Vietnam Journal of Mathematics 26:4 (1998) 357-361

Vietnam Journal of MATHEMATICS © Springer-Verlag 1998

C at them, will be the

Short Communication

First Holomorphic Cohomology Group and Linear Topological Properties

Pham Hien Bang

Department of Mathematics, Training Teachers College Hanoi National University, Hanoi, Vietnam

> Received June 26, 1997 Revised July 25, 1997

1. Introduction

Let *E* be a Fréchet space with a fundamental system of semi-norms $\{\|.\|_k\}$. For each subset *B* of *E*, we define $\|.\|_B^* : E^* \to [0, +\infty)$ by

$$|u||_{B}^{*} = \sup \{|u(x)| : x \in B\}$$

where $u \in E^*$, the topological dual space of E. Instead of $\| \cdot \|_{U_k}^*$, we write $\| \cdot \|_k^*$, where

$$U_k = \{x \in E : \|x\|_k \le 1\}.$$

Using this notation, we say that E has the properties

(DN) if
$$\exists p \ \forall q, d > 0 \ \exists k, c > 0 : \|x\|_q^{1+d} \le C \|x\|_k \|x\|_p^d$$
 for $x \in E$,

(
$$\Omega$$
) if $\forall p \exists q \forall k \exists d, c > 0 \forall y \in E^*$: $\|y\|_a^{*1+d} \leq C \|y\|_k^* \|y\|_p^{*d}$

The properties (DN) and (Ω) have been introduced and investigated by Vogt (see [6, 7]).

The aim of this paper is to establish that

$$H^1(F^*, \mathcal{O}_{F*}^{E^*}) = 0$$

in the relation with linear topological invariants (DN) and (Ω) .

(1)

Remark that Dineen proved that $H^1(\Omega, \mathcal{O}) = 0$ for every pseudoconvex domain Ω in a vector space equipped with the finest topology. After that, in the first case where E = C and F is a Fréchet nuclear space, (1) has been established by Colombeau–Perrot in [2], and in the second case, where E is a Fréchet space with property (DN) and F = Chas been established by Vogt in [5]. Here, by using the linear topological properties (DN) and (Ω), we extend the results of Colombeau–Perrot and Vogt to infinite-dimensional cases.

to Olonomorio a anti-tempetete issue

2. Holomorphic Cohomology Group $H^1(F^*, \mathcal{O}_{F^*}^{E^*})$

Let E, F be locally convex spaces. For $q \in N$, we denote by $\Lambda_q(F, E)$ the vector space of all continuous skew symmetric q-antilinear forms on F^q with values in E. The space $\Lambda_q(F, E)$ is endowed with the topology of uniform convergence on bounded subset of F. By $C^{(0,q)}(\Omega, E)$, where Ω is an open subset in F, we denote the vector space of all C^{∞} -functions $\omega : \Omega \to \Lambda_q(F, E)$. $C^{(0,q)}(\Omega, E)$ is equipped with the topology of uniform convergence on compact subsets of Ω for functions, together with all their respective derivatives.

For each $q \in N$, we define a linear operator $\bar{\partial}$ from $C^{(0,q)}(\Omega, E)$ into $C^{(0,q+1)}(\Omega, E)$ by the formula

$$(\overline{\partial}\omega(x))(y_1, y_2, \dots, y_{q+1}) = \frac{1}{q+1} \sum_{k=1}^q (-1)^{k+1} \frac{1}{2} (d\omega(x)[y_k], + id\omega(x)[iy_k])(y_1, y_2, \dots, \hat{y}_k, \dots, y_{q+1}),$$

where $x \in \Omega$, $y_i \in F$ if $1 \le i \le q + 1$, $d\omega(x)$ denotes the real differential of ω and the hat sign on y_k means that y_k is omitted.

In the case q = 0, we set $C^{(0,0)}(\Omega, E) = C^{\infty}(\Omega, E)$ as the space of *E*-valued C^{∞} -functions on Ω .

By definition, an element ω of $C^{(0,q)}(\Omega, E)$ is said to be $\overline{\partial}$ -closed if $\overline{\partial}\omega = 0$ and $\overline{\partial}$ -exact if it can be written as $\omega = \overline{\partial} f$.

Let E, F be locally convex spaces. By $H^1(F, \mathcal{O}_F^E)$, we denote the quotient space of the space of $\overline{\partial}$ -closed C^{∞} -forms ω of type (0, 1) on F with values in E by the space of those which are $\overline{\partial}$ -exact, where \mathcal{O}_F^E denotes the sheaf of germs of E-valued holomorphic functions on F.

The main result of the note is the following:

Theorem 1. Let E be a Fréchet nuclear space having the property (DN) and F a Fréchet nuclear space with property (Ω) . Then

$$H^1(F^*, \mathcal{O}_{F^*}^{E^*}) = 0.$$

We need the following:

Lemma 2. Let E be a Fréchet nuclear space having the property (DN) and F a Fréchet nuclear space with property (Ω). Let W be a balanced convex neighborhood of $0 \in F^*$. Then for every continuous linear map

 $T: E \to Z^1(W)$, where $Z^1(W) = \{ \omega \in C^{(0,1)}(W) : \overline{\partial} \omega = 0 \}$,

First Holomorphic Cohomology Group and Linear Topological Properties

there exists a neighborhood V of 0 in W such that $T : E \to Z^1(V)$ can be lifted to a continuous linear map $S : E \to C^{\infty}(V)$.

Proof. Following [6], F^* is isomorphic to a subspace of s^* , where s is the space of rapidly decreasing sequences. Choose an open polydisc D in s^* such that $D \cap F^* \subset W$ and the image of the restriction map $\mathcal{O}(W) \to \mathcal{O}(D \cap F^*)$ is contained in $H = R(\mathcal{O}(D))$, where $R : \mathcal{O}(D) \to \mathcal{O}(D \cap F^*)$ is the restriction map. Such a map exists because the family of all open polydiscs in s^* forms a neighborhood basis of $0 \in s^*$ [4] and by the nuclearity of s^* . Note that $\mathcal{O}(D) \in (\Omega)$ [4], and hence, $H \in (\Omega)$, where H is equipped with the quotient topology.

The following argument is a modification of [6]. Put $H^1 = \mathcal{O}(W)$. It is a nuclear Fréchet space. For each $k \ge 1$, $H_k^1 = (H^1/\ker \| . \|_k)$ is the Banach space associated to the kth semi-norm $\rho_k : H^1 \to H_k^1$ and $\rho_{n,k} : H_n^1 \to H_k^1$, n > k are the canonical maps.

Following [2], there exists an exact sequence

$$0 \to H^1 \to C^{\infty}(W) \xrightarrow{\overline{\partial}} Z^1(W) \to 0.$$

Consider the fiber product

$$P = \{(x, y) \in C^{\infty}(W) \times E : \overline{\partial}x = Ty\}$$

and the canonical projections $\alpha: P \to E, \beta: P \to C^{\infty}(W)$.

It also follows that the sequence

$$0 \to H^1 \to P \stackrel{\alpha}{\to} E \to 0$$

is exact.

For each $k \ge 1$, since $\rho_k : H^1 \to H_k^1$ is nuclear, mapping ρ_k can be extended to $\Phi \in L(P, H_k^1)$.

Let $\tilde{\Psi}_k = \rho_{k+1,k} \circ \Phi_{k+1} - \Phi_k \in L(P, H_k^1)$. Since $P/H^1 \cong E$ and $\tilde{\Psi}_k|_{H^1} = 0$, hence, $\tilde{\Psi}$ induces a continuous linear map $\overline{\Psi}_k : E \to H_k^1$ which is nuclear. Since $H_k^1 \subset H_k = (H/\ker \| . \|_k)$, we can consider $\Phi_k \in L(P, H_k), \overline{\Psi}_k \in L(E, H_k)$. Because $H \in (\Omega)$, and hence, by [6], there exists a continuous linear map Q from s onto H. Moreover, we can assume that, for each k, we have an induced quotient map $Q_k : s_k \to H_k$, where

$$s_k = \{x = (x_1, \dots, x_n, \dots) : \|x\|_k = \sup_j |x_j| j^k < \infty\},\$$

with the norm $\|.\|_k$.

Because of its nuclearity, $\overline{\Psi}_k$ can be lifted to $\Psi_k \in L(E, s_k)$. Write $\Psi_k = (\Psi_1^k, \Psi_2^k, \ldots)$, where $\Psi_j^k \in E^*$ and $\{j^k \Psi_j^k : j = 1, 2, \ldots\}$ is equi-continuous on E. Hence, by changing index, we can consider that

$$j^k \Psi_i^k \subset U_k^0,$$

where $\{U_k\}$ is a decreasing neighborhood basis of $0 \in E$ and U_k^0 is the polar of U_k .

359

Since *E* has property (DN), we can find a neighborhood *U* of $0 \in E$ such that

$$U_k^0 \subset rU^0 + \frac{2^{-k-2}}{r}U_{k+1}^0$$

for all $r > 0, k \ge 1$. Choosing $r = j2^{-k-1}$, we obtain, after multiplication by $2j^{-k}$,

$$2j^{-k}U_k^0 \subset j^{-k+1}2^{-k}U^0 + j^{-(k+1)}U_{k+1}^0 \tag{(*)}$$

for all $j, k \in N$.

For each j fixed, $j \ge 1$, we determine inductively a sequence $A_j^k \in E^*$ with $A_j^k \in j^{-k}U_k^0$. We start with $A_j^0 = 0$. If $A_j^k \in j^{-k}U_k^0$, we have $\Psi_j^k + A_j^k \in 2j^{-k}U_k^0$. From (*), we can find $A_i^{k+1} \in j^{-(k+1)}U_{k+1}^0$ such that

$$\Psi_j^k + A_j^k - A_j^{k+1} \in j^{-k+1} 2^{-k} U^0.$$

Defining $A_k x = (A_1^k(x), A_2^k(x), ...)$, we obtain an $A_k \in L(E, s_k)$. Now, we define

 $\tilde{A}_k = Q_k \circ A_k \circ \alpha \in L(P, H_k),$ $\Pi_k = \Phi_k - \tilde{A}_k \in L(P, H_k).$

For $x \in \alpha^{-1}(U)$, we have

$$\|\rho_{k-1,k}\Pi_{k+1}(x) - \Pi_k(x)\|_{k-1} = \|\tilde{\Psi}_k(x) + \tilde{A}_k(x) - \tilde{A}_{k+1}(x)\|_{k-1}$$
$$= \|(\Psi_k + A_k - A_{k+1})\alpha x\|_{k-1} \le 2^{-k}.$$

It follows that

$$\lim_{k\to\infty\atop k>n}(\rho_{k,n}\circ\Pi_k)x$$

exists for every $n \ge 1$ and every $x \in P$. Put

$$\widetilde{\Pi}_n(x) = \lim_{k \to \infty} (\rho_{k,n} \circ \Pi_k) x \text{ for } x \in P$$

We have $\tilde{\Pi}_n \in L(P, H_n)$. Since $\rho_{n+1,n}\tilde{\Pi}_{n+1} = \tilde{\Pi}_n$ and $H = \lim \operatorname{proj}(H_n, \rho_{n,n-1})$, there exists $\Pi \in L(P, H)$ with $\tilde{\Pi}_n = \rho_n \circ \Pi$ for $n \ge 1$. For $x \in H^1$, we have

$$\tilde{\Pi}_n(x) = \lim_{k \to \infty \atop k > n} (\rho_{k,n} \circ \Phi_k(x)) = \rho_n(x) \text{ for } n \ge 1.$$

So $\Pi(x, 0) = x|_V$ for $x \in H^1 = \mathcal{O}(W)$, where $V = D \cap F^*$. This yields that $T : E \to Z^1(V)$ is lifted to $S \in L(E, C^{\infty}(V))$.

360

First Holomorphic Cohomology Group and Linear Topological Properties

Proof of Theorem 1. By [2], we have the exact sequences

$$0 \to \mathcal{O}_{F^*} \to C_{F^*}^{\infty} \to \ker \overline{\partial}_{F^*}^1 \to 0,$$
$$0 \to \mathcal{O}(F^*) \to C^{\infty}(F^*) \to \ker \hat{\overline{\partial}}_{F^*}^1 \to 0.$$

Lemma 2 and the Vogt's splitting theorem [6] imply that the sequences

$$0 \to \mathcal{O}_{F^*}^{E^*} \to C_{F^*}^{\infty E^*} \to \ker \overline{\partial}_{F^*}^{1E^*} \to 0$$

$$0 \to \mathcal{O}(F^*) \hat{\otimes}_{\epsilon} E^* \to C^{\infty}(F^*) \hat{\otimes}_{\epsilon} E^* \to \ker \hat{\overline{\partial}}_{F^*}^1 \hat{\otimes}_{\epsilon} E^* \to 0$$

are exact. This yields

$$H^1(F^*, \mathcal{O}_{F^*}^{E^*}) = 0,$$

and Theorem 1 is completely proved.

Acknowledgement. The author would like to thank the referees for helpful advises for this paper.

References

- B. J. Boland and S. Dineen, Duality theory for spaces of germs and holomorphic functions on nuclear spaces, in: *Advances in Holomorphy*, North-Holland Mathematics Studies Vol. 34, J. A. Barroso (ed.), North-Holland, 1979, pp. 179–207.
- J. F. Colombeau and B. Perrot, L'équation
 dans ouverts pseudoconvex des espaces (DFN), Bull. Soc. Math. France 110 (1982) 15-20.
- 3. S. Dineen, Sheaves of holomorphic functions on infinite-dimensional vector spaces, *Math.* Ann. 202 (1973) 337-345.
- 4. R. Meise and D. Vogt Structure of spaces of holomorphic functions on infinite-dimensional polydisc, *Studia Math.* **75** (1983) 235–252.
- 5. D. Vogt, Vektorwertige distributionen als randverteilungen holomorpher funktionen, Manuscripta Math. 17 (1975) 267-290.
- D. Vogt, Subspaces and quotient spaces of (s), in: Functional Analysis Surveys and Recent Results, North-Holland Mathematics Studies, Vol. 27, K. D. Bierstedt and B. Fuchssteiner (Eds.), North-Holland, 1977, pp. 167–187.
- D. Vogt, Frecheträume, zwischen denen jede stetige lineare abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983) 182–200.

361