Sx(F)),

where S (1; (B) is the set of all B-measurable and integrable selections of G and the closure
being taken in L}E. Such a G is the multivalued conditional expectation of X relative to
B and is denoted by EPX. Let L}, ) (F) be the set of all F-measurable integrably
bounded multifunction X from Q to cwk(E). If the strong dual of E is separable, then by
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[14], the conditional expectation of arandom set X € L'gw k(E) (F)belongs to Eiw K(E) (B).
A sequence (X,),>1 in ﬁiwk(E) (F) is a super-martingale if X, € [’iwk(E) (Fn) and
E7* X, 11(@) C Xp(w) for all n > 1 and almost surely (a.s. for short) w € . Given
a super-martingale (X,) in ngk( ) (F), then by [6], there is a martingale (f,, F,) in
L}i(ﬂ such that, for each n, f,(w) € X,(w) a.s. Let us recall the following notions of
p-smooth Banach space due to Pisier [11]. Let E be a Banach space and p €]1, 2]. We
say that E is a p-smooth space, if there exists an equivalent norm on E for which the
modulus of smoothness pg defined as

1
PE() = Sup{z(llx +oyl 4 llx =yl = 2) = llxll = liyll = 1}

satisfies the following condition: There exists a constant k such that pg(¢) < kt? for
each ¢ €]0, oof.

Also, we shall use the following limit notions. Let Cy, C», ... and C, be closed
convex subsets of E. We say that C, Mosco converges to Cy if the two following
inclusions are satisfied:

Coo C8-liC,:={x €E:|x—x4]| = 0; x, € Cy}

w-Is C,, :={x € E : x,, = x weakly; x,, € Cp,} C Co.

We shall suppose throughout this paper that p €]1,2] and E is a p-smooth Banach
space.

2. SLLN for Adapted Sequences
The following lemma is decisive in the statement of our main result.

Lemma 2.1. Let F be a Banach space and (gn, Fn)n>1 a martingale in L},(}' ) such
that
(@) lim cPE|gl? =0;

k—o0

x>
(b) kZ (cf — o )Elgil? < oo.
=1

Then lim c,g, =0a.s.
n— 00

Proof. By the Chow inequality [3], for positive integrable submartingales, we have

o0
eP Plmaxcllgel” > €”] < cf Elgal” + 3 f E(gel” —1ge-1l?),
=2 k=n+1
o0
By (a), it is enough to check that > c,f E(jgk|? — |gk—117) < o0. But for all integers
k=2

m > 1, we have

m m—1
P ElgilP + > cf Edlgil” — 1ge1l”) = D (cf — cfy)Elgl? + b Elgnl?.
k=2 k=1
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Then by (a) and (b), we obtain

m
e p P {2 Bia P
lim (c] Elgi] +§ck E(lgl? — lge-117)

o0
=cl Elgil” + ) _ cf E(gel? — lge1l?)
k=2

o

(cf —cp DE|gel?

AT

0.

Now, we are ready to prove the main result in this section.

Theorem 2.2, Let (X,)n,>1 be a sequence in L}E(]-'). Assume that the following
conditions are satisfied:

n
6)) (S,, => X .7-',,) is an adapted sequence;
i=1

0
(i) Y ¢! E|X;|P < 003
=
loo
(i) Y ¢ (|ET1 X;|) < 00 as.
i=1

n
Then lim ¢, ) X;(w) =0 a.s.
n—>00 =1

Proof. By Doob’s decomposition for adapted sequence [4,p.144], there exist a
martingale (Y,, F,) and a predictable sequence (Z,, ;) suchthatVn > 1, S, = Y,+Z,,
where ) = Y1,Z1 = 0,Yy11— Yy = Spt1—E%* Sy1,and Z, 11— Z, = E%* Sy 1~S,.

First Step. Claim. lim c¢,Y, = 0 a.s. It is enough to check that conditions (a) and (b) of
n—o00

Lemma 2.1 are satisfied. Indeed, by Pisier’s martingale inequality, there exists a positive
constant B such that

n
Vn =1, E\t,” <B) E|Yi—Yi1|? @.1)

i=1
with ¥y = 0. On the other hand,
E|Yn o Yn—llp i El(Sn - Sn—l) R (Zn - Zn—l)lp
< E(Xn| + 12y — Zua)?
= E(|Xx| + |E7"" 8, — Sp_1)?
<2’ E|X,|? 2.2)

using Holder’s inequality. By (2.1) and (2.2), we have

n
E|Y,|? <2P B E|X;IP. (2.3)

i=1
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By (ii), (2.3) and Kronecker’s lemma, we obtain (a). Moreover, by (2.3), we have

Z(cp P DEY,P <2 B Z(cl’ & DE( Y 1%:17)
i=1

n=1

[e.9]
=2°B ZE]Xilp D=y

i=1 n=i
oo

=27 BZcfEIXilp < 00.
i=1

Then (b) is satisfied. Hence, Lemma 2.1 gives the desired conclusion.

Second Step. Claim. lim ¢,Z, = 0 a.s. We have
n—>o0

n

lenZnl = |on Y _(Zi — Zi-1))|
i=2
n

= [ea ) (ET-1 8 ~ Si-p)|
i=2
n

< ) _|EF Xy,

i=1
Applying again Kronecker’s lemma in connection with (iii) yields llg:lo cnZy = 0as.,
n
thus proving the theorem. ]

A special form of Theorem 2.2 is the following result of SLLN for mils.

n
Corollary. Let (S, = ) X;, F,) be an integrable mil such that
i=1

22411
) = EIXilP < oo
ipP
i=1
o1
Then lim — S, =0 a.s.
n—oon

Proof. By applying Doob’s decomposition to (S, = Z X;, Fn), there exist amartingale
(Yn, Fn) and a predictable sequence {(Z,, F,) such that Vn, S, = Y, + Z, and
Zpi1 — Zn = EFr Spyq — Su. Set ¢; = —, then (Sy,, Fn)n>1 satisfies conditions (i)
and (ii) of Theorem 2.2. By repeating the ﬁrét step of the proof in Theorem 2.2, we have
lim 1 Y, = 0 a.s. Now, we need to show that hm ! Z = 0 a.s. Since (S,, F,) is a

n—o00o p

mil, lim sup |E7" S, — S;| = 0 a.s., then

m—>00 n>m

lim |Zy, — Zn_1] =0 (2.4)
n—>0o0
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1 Iy
and since —Z, = — E (Z; — Z;—1) with Zg = 0, so by (2.4), we deduce that
n n
i=1

1
lim —Z, =0a.s. ]
n—oo n

3. SLLN for Convex Weakly Compact Adapted Sequences
The following is a multivalued version of Theorem 2.2.

Proposition 3.1. Let X; be a random set in ﬁiw K(E) (F), (Xi)i>2 a sequence in L}E(f)
and (S, = X1 + X2 + - -+ + X, Fn) an adapted sequence. Assume the two following
conditions are satisfied:

o0
@ X ¢ E|X;|P < o0;
i=1

00
i) Y. |ET1 X < o0 as.
i=1

Then O € s-lic, S, a.s.
Proof. Since X is Fi-measurable, there exists an integrable selection 4] € S}E (F1).So

(fa =h1+ X2+ -+ + X,,, F) is an adapted sequence selection of S,,. By (i), (ii) and
Theorem 2.2, we deduce that nlingo cnfn =0,then 0 € s-lic, S, a.s. [ ]

The following proposition ensures the existence of convex weakly compact valued
adapted sequences having the form given in Proposition 3.1.
Proposition 3.2. Let F be a Banach space with strongly separable dual F*. If (X,) is

n
a sequence in Liwk( E) (F), such that (Y_ X;, F) is a super-martingale, then S, has the
i=1
form
Si=X1+ fo+-+ fa,

where f; € L}V(F) @i=2).
Proof. Since (S,, F,) is a super-martingale, it is easy to check that
[ xan@rao) =)
Q
for all n > 1. From [7], there exists f,,4+1 € L},(]—') such that X, 1(w) = {f+1(w)} a.s.
Then Vr > 1
Sn(@) =Y Xi(@) = X1(0) + f2(@) + - + ful®) as. ]
==l

The following is a consequence of Lemma 2.1 and Proposition 3.2.
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Proposition 3.3. Assume E is separable. Let (X,) be a sequence in [,iwk(E) @)
satisfying the following two conditions:
n

@ (O_ X, F) is a super-martingale;
éo=l
(i) Y <! E|X;|P < oc.
i=1
Then
n
(@ Oeslic, Y Xi(w) as.;
i=1
n
) if (d_ Xi, ) is a martingale, then for a.s. ® € £,

sl

M-lime,, ) © X; (@) = {0).

i=1

n
Proof Claim 1. 0 €s-lic, ) X; as.
i=1

First Proof. By (i) and Proposition 3.2, there exists f; € L}E(}') (i = 2)suchthatVn > 1,

Sp(w) := ZX,-(w) =X1(@) + falw) + - - + fu(w) as.

i=1

Since (S,) is a super-martingale in ka(E) (F), by [5], there exists an integrable
martingale selection (g,) for (S,). Consequently, for each n > 1, there exists an
integrable selection A7 of X such that a.s.

gn=h'11+f2+“'+fn- 3.1

Since (gn, Fn)n>1 is a martingale, it is enough to check that conditions (a) and (b)
of Lemma 2.1 are satisfied. Indeed by (3.1), we have A} = h'f"'l + E7 f,44, then
8n+1 — 8n = fut1 — E7" fu41 where go = 0, fi = g1. On the other hand, by Pisier’s
martingale inequality, there exists a positive constant B such that Vn > 1,

n
E|g:|P <B) Elgi — g1l
i=1
n
=B) E|fi—-EF-fP
i=1
n
<2°BY ElfiF (3.2)
i=1
by using Holder’s inequality. By (3.2), we have

E|gn|” <2? B) E|fiI?. (3.3)

i=1
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By (ii), (3.3) and Kronecker’s lemma, we obtain Lemma 2.1(a). Moreover, by (3.3), we
have

00 &g 0
>k —cl DE|gl? <27 B Y (cf — Cf+1)E(Z |f"|p)
n=1 n=1 b L

o0

x
<2?B) EXil?Y (& —cl,)

i=1 n=i

o0
=2°B) cf E|X;|” < 0.
i=1

Then Lemma 2.1(b) is satisfied. Hence, Lemma 2.1 gives the desired conclusion.

Second Proof. (Suggested by C. Hess) By (i), one can check that || g Jo+1 P(dw) = {0},
VB € F, so that, for all n, EZ*(f,41) = 0as.Set S, = fi+ fo +--- + f, (where
o0

A

= 0), then (3‘;, Fn)n>11s an adapted sequence, and by (ii), cip E|fi|? < c0.Soby
=2

Proposition 3.1, we obtain ll)ngo cn(fo+ fa+- -+ fn) =0as, and since ¢, | X;| = O
n

a.s., (a) is satisfied. It remains to prove:

n
Claim 2. w-1s¢, Y_ X;(w) = {0} a.s. Let (e} )r>1 be a dense sequence in E*.

i=1

Applying Theorem 2.2 to real valued martingales (5* (e, S»)) yields

lim c,8*(e, Su(w)) =0 as.
n—oo

for all k¥ > 1. Hence, Claim 2 follows. ]
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