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1. Introduction

Let E be a Fr6chet space with a fundamental system of semi-norms {ll.llr}. For each
subset B of E, we define ll .ll\ : E* + [0, *oo) by

llullb: sup {lu(.r)l i x e B},

where u e E*,the topological dual space of E.
Instead of ll . ll},,we write ll . ll[, where

U p : { x  e  E :  l l x l l y .  <  1 } .

Using this notation, we say that E has the properties

( D N )  i f  f p Y q , d > O 1 k , c > 0 :  l l * l l ' n * o  < C l l ' t l f i l . r l l f ;  f o r x  e E ,

. (o) rf Yp 1q Yk id,c > 0 Vy e E+ : llrll)t+d S Cllyllillyllld.

The properties (DN) and (A) have been introduced and investigated by Vogt (see [6,
7D.

The aim of this paper is to establish that

H r ( F * , O " r - > : g  ( 1 )

in the relation with linear topological invariants (DN) and (S2).
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Remark that Dineen proved that Hl (Q, O) : O for every pseudoconvex domain O
in a vector space equipped with the finest topology. After that, in the first case where
E : C and F is a Fr6chet nuclear space, (1) has been established by Colombeau-Perrot
in [2], and in the second case, where E' is a Fr6chet space with property (DN) and F : C
has been established by Vogt in [5]. Here, by using the linear topological properties (DN)
'and (S2), we extend the results of Colombeau-Perrot and Vogt to infinite-dimensional
cases.

2. Holomorphic Cohomology Group Hrg*, OE:)

Let E, F be locally convex spaces. For q e N, we denote by It r(F, E) the vector space
of all continuous skew symmetric 4-antilinear forms on Fq with values in E. The space
Lq(F, E) is endowed with the topology of uniform convergence on bounded subset
of F. By C(0,s)(9,E), where O is an open subset in F, we denote the vector space
of all Cm-functions o : I --> Lq(F, E).6'(0'a)(Q, E) is equipped with the topology
of uniform convergence on compact subsets of Q for functions, together with all their
respective derivatives.

For each 4 e N, we define a linear operator d from C(0's)(9,8) into
6'(o,c+l)1s2, E) by the formula

1  q  
, , , , 1

(Oro(x)) (yr  , !2 , . . . ,  tq+)  -  
n  ,  . \ - : -  I ( - t )o* '  , {ar{* )1t i l ,-  q + r 7 l

*  i da (x ) l i yp l )Or ,  yz ,  . . . ,  9k ,  . . . ,  ! q+ r ) ,

wherex € Q,yr  € F i f  1  < i  < qt l ,dc, t (x)  denotesthereald i f ferent ia lof  arandthe
hat sign on y( means that yp is omitted.

In the case e : O, we set C(0'0)(O,E) : C-(O,E) as the space of E-valued
Cm-functions on Q.

_ By definition, an element a of C(0,4)(O, E) is said to be O-closed if 0o: 0 and
O-exact if it can be written as , : 0 f .

Let E, F be locally convex spaces. Yy nt1n,OE),we denote the quotient space of
the space of 0-closed C--forms at of type (0, 1) on F with values in E by the space of
thosewhichareS-exact, whereOEo denotesthesheaf of germsof E-valuedholomorphic
functions on F.

The main result of the note is the followins:

Theorem L. IEt E be a Frdchet nuclear space having the property (DN) and F a Frdchet
nuclear space with property (9). Then

Hr (F* , oEil  :  o.

We need the following:

Lemma 2. Let E be a Frdchet nuclear space having the property (DN) and F a Frdchet
nuclear space with properry (A). Let W be a balanced corwex neighborhood of O e F* .
Then for every continuous linear map

T :  E --+ zr(w),  where Zr(W) :  {ar.  t to ' t )1tv) :  aco:0},
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there exists a neighborhood V of O in W such that T : E --> Z' (V) can be lifted to a
continuouslinearmap S: E -> C*(V).

Proof. Following [6], F* is isomorphic to a subspace of sx, where s is the space of rapidly
decreasing sequences. Choose an open polydisc D in s* such that D n F* C lV and
the image of the restriction map 0(W) -> O(D n F*) is contained in 11 : R(O(D)),
where R : 0(D) --> O(D 11 F*) is the restriction map. Such a map exists because the
family of all open polydiscs in s* forms a neighborhood basis of 0 € s* [4] and by the
nuclearity of s*. Note that O(D) e (A) t4l, and hence, 11 e (O), where 11 is equipped
with the quotient topology.

The following argument is a modification of [6]. Put 111 : O(W).II is a nuclear
Fr6chet space. For each k , l, Hl : (al7krll . llr) is the Banach space associated to

the kth semi-norm p*: Hr -- Hl and pn,t i Hl --, Hl, n > k are the canonical
maps.

Following [2], there exists an exact sequence

o --> Hr -+ C-(W)3 zr(w) --+ 0.

Consider the fiber product

P :  { (x ,  y)  e C@(W) x E :  Ex :  Ty l

and the canonical projections a : P --+ E, B : P --> C@(W).
It also follows that the sequence

o --> Hr --+ P3g --> o

is exact.
For each k >- !, since py. : Hr -->

a e Le, Hi).
Ilor is nuclear, mapping pk can be extended to

Let &r : pk+r,ko (Dr+r - Or € L(P, Hb. Since PlHr = E and &7.1s' = Q,
hence, fr induces a continuous linear map Vt : E --, H; which is nuclear. Since
Ul c n1, :  in\er l l . l [ ) ,  we can consider Q14 e L(P,H*),V* € L(E,HD.
Because tI e (O), and hence, by [6], there exists a continuous linear map Q from
s onto 11. Moreover, we can assume that, for each k, we have an induced quotient map
Q* i st --+ If., where

s 2 :  { x  : ( x t , . . . , x n , . . . ) :  l l x l l r :  s u p l - x r l " l k .  o o } ,
l

with the norm ll . llr.
Because of its nuclearity, Vr can be lifted to Vp e L(E,s1). Write Vp :

(Vf,Vt, . . . ) ,  where Vf e E* and{1kV! i  i  :  1,2,. . . )  is equi-cont inuous on
E. Hence, by changing index, we can consider that
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where {Ur} is a decreasing neighborhood basis of 0 e E and Uf is the polar of U7..
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Since .E has property (DN), we can find a neighborhood U of 0 e E such that

o-k-2

u f  c r u o  + L u f , ,^ r

forallr > 0,k> 1. Choosing r: j2-k-r,weobtain, aftermultiplicationby2j-k,

2j-kuf C j-k+rT-kryo + j-(k+I)Ul+l (*)

for all j, k e N.
For each j fixed, j > l, we determine inductively a sequence Af e E* with

e! e ;kuf.We start with Af : o.It A! e i-kuf,,we have v! + e! e zi-krt\.
From (x), we can find Af+l e j-G+r)U0+,, such that

v! + e! - A:*' e i-k+t2-kuo.

Defining Apx : (A\(x), A5@),. . .), we obtain an Ap e L(E, sr). Now, we define

A * : Q * o A p o u e L ( P , H p ) ,

Ht  :  Ot  -  Ar  e L(P,  H*) .

Forx e o-r (U),wehave

ll n-r *rh+t (x) - IIr (.r) ll n- 1 : ll 07. (x ) + Aili - Ar+t @)ll,_r
: l l(Vt -f Ar - A1,a)axll1,-1 < 2-k.

It follows that

t1g(r.nl o II7.)x

exi.sts for every n > 1 and every x e P. Put

fi'n7*1 : lig{(.o'"o fl,')x fot x e P'

We have fl, e L(P,Iln). Since pn+r,nfin+r: fr, and H : Emproj(Hn, pn,n-r),
there exists ll e L(P,I/) with fln : pno fI for n > 1. For x e Hr,we have

fIn7r1 : lim(p1r.no <D7.(.r)) : pr(x) for n > I.
";T

So fl(x,0) : xlv forx € Hr : O(W),where V : D (1F*. This yields that
T : E --> zr(v) is lifted to S e L(E, C-(y)).
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Proof of Theorem I . By l2l, we have the exact sequences

0 --> Op. --, C3. -+ ker8f. -+ 0,

0 --> 0(F*)-+ C@(F*) -- t"r6'f- * O.

Lemma 2 and the Vogt's splitting theorem [6] imply that the sequences

o --> oEoi --> c?.E. -+ kera|1. -+ o

0 -+ O(F*)$ ,E* --+ c*(F*)6.8- -- rc.a-f.o.E* -+ 0

are exact. This yields
H1(F*, clEi l  :  o,

and Theorem 1 is completely proved.
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