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.{bstract. In the study of spaces of harmonic functions, Zaharitta [1 1] introduced an extremal
imcrion and the associated regularity (Lh-regularity). Our purpose is first to study the relationship
her'*'een the Lh-regularity and the H-regularity [8] and to give some properties of this function.

l. Preliminary and Definitions

\['e denote Ha(9) the set of harmonic functions on the open set Q.

Definition l.lll) Let {2 be an open inRN and K a compact in 9. We pose

Xo({Z, K, r) ' : 
"h$ 

Xr(Q, K, x)

u 'here Xr(9,K,x)  : :  
r l im 

sup{aln lu (y)1,  u e Ha(Q),0 < cY < e,  l lu l l r  < l ,

lullk < eJ.

Ilefinition 2. llll lel (O")"6p be a sequence of open subsets of RN such that {2s C

C Qs+r, UreNO, : {2 and (Kr)r.n 4 sequence of compact subsets of {21 such thdt

K.+t CC Int(Kr), O.eNK, : K. We define the Zahariuta extremalfunction h(9, K, .)

associated with (Q, K) by the formula:

h(9,  K, . t )  : :  l im l im 1(Q, K, ,  x) ,  .x  € O,
y + r  r + @

where

x(a, K, r) ,: ,11[ xo(o", K, x).
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Remark. In the case N : 2,zahariuta proved thath(Q, K, .) is the usual harmonic
measure a(9, K.).

I t  is  easy to see that  X(A,  K, . )  > Xo(O, K,  . )  and X(Q, K, . )  > / r (O,  K,  . ) .

Definition 3. tl1l An open subset of O C RN is called Lh-regular if, for every K
compact subset of {2, we have h(K*, {2*, x) : 0 for all x e {2* (where E* : RN \ E).

A compact set K C RN is called Lh-regular if K* is Lh-regulax

A compact set K is called Lhs-regular if, for every open neighborhood {l of K, we
have the following identity Xo({z, K, .) : O on K.

zahariuta [ 1] proved that if a compact is Lh6-regular, then it is Lh-regular (but the
inverse conclusion is not true). The next theorem shows the utility of the Lh-regularity.

Theorem l. llll Let {2 be a connected open inRN .

(1) The space Ha(9) is isomorphic to Ha(B(O, \) if and only if g is Lh-regulan
(ir) 1/ o is Lh-regular and K c I is a Lh-regular compact such that K* is connected,

then there exists a common basis for the spaces Ha(A) and Ha(K).

We refer to [11] for more details on the Lh-regularity.

Definition 4, We say that a compact set K C RN is H-regular at a if, for ever-; b > |
there exists M > 0 and an open neighborhood V of a such that

l p l l v  <  Mb" l l p l l x ,  yp  epn (RN) ,  Vn  e  N

whereP,(RN)denotesthevectorspaceof allharmonicpolynomialsof degree< n. K is
H-regular if, for every a e K, K is H-regular at a.

The H-regularity takes a very important place in the harmonic polynomial approxi-
mation theory [6, 8-10].

Definition 5.[6] WesaythatacompaclK C RN isofapositivecapacityifcs(K) > O,
where

c n (K)  : :  l im inf  (cr  (K))  i  ,

andcp (K ) : : i n t { l l p l l x / l l p l l n ,  p  €  PHf r (RN) } ,  B : :  { x  e  RN,  l . r l  <  1 } .

Remark. A H-regular compact is of positive capacity.

2. Relation Between H-Regularity and Lh-Regularity

Subsequently, we need the following lemma:

Lemma l. Let K be a H-regular compact subset of RN at a and {Z an open set
containing K U {al and the bounded connected components of K*.Let (),)pay1 be
a sequence of positive reals and ("fr)r.N a sequence of harmonic functions on Q. If the
following conditions are fulfilledfor a constant M > 0:
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0 lfr@)l < ,Mtr,, Vft e N, Vx e Cl;
ft) lft@)l < 1, Vx e K, Yk eN. Thenfor all e > O, there exists a positive constant

C and an open neighborhood U of a such that

l f * (x) l3  Ce"^k,  Vk e N,  Yx e U.

Proof. Since Q contains the bounded connected components of K*, we can choose a
compact E in O such that K U {a} is in the interior of E and that E* is connected.

According to Bagby and Levenbergf2l,therc exists r €10, 1[ (depending on Q and
E) such that, for all harmonic function / on Q,

t imzup( inf { l l  f  -  p l ln ,  p e P,(RN)}) I  .  r .

Using this result, we can repeat the proof of Lemma 2.L in Ul in the harmonic case.
So there exists a positive constant c and a constant r e 10, 1[ such that, for all harmonic
function /,

i n f { l l /  - p l l z ,  p e  p , ( R N ) l < l l f l l a c r " ,  v n  e  N .

Also, we can easily obtain the result, using the last inequality and repeating the proof of
Theorem 2 in [5]. tr

Theorem 2. Let K be a cornpact inRN of positive capacity such that K* is connected.
Then the following conditions are equivalent:

(i) K ls Lhs-regular;
(ii) K ls H-regulan

Proof. (ii)+ (i) Let Q be an open neighborhood of K and a e K. According to Klimek
[3, Lemma 2.3.2f,there exists (er)n6p a sequence of numbers such that e, -+ 0 and

Xo(Q, K, .) : ,BL X,,({2, K, .).

Now, by the Choquet lemma (see, for example, [3, Lemma 2.3.4]), we have, for all
n e N, the existence of (cvf )reN, a sequence of positive numbers withaf; < er, Vk e N,
md (#)r.N, a sequence of harmonic functions on Q with ailnllfflly < 0 and
uilnllf[ l lo < 1 such that

x , , (Q ,K ,x ) :  l imsupsup {a i l n l f i 0 ) l } ,  Vx  e  Q .

Therefore, we obtain a countable family (f{, ai)n," that we can write (fi, fl)l.N and
so we have

fulnlf i(x)l  < 1, V/ e N, Vx e O

fulnlf i(x)l  < 0, Vx e K.

It follows from the previous lemma that, for every 4 > 0, there exists a positive constant
C andU, an open neighborhood ofa such that

lFr@)l  < C"ni ,  v /  e  N,  Yx e K
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and so, for all 4 > 0 and (n, k) e N2,

airnlff(x)l  < Cui + 4, Yx e U.

If we take the supremum, we have

Jean-Marc Hdcart

sup{af lnlf{ (x)l} . Ce, + 4, Yx e U.

Using this inequality, we easily obtain for all n e N the following estimate:

X", (Q,  K,  a)  < Ce,  *  q.

Now, let n --> @ and 4 -+ 0 to obtain X062, K,a) :0. Q and a are arbitrary, so we
obtain the result.

(i)+(ii) Let x € K and O be a bounded open neighborhood of K. We have
X0(S2,K,x) : 0. Then we obtain (from the definition of 16) V € > 0, 3 ds > 0,
V 0 e l0,  0s1,1 rs  > 0,  V r  e l0,  ro[ :

l / 0 ) l  S  e i , ,  Vy  e  B (x , r ) .  Y0 '  €10 ,0 t ,  Y f  e  Ha (9 ) ,  ( l )

wi rh l l / l lK < I  and l l f  l la  = e i .

Since c1r (K) > 0, there exists a constant A > 1 (see [9, 10]) such that

lp(y) l  < A" l lp l l r \  + ly l ) " ,  Vy e RN, Yp eP,(RN ) ,  Vn > 0.

Let p e 2,(RN) and denote q(x) :: p(x)/l lpllx,then ll41176 < I and

l l q l l o  <  A " ( l  +  suP  l l x l l ) n  :  f n .

There exists n6 such that, for every n > n0, we have ;{7, < d. Also, if we take

e' : ,#,then we have llqlla < e"tnc : ,i .By (l), for all e > 0, there exists n6 and
aneighborhood V ofx suchthat

l l p l l v  <  l l p l l xe ' " t " c ,  Yn  >  ns ,  p  €P , (RN) .

Using a compactness argument, the last inequality remains true if V is a neighborhood of
K. Moreover, cn(K) > 0, then there exists M > 0 such that, for every n < n0, we have
llpllv < Mllpllr.Now,theH-regularityof Kfollowsfromthelasttwoinequalit ies. r

From the proof of Theorcm2, it is not difficult to prove the following corollary.

Corollary l, With the hypothesis of Theorem 2 on K, let {2 be an open neighborhood
of K. Thenfor a e {2, the following conditions are equivalent:

( i )  xo(O, K,  a)  :  Q;
(ii) K is H-regular at a.

Remark. In Theorem 2, we cannot replace the Lh6-regularity by Lh-regularity; indeed,
i f  K C R2isapieceof  theuni tc i rc le, thenKisLh-regularand cn(K) > 0butKis
not H-regular. We only have the following:
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Corollary 2. If K c RN is a H-regular compact such that K* is connected, then K is
Lh-regular

3. Some Properties of the Function Xo

Proposition l. I-et K C RN be aH-regular compact suchthat K* is connected.Then

for every open neighborhood I of K, we have

K :  {x  e S2,  Xs(O, K,  x)  :  Q}.

Proof. Let Q be an open neighborhood of K. From Theorem 2, it follows that
K  c  { x  €  Q ,  X6 (O ,  K ,x )  -  0 }  :  F .

Assume there is apoint a e F\K and denote E : K U {a}. We know that, for every
open neighborhood U of E, there exists a positive constant c : c(U , E) and a constant
r : r(U, E) elO, 1[ such that, for all / e Ha(U),

in f { l l /  -  p l l r ,  p  eP,{nN)}  < l l f  l lucr" ,  Vn e N.

Letcv e lO,  |  -  r l .Forn e N, thefunct ions / ,  :  
i  onK and fn@):  (  ) "  

* "

harmonic on a small neighborood (not connected) of E. It follows from the remark above
that, for alln e N, there exists 4, € ?r(Rl/) such that

l l f ,  -  4n l ln  < l l f  l lucrn < c f  ) '
\ , /

Consequently, there exists n6 € N, such that, for all n > ns,

/  1  \ n
( +- I t t  - u") < lq"(a)l and l lq, l lr  < l ,
\ r + d /

SO

1  _ _  1
0 <  ln  , -  =  Qrc@): :  l im l im sup{ i tn lp (6)1 ,  p  eP, (RN) ,  l lp l l r  <  l } .

f  + A  E + a n + 6  n

From the results of Siciak [10], it follows that K is not H-regular at a and then

Xo({2, K, a) + 0 which contradicts a e F. tr

Proposition 2. Let {2 be an open subset in RN and E C Q a compact. Then for any
cv elO, 1[, e e]0, I - aland K compact subset of {2o, there exists apositive constant
c : c(a, e, K, O) such that, for every harmonic function f on 9, we have

l l . f l lr < ,l l f l l f ,-"-" l l"f l l f i+",

where {2o :- {x e O, Xo(Q, E, x) < a}.
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Proof. Let K be acompact subset in Q".By Dini's theorem for all s €10, 1 - a[, there
exists ds > 0 such that

Xo({2, E, x) < a * e, Yx e K, Y0 < 0s.

Let  f  e  Ha(9) . I f  ( ln  l l / l la  -  ln  l l . f  l ls ) -1 < 90,  rhen

ln l"f (x)l - ln ll"f llr < a l e , Y x e K .
ln l l" f  l lo - ln l l" f  l l r

Otherwise, ( ll / ll o)/( ll / I | il . eil,and since ll f lln / ll f lb > 1, we have

gg =,o (l:lr,l!)"*', o'. K.
l l . /  l l r  \  l l /  l l r  /

By the arbitrary character of K in Oo, we obtain the result. r

Remark. It is clear that if X6(O, E, .) + 1, then : E is determining for the harmonic
functions on Q. It is impossible to replace the set Q" by {x e Q, h(4, E, x) < a}
because there exists compacts E such that h(Q, E, .) # 1 and E is not determining for
the harmonic functions on O.

We denote B, : {x e RN, ;;x1; < r;.

Proposition 3.

- : [ ln l:l 
-.ln' 

if rxr r,
x o ( B n , B , , x ) <  |  l n R - l n r

[ 0 if lxl r.

P1oof. Let f e Ha(Bp). There exists aholomorphic function i on BLp such that

flr* = / (see [1]), where BZa : BL(Q, R) is the Lie ball in C' and where the Lie

I lnL ' (z ) - ln r
ot(BLp,-TL,,  z):  I  l .  R -  l "  t  

sr L\z) > r '

[  0  s i  L ( z ) < r .

where a (B L n , B L, , . ) denotes the extremal plurisubharmonic function associated with
(BLn,BZr). Therefore, for all R > t > r and e > 0,

ll i 
.ll 
n r, = ll i lltB;;,_,,|| i ll"; y ̂ ,,_ ",,

where cv" : (lnt - lnr(l -e))/(lnR -lnr). By [1], there exist two constants
cr : cL(e, r) and c2 : cz(e, R) such that

l l i l lar,, ,-", < (1+ c)l l f  l ln, and l l . f  l lar*,,  o 5 (1 -f c)l l f  l ln-.
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Then there exists a constant c(e, R, r) > 0 such that

l l f  l lar, s cllf l l tB:"' l l / l l ; ;.

Now, le t  f  e  Ha(Bp) ,0  >  O suchtha t ln l l , f l l r ,  <  0andd ln l l /113 .  <  l .Fora l l
e > 0, there exists (using the last estimate) c : c(e, R, r) such that

e h l f  ( x ) l  <  0 l n c  *  a , ,  Y x  e  B 7 .

So for every x e B1\8" 
xo(Bn, Br, x) < ar, Ye.

We may now let e -+ 0 to obtain the required inequality.

Using the previous proposition, we can say that Proposition 2 improves the "three-balls

theorem" for harmonic functions (see [4] for more information about the "three-balls

theorem").
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