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Abstract. The authors consider the problem of determining by gravimetric methods the shape of
an object in the interior of the Earth, the density of which differs from that of the surrounding
medium. Assuming a flat earth model, the problem is that of finding a domain in the half-plane
z < H, H > O,representedby

0 < o ( x ) < H , 0 < x < 1 ,

where o satisfies a nonlinear integral equation of the first kind. Uniqueness is proved and the
integral equation is approximated by a linear moment problem.

1. Introduction

The determination of the shape of an object Q in the interior of the Earth and the density,
of which differs from that of the surrounding medium, is a fundamental problem of
applied geophysics. Gravimetric methods are used for this purpose. They consist of
measuring the gravity anomalies created on the surface by the difference in densities.
A mathematical formulation of the problem can be found in [8] which contains several
references to the literature. A uniqueness proof for the 3-D case was given in [1], and
more recently, a general uniqueness theorem was proved for the 3-D case in [3]. In this
paper, we consider rhe 2-D case and furthermore, we assume that we are given gravity
gradient [9] instead of the anomaly in the gravity itself. The uniqueness proof for the 2-D
case has certain peculiarities not present in the 3-D case. The gravity gradient approach
presents advantages as shown in [9].
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Fig.1.

For our problem, we consider a flat earth model. Let the Earth be represented by the
half plane (x,z),-x < z < 11 where H > 0 andletthebody gberepresentedby
0 < z < o ( x ) ( F i g . 1 ) .

Let p be the relative density of O, i.e., the difference between the density of O and
that of the surrounding medium. We assume p to be a constant.

Denote by U - U (x, z) the gravity potential created by p:

(.1(x, z) : * Irp 
rn ((' - i l2 + <z - r>2) a,. (t)

Then the gravity anomaly created by p is

A U  p  f  z - t- E : n J n e ; - i l 2 + k - i l 2 d u  \ 2 )

and the gravity gradient created on the surface z : H is

- t ! l  :  - r -  [  - !  ( ,  . ! - . t== , , \ouoz2 l , :n zn Js ag \ t "  -  61,  + @ - ()z )  
' -

o [ [ '  , ! - 1 - ! € )  = , , - d E - f '  ' q €  = 1  .
l | o  @:E f  +@-o(€ ) ) '  Jo  $ - t iE I '

From now on, for convenience, we set

p = r .

Let fs - /o(r) be the gravity gradient on the surface Z : H. Then we have

H -  o (€ )

o-EF.r; ;or ldt : f (x) '
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where we have set

Put
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(4)

The problem is to determine o(x) from Eq. (3). The main results are a uniqueness
result for Eq.(3) (Theorem 1) and a uniqueness theorem for the approximating linear
moment problem (Theorem 2).

Theorem 1. (Uniqueness theorem) Equation (3 ) admits at most one continuous solution
o : o(x), 0 ( r < l, vanishing ato and l, and such thato < o(x) < a < Hfor
0 < . r < 1 .

Proof. Let o1 , o2 be two solutions of (4). Then

r (x) : - ro@)-# I r ' .  _#rp

I,' ot - Io'

where 19,, Ig., are the characteristic functions of Q1, s22, respectively. It can be shown
that

a F ,  1 t  /  \ . .
i ;@, z)  :  

/  
tn (  )ot .  

( i )

The function (t, z) is harmonic in R2 \ (S1 U 52) where 51 , 52 are the nonhorizontal

portions of the boundaries of S21, O2, coffesponding to 61,62, respectively (Fig. 2).

H - oz(€)
d € : o (5)

(x -  €)2 + ( I l  -  ozG))2- '  
-  " '

F(x, z): 
"f, 

(tn, - to,)rn (t" - €)z + (z - ' l2) ar, (6)

Fig.2.
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^ 1  -

o n z  >  H t h a t  * L ( * , 2 ) :  A . " ( x ) : 0 f o r  z >  H  s o t h a t , l " i s l i n e a r i n x . S i n c e
0z.0xt

A F
Note that since ll is a harmonic function on R2 1 1s1 u s2;, by harmonic continuation,

0z
A F

itfollowsthat =("{, z) :0intheunboundedconnectedcomponentKofR2\(S1 US2;.
oz

A F
Since 

f 
is continuous everywhere in R2, and in particular on 51 U 52, and since

51 U 52 C A K, we have by continuity that

A F
^ (x '  z)  :0  on St  U Sz '

from what precedes y(x) :6(x) on z > H and thus 6(x) is a constant, i.e.,

[ .  ( tn  -  to , ) rn ( (x  -  €)2 + (z  -  i l ' )du :  const .  on R2.  (s)
JR2

Applying the Laplacian to each side of (8) gives

2n ( lg2,  -  1o,)  :0 ,  (9)

which gives 91 : 02, i.e., o1 : o2. This completes the proof of Theorem 1. I

The problem of identifying the shape of a density inhomogeneity in the interior of the
Earth, formulated in the present case as a nonlinear integral equation, is in general an
ill-posed problem. The problem in the 3-D case was regularized by finite-dimensional
approximations in [2]. In the present 2-D case, we approximate the original integral
equation by a linear integral equation, which, in turn, is converted into an equivalent
linear moment problem.

Consider Eq. (3)

H -  o ( t )
( x - € ) 2 + ( H - o ( 1 D 2

:  f(x).
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As in Theorem 1, we shall assume that

0 < o ( x ) < q < H , 0 < x < 1 .

Setting q(x) = H - o(x), "r € (0, L), we see that the function
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(10)

a l

h(x\ :  [ '  e(?d€ -
Jo @-q1\@1r'  

(11)

inviewof (10), canbeextendedtocomplexanalyticfunctiononastripof width . ri -o
around the real axis of the complex plane. Hence, h is completely defined by its values on
an interval (-cp, -Ml, for any M > 0, i.e., (3) is equivalent to the following equation:

[ '  
qG)a€ = : "

, o  @ - € p + d G ) : a t f ( x ) ,  
x < - M .  ( 1 2 )

wheregisacont inuousfunct ionon[0,  1] ,  p(0) :g0) :  H andH u < 9(x)  < H
for all x € (0, 1). Now, for large M and x > 0, we have the expansio

_ e(€)- (M i ; -+E -  + '  '

As a first approximation, we take

eG) eG)
(M *x  l -€ )z  - t rp2( i l  (M *x  +E)2 '

and consider the following linear integral equation in p:

f  I  toQ\

|  , -  =--- .=d€:2tf  (-M - x),  x > 0. (13)
J o  \ M + x + E ) .

By taking x : 1,2, ..., we arrive at the following equivalent moment problem:

n l

[ '  r = ,  l ( € ) ,  r u d €  : 2 n f ( - M  - n )  :  L t , ,  n  :  1 , 2 , . . . .  ( 1 4 )
J o  ( M * n _ t t ) z

We have the following uniqueness result:

Theorem 2. Equation ( I 4 ) admits at most one continuous s olution g - g (x), 0 < x < 1.

eG)
f f i : e c ) f r u + x + i l 2 ( t . (  ) ' )
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Proof. It is sufficient to prove that if

[ ' ' - -  l ( € )  r . r d €  : 0 .  n : r . 2 - . . . ,
J o  ( M _ l n * E ) z

then g : g.

Now, the latter integral can be written as

I,*

(15)

(16)

(r7)

where 9(f ) is extended to be 0 for x

lr(t) eg)e-tE 49.= ' l o *

fo* trrr  e-M') e-n'dt :0. n :  r .2, .  .  .  .

I,' ;gaq: Io u-'(lo* te161e-'|r'aq)at'

We put

Then, by (15) and (16)

(18)

Since the set of continuous functions with compact supports on R+ is dense in Z21n+;
(see [7]), an application of the Stone-Weierstrass theorem shows that the lgebra
generatedbythesequence (r-"' l isdenseinZ2ln+;.Itfollowsthat{(t)e-Mt 0a.e.
and hence that lr(t) : O a.e.In view of (17), it follows that

lo vGlr-'E dE : o' t > o. ( le)

Thus, the Laplace transform of q(E) is the null function. Hence, by uniqueness of the
inverse Laplace transform (cf. [10, p.2a3D (or by the previous argument), we have

9 ( E ) : o  a ' e . (20)

This completes the proof of Theorem 2. I

Remark. In proving that (18) implies ,lr(t)r-M' : 0, we have actually proved (the
known fact) that if the Laplace transform f of a function g vanishes atn : 1,2, ...,then
g : 0 (from which follows the uniqueness of the inverse Laplace transform). Since we
have not been able to find a handy reference, we sketch a proof.
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