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Abstract. This paper gives some extended versions of a theorem of H. Berliocchi and J.M. Lasry
in [3]. It is proved that these versions are equivalent to several extremum principles for classes
of mathematical programming problems. An example is given in the last section of the paper to
show the ability of using the above results to approach the existence of nonconvex variational and
optimal control problems.

1. Introduction

A well-known characterization of the extreme points of an affinely constrained subset
of a locally convex Hausdorff space had been invented by Berliocchi and Lasry in [3].
Latet Winkler [14] gave a generalization for extremes points of moment sets oriented
towards optimizing affine functionals. Based on these results, the first author established
a so-called "fundamental extremum principle", and with this as one of main tools, the first
author obtained in [1] new results on the existence for optimal control problems without
convexity assumptions. These results subsumed the well-known ones in the literature
such as those of Cellina and Colombo [5], Raymond [11], Cesari [6], etc. In this paper,
other versions of the extension of the Berliocchi-Lasry theorem are given. Moreover, in
Sec. 3, we will prove that these versions are equivalent to several principles for classes
of mathematical programming problems. The last section is left for an application of one
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Control Theory and Optimization", Hanoi Institute of Mathematics, and by the basic research
Project 1. 1. 10/98, Vietnam.
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of the mentioned results in deriving the existence of a simple class of nonconvex optimal
control problems.

Let X be a locally convex Hausdorff space and A a subset of X (not necessarily convex).
A subset E of A is called anextremal subset of Aif x1, x2 e A arrd),x1+ (1 - L)x2 e E
for some I e (0, 1) entails xt,xz e E.If an extremal subset E is a singleton subset
of A, say E : {xo}, then .rs is said to be an extreme point of A. The set of all extreme
points ofA is denotedby 0"4 (see [8,9,12]).

We conclude this section by recalling the theorem of Berliocchi and Lasry [3].

Theorem l. 13,II.2, Proposition 2,p. 145l Let K be a convex, compact subset of a
Iocally convex Hausdorff space and let Q1, . . ., Q, be n ffine functions from K to
(-oo., oo]u. Then each extreme point of the set

G : : { x  e  K I O ; ( x ) < 0 ,  i - I , 2 , . . . , n }

is a corwex combination of at most n * L extreme points of K.

2. Extensions of Berliocchi-Lasry Theorem

We are now in a position to introduce some extensions of Theorem 1. In this and the next
section, K is a convex, compact subset of a locally convex Hausdorff space X. Besides,
the symbol 0/(r) always stands for the subdifferential of the convex function f at the
point x.

Theorem 2, Let O1,..., Q^belowersemicontinuous(l.s.c.)concavefunctionsfromK
to (-oo, cnl. Let G be a subset of K defined by

G : : { x  e  K I O ; ( x ) < 0 ,  i : 1 , 2 , . . . , m ) .

Suppose G + A and 0 G A i) (x) I A for all x e G and for all i : l, 2, ..., m. Then each
extreme point of G is a convex combination of at most (m -l l) extreme points of K.

Proof. Bythelowersemicontinuityof Q;(.), i :1,2,...,m,G is(nonempty)compact.
It follows from Lemma 8. I in [8, p. 2ll or [9, 1 3.A, p. 7 4]b that 0, G I A. Take y € Ae G,

6 ;  e  3 ( -O ; ) ( y ) ,  i  : 1 ,2 , . . . ,m .One  ob ta ins

O ; ( x )  <  O ; ( y )  +  ( x  -  y ,  - f i )  : :  O ; ( . ) ,  f o r a l l x  e  K , i : 1 , 2 , . . . , m .

G u  : :  { x  e  K  I  O ; ( x )  <  O ; ( y ) ,  i  :  I , 2 , . . . , m ) .

uFor an example of such a kind of affine functions, one can take K : trZi(lR) and 1t --+

[nx2 p,(dx) (see also Sec. 4).

bAlthough, in [9], the definitions of extremal subsets and extreme points were just given for convex
subsets of a locally convex space X, the lemma in [9,l3Ap.74] is still valid for nonconvex subsets
(and X is Hausdorff) as claimed by the author (without any changes in its proof given therein),
provided that the extremal subsets and extreme points are understood as in Sec. 1.

Set
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Then G,, C G, and I e Gy (note that Oi(y) : O;(y)). Since = y € AeG, one
obtains y e AeGy. Theorem 1 now applies to the set G, and guarantees the existence of
x i  €  \sK,  ) , ;  e  [0,  1]  wi th DTJ'  X, l ,  i  :  I ,2 , . . . ,m *  |  and y :  Df : r r  ) " ;x i .The
proof is complete.

A further extension of Theorem 2 is as follows.

Theorem 3. Let Qo, h,..., Q* : K ----+ (-oo, m] be l.s.c. concave functions. Let
further lr; be functions from K to (-@, al defined by

tb i@)  : : 4 i@)  - t  s iQ i@) ) ,  x  e  K ,

where L; : K -----> Ra are operators which are continuous and ffine on K and
gi  :  L i (K)  -> ( -oo,  *oo1 are l .s .c  on L i6) ,  i  :0 ,2,  .  .  .  ,m.  Set

Q  : :  { x  e  K  I  t b i @ )  <  0 ,  i  :  0 , I , 2 ,  . . . ,  m } .

Suppose g + g and |I-Qil@) * A for all x e K. Then there exists a point x* € I
such that x* can be expressed as a convex combination of at most (m + l)(2q * l) + t
extreme points of K.

Proof. Take i e I and define 8t to be the set of all x e K satisfying, for all
i  : 0 , 7 , . . . m , k  -  1 , 2 , . , . q ,

Qi@) + s i (L i@D < o,  Lf  @) -  Lf  @ s0, Lf  @ - L!@) so,

where L; : Q!, L?, . . ., L7 ), i : 0, 1, . . ., m. Then L has the form of G in Theorem
2 where the roles of Oi(.) are played by either QiO + SiQi@D or ff O - f!{D, or
L f t x >  -  L y ( . ) , i  :  1 , 2 , . . . , m ,  k  :  r , 2 , . . . , q .

Note that 9; is not empty (i e 9*) md compact. Hence, 8"Qt # A.Take x* e 0"9i.
By definition, x* € 9. The conclusion now follows from Theorem 2. tr

3. Extremum Principles

Let  K,  QiO,  Si ( ) ,  and I ; ( . ) ,  i  :  0 ,1, . . .  ,  m be as in  Theorem 3.  Consider  the
optimization problem (Pl):

(P1) : minimize tlrs(x) :: Qo@) * ge(fs(x))

overal lxeKsat is fy ing

t i @ )  : :  Q i @ )  +  S i Q i @ ) )  <  0 ,  i  :  1 , 2 ,  . . . , m .

As a consequence of Theorem 3, we obtain the following extremum principle for
( P 1 ) .

Theorem 4, Suppose inf(P1) < *oo. Then problem (PI) has an optimal solution
which is ct convex combination of at most (m -f l)(2q * 1) + | extreme points of K.
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Proof. The existence of optimal solutions of (P1) follows from the compactness of K,
the lower semi-continuity of $i(), i : 0, 1, ... ,ffi, and Weierstrass theorem. For the
last assertion, set

j *  : :  in f  (P1) ,

Q  : :  { x  e  K  l l r o @ )  <  i * ,  l r i @ )  <  0 ,  i  -  1 , 2 , . . . , m J .

In other words, 9 is the set of all optimal solutions of (P 1). By the previous argument,
it is nonempty. Therefore, it follows from Theorem 3 that there exists x* e I which
is a convex combination of at most (m + l)(2q * l) + 1 extreme points of K. By the
definition of Q, x* is an optimal solution of (P 1). The proof is complete. r

Remark 1. Theorem 4 is equivalent to Theorem 3.

Obviously, Theorem 4 is a consequence of Theorem 3. Conversely, K and the functions

QiO, giO, Li(.), , lr iO, i : 0, 1, . . . ,mareasinTheorem3. Supposetheset9defined
in Theorem 3 is nonempty. Construct the problem (P1) as above.

Note that inf(Pl) < *oo follows from the fact that g + A.Hence, by Theorem 4,
there exists an optimal solution x* of (Pl) which is a convex combination of at most
(m+l)(zq + 1) + l extremepointsof K.Itremainstoprovethatrx € f. Since g +A,
we obtain i* :: inf (Pl) < 0. This gives ry'(.r*) - i* < 0 whichproves thatr* € g. I

It is clear from the above proof that the element r* that exists in Theorem 3 can be
chosen in such a way that it is a minimizer of one of the functions r/r; (.), say ry';', over
the set defined by thi@) < 0, j + is, x e K.

As a direct consequence of Theorem 4, we obtain the following:

Corollary 1. (Extremum principle for concave programming problems with reverse
convex constraints) Let D be an open set containing a convex, compact subset K of a
Iocally colvex Hausdorff space X, and let hO,i : 0, 1,2,...,m be l.s.c. concave

functions from D to (-rc,|ca} Suppose these functions are locally bounded from
below on D. Consider the concave programming problem (P2):

(P2) : minimize Qo()

overallx e K satisfiing

d i @ ) <  0 ,  l - t , 2 , . . . , m

(constraints of the form (*) are called reverse convex constraints (see [10])). Suppose
the admissible set of (P2) is nonempty. Then (P2) has an optimal solution that is a
convex combination of at most m * 2 extreme points of K.

Remark 2. In Theorem2, If all the functions <D;(.) except one are affine, then the
hypotheses stated therein may be weakened but the price we have to pay for this is
a weaker conclusion. As a matter of fact, this is a combination of Bauer's extremum
principle (see [9, 13A., Corollary 2,p.751, [7, Theorem 25.9,p.102]), Theorem l, and
the previous argument. Concretely, we have

(*)
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Corol lary 2.  Let  06:  K - - - -+ ( -oo,  rc fbel .s .c .concave,andlet<D1, . . . ,Q*bel .s .c .
affine functions from K to (-x, col. Further let G be a subset of K defined by

G : : { x  e  K  l O ; ( x )  < 0 ,  i : 0 , I , 2 , . . . , m 1 .

Suppose G + A.Then there exists a point x* e G such that x* is a conyex combination
of at most (m + 2) extreme points of K. Moreove4 xx can be chosen to be an extreme
point ofthe set

G : : { x  e  K I O ; ( r ) < 0 ,  i : 1 , 2 , . . . , m J .

Note that the assumption "0[-O;](.r) * A, Yx e G" which played a very important
role in the proof of Theorem 2 is absent.

Proof. Consider the problem (P3):

(P3) : minimizethe function O6(x) over 6.

Since G I A, inf (P3) < +oo. By Bauer's extremum principle, there exists x* e AeG
which is an optimal solution for (P3). It is evident that x* e G. The rest of the conclusion
follows from Theorem L

The same argument as in the proof of Theorem 3 leads to the following, which is
equivalent to the Fundamental Extremum Principle in [] (see also Theorem 4 and
Remark 1 above).

Corollary 3. Let Qo : K ----+ (-oo, al be l.s.c. concave, and let h, ..., Q^ : K ---->

(-oo, ool be ffine l.s.c. functions. Furthef let lri be functions from K ro (-oo, +ool
defined by

l r i @ )  : :  Q i @ )  +  S i Q i @ ) ) ,  x  e  K ,  i  : 0 ,  1 , 2 ,  . . . , m

where L; : K -----> Rq are operators which are continuous and affine on K and
gi : Li(K) ---+ (-oo, *el are l.s.c on Li(K), i : 0,2, ..., m. Suppose I is a subset
of K definedby

Q : : { x  e  K  l t h i @ )  <  0 ,  i : 0 , 1 , 2 , . . . , m J .

If g + A, then there exists a point x* € I such that x* is a convex combination of at
most (m + I)(2q I l) extreme points of K.

4. Application: The Existence for Nonconvex Optimal Control Problems

As an application of the above results, an existence theorem for a simple nonconvex
optimal control problem will be proved in this section. In the course, Corollary 2 will
play a crucialrole. Despite of the simplicity of theproblemin consideration, the existence
is not trivial because of the lack of convexity assumptions.
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4.1. Statement of the Problem and Assumptrons

Consider problem (P) of minimizing the functional

7 t  f l
J (u) :: I stt , u(t))dt + l^ Ett , v(t))dt + e(v) (P)

J o  J U

over all absolutely continuous mappings yo : / ----+ Rn and over all measurable

u(.) : I ----+ R4 (1 := 10, 1l) satisfying the following conditions:

j ( t ) :  B( t )y ( t )  +b( t ,u ( t ) ) ,  ) (0 )  :0 '

u ( t )  e U ,  t  e  I ,

7 l

I  s , Q , u ( t ) )  <  a i ,  i  =  t , 2 ,  " ' , m '
Jo

Here,(JisaBorelmeasurable,compactsubsetofRs'B(')isaintegrablemapping
from l withn 

" 
r--uJ*tJo"t,u i t x IRa -+ IR'is amap such thatb(''u)

i s m e a s u r a b l e f o r a l l , e u a n d b ( t , . ) i s c o n t i n u o u s f o r a l 1 - t e l . M o r e o v e r '
E : C(I ,R') -+ (-oo, ool is l's'c', concave' and bounded from below onC(I ' R') (for

i n s t a n c e , E ( y ) : - " * p 1 - 1 1 r 1 1 r ) ' F o r t h e m e a s u r a b l e f u n c t i o n s S ' 8 r : 1 x l R a - - - >
(-oo, *ooJ, i = 1,2,'3,"':',"; and g : r x IR' ---+ (-m' *ool' the following

hypotheses are imPosed.

(H1) There exist a nonnegative function 4. 4]rtf) and a.function x/ : R-p -+

[0, *ooJ, nondecreasing, ."ti*-' l's'c' with x/( l$ -+ *a when f -+ oo' such that

8Q,u) > X'( lb(t 'u) l )  -  d(/)  on 1 x IRq'

x' (lb(t , ') l) is inf-compact on IRq for all t e 1'

ve > 0 =0, e L\( I)  i  l i ( t ,u) + ex'( lb(t 'u) l )

>  - Q r Q ) , !  : 1 , 2 ,  " ' , m '  ( t '  u )  e  ' I  x  I R q '

(H2) There existnondecreasing functions r,11, ...,md:lR.u --+ lRa and t,t', '..,

tha e L\(t) satisfYing

(1)

(2)

(3)

where

d
\- - ' ' ' ' t ir) z -1h@ on 1 x R:''

E ( t , q )  *  L * i \ l n t t v , t

l im tx'(6) - x@G)l: foo,
l+oo

c1 : :  1*  suP
( t , r ) e12

lB(t)ldt)@(t, t ) t |+ lo

d r l

t-,tgl I
_ J o

and

x:E ----+ ti(t) dt-
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We shall prove that under the above assumptions together with inf(P) < f oo, problem
(P) possesses at least one optimal solution, i.e., there exists an admissible control u*(.)
(satisfying (1)-(3)) such that J(u*) - inf(P). For this, we first extend the class of all
controls to the class of relaxed controls (alias Young measures) and formulate the relaxed
problem (P,rl) associated to (P). Secondly, we prove that the relaxed problem (P',1) has
an optimal relaxed solution. In this step, Corollary 2 will be used to guaranteed that (P,a)

has also an optimal relaxed control which is of a special form (exactly, the Minkowski
form). Lastly, following the method described in Phase 3 in [1], from this special relaxed
solution, we can construct the optimal control a*(.) for (P).

For further investigation, let us set

Then the solution of (1), yr(.), can be represented as

y"( t ) :  a@fu)) ( t ) .

Here, E, :: E(., r) is the n x n-matrix solution of the equation Ey : BE' with the
initial condition E,(t) : l.

4.2. Relaxed Controls and Relaxed Problem (P."r)

A relaxed control (or Young measure) from / to U is a function 6 : I ----+ UI {0 {me
set of all probability measures on U) such that 6 (.) (B) i t -----> d (/XB) is a measurable
function for each Borel set B in U . The set of all relaxed controls from 1 to U will be
denoted by R. A sequence (3")" C R is said to converge narrowly to 66 € R, denoted
by 6, + 66, if for all measurable subsets A C I and for all c e C(U),

c(x)60(t)(dx)ldt.

Remark 3. We will denote by e, the Dirac measure at u. Each measurable mapping
u(.):I -----> Ucanbeidentif iedwitharelaxedcontrole, definedbye ,(t):: eygy,t € I.

Remark 4. Note thatBcan be identified with a subset in the closed unit ball € of the
space L@(1, M(U)). R is convex while € is compact for the weak star topology on
L@ (I , M(U )) by the Alaoglu-Bourbaki theorem (M(U) denotes the set of all bounded
signed Borel measures on U). Note also that the narrow convergence mentioned above
is nothing but the convergence with respect to the weak star topology on L* (I , M(U)).
Moreover, each extreme point of the set R is of the form e, (see Remark 3) where a(.)
is a measurable mapping from 1 to U (see 1I,2,4,131 for more details).

Leth:1 x IRa ---+ IR. 6 eR, Denote

f f
InG) :: 

J , l Jrr( 
. u)3(t)(du)ldt

(note that 4 (.) is linear in 6). If 6 : €u, then

A(u)(t) , :  
fo' 

u{r,u(r))drand o(z)(r) : :  z(t) + 
fo' 

t fr, t)B(t)z(t)dr.

,,y I ̂ , Irc@)3n(t)(dxro, 
: 

I o, I,

Lru,u(t))dt .I7(e") :
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Let also r : R -----> (-oo, *ooJ, F : C(I , R") ----+ (-oo, ool be the functions defined

by- 
f f f

r(6) ::  I  t  I  eQ, u)6(t)(du)ldt, i(y) : :  I  E(t, t(t))dt * c(y).
J t  J u  J I

With the assumption

am+t (6 ) : :  1 r (6 )  :  [ t [  
-  b , , u )16 ( t ) (du ) l d l  <  +oo ,  (4 )

J I  J U

the relaxed trajectory of the problem is defined by

f t f
y5  : :  0 (4 (6 ) )  eC( I , lR " )  whe re4 (6 ) ( r )  t :  

Jo l Jub ( r , u )6 ( r ) (du ) l d r .

A relaxed control 6 e R is called admissible 1f it satisfies (a) and

ai(6)  : :  19,(6)  < ot i ,  for  a l l  i  :  l '2 ,  . . . ,m.

We are now able to state the relaxed problem (P,il of (P) which is as follows:

minimize JQ) :: r(6) * i(ya)

over all admissible relaxed controls. It is obvious that Inf Pr"1 < inf P.

If we set as(6) :: Lll, x'(b(t, u)l)6(r)(du)l dt, then ao(.) is an inf-compact

function on R (see [1, Lemma 4.1]).

Theorem 5. Suppose inf P < o. Then problem (Pr") possesses at least one relaxed

solution.

Theorem 6, There exists an admissible relaxed control 3* e R satisfying

(i) .7(6-) : j* :: inf P,aft,e., 6* is an optimal relaxed lution for (P,a));

(11) there exist controls ur(.), l; Z 0, i : I,2,...,(m g, Ei-.oX, : I suchthat

3* : Ef_,jaLieu,.

Theorem 5 is a consequence of Lemma 4.4 in [1] while a proof (sketch) of Theorem

6 is given below.

Proof of Theorem 6 (sketch). Set

R s : :  { 6  e R  I  J ( 6 )  <  i * ,  a ; ( 6 )  <  o t i ,  i : 0 ,  1 , 2 ,  ' . . , m  *  l } .

It follows from Theorem 5 that Ro * 0. On the other hand, the functions .7(.)
ai(), i : 0, 1, 2, . . ., m * 1 are l.s.c. by Lemma 4. 1 in [1]. Moreover, J(') is concave

in 6. Therefore, these functions satisfy all the conditions from Corollary 2. By this

corollary, there exists 6* € Ro such that 6* can be represented as a convex combination

of at most m * 4 extreme points of R. Taking Remark 4 into account, there exist controls

a( . ) ,  uz() ,  .  .  . ,  u-+4( . ) ,such that

m+4
\ - - ^

6 * ( r ) :  )  L & u o ( t ) , t e I ./ - /  ' '

which is desired.

) - , t r r .  :  l ,  l r  >  0 ,  k :  1 , 2 , . . . , m  * 4
k

T
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4.3. The Existence of Optimal Solutions for (P)

Theorem 7. suppose inf P < lcr.. Then problem (P) possesses at least one optimal
solution. r

Theorem 7 is a consequence of Phase 3 in [l] (including Lemmas 41 and 4.g and
Proposition 4.9 in [1]). There, the concavity of J(.) (in 6) and the extended Lyapunov
theorem on the range of vector measures [2, corollary A.11] (see also [3, Theorem 3,
p. 1531' [6], [8, corollary 8.1, p.24], etc.) were used to guarantee the existence of a
measurable partition Cr, Cz, . . . , Cm+4 of I so that the optimal control z* (.) of (p) can
be constructed as follows:

u * ( t )  : :  u k ( t )  i f  t  €  C p , k  :  1 , 2 , . . . , m  +  4 ,  t  e  I ,

where ap(.), k : L,2, . . . ,ffi l4 arc the controls appearing in Theorem 6.

Remark 5. Problem (P) is a special case of a very abstract problem considered in [l].
The above application partly shows the ability of applying results obtained in Secs. 2
and 3 in approaching the existence for nonconvex optimal control (and also variational)
problems.

Acknowledgement. The authors would like to thank the referee for his helpful comments.
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