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Abstract. In the study of spaces of harmonic functions, Zahariuta [11] introduced an extremal
Amction and the associated regularity (Lh-regularity). Our purpose is first to study the relationship
herween the Lh-regularity and the H-regularity {8] and to give some properties of this function.

1. Preliminary and Definitions
We denote Ha(2) the set of harmonic functions on the open set €.
Definition 1. [11] Let Q be an open in RN and K a compact in Q. We pose
XO(Qa K! x) = hm XS(Q’ Ky x)
e—>0
where x.(2, K, x) = Esup{cx Inju(y)|, u € Ha(2), 0 < a < ¢, |ullg < 1,
y—>x
lullg < el
Definition 2. [11] Let ()seN be a sequence of open subsets of RY such that Q; C
C Qa1 UsenQs = Q and (K,)reN a sequence of compact subsets of Q) such that
K, 1 cC Int(K,), NyenK, = K. We define the Zahariuta extremal function h(2, K, .)

associated with (2, K) by the formula:

R, K, x):= lim lim x(Q, K, x), x € Q,
y—=>Xxr—>00

where
x (R, K, x) := lim x0(£s, K, x).
§—>00



54 Jean-Marc Hécart

Remark. In the case N = 2, Zahariuta proved that A(Q2, K, .) is the usual harmonic
measure w(S2, K.).

Itis easy to see that x (22, K, .) > xo(R, K, .) and x (R, K, .) > h(R, K, .).

Definition 3. [11] An open subset of @ C RY is called Lh-regular if for every K
compact subset of 2, we have h(K*, Q*, x) = 0 for all x € Q* (where E* = RV\E).
A compact set K C RY is called Lh-regular if K* is Lh-regular.
A compact set K is called Lho-regular if, for every open neighborhood Q of K, we
have the following identity xo(2, K,.) =0on K.

Zahariuta [11] proved that if a compact is Lho-regular, then it is Lh-regular (but the
inverse conclusion is not true). The next theorem shows the utility of the Lh-regularity.

Theorem 1. [11] Let Q be a connected open in RV,

() The space Ha(R2) is isomorphic to Ha(B(0, 1)) if and only if Q is Lh-regular.
(i) If Q is Lh-regular and K C Q is a Lh-regular compact such that K* is connected,
then there exists a common basis for the spaces Ha(2) and Ha(K).

We refer to [11] for more details on the Lh-regularity.

Definition 4. We say that a compact set K C RY is H-regular at a if, for evervb > 1
there exists M > 0 and an open neighborhood V of a such that

lpllv < MB"lipllk, Vp € Pa(RY),Vn e N

where P, (RY) denotes the vector space of all harmonic polynomials of degree < n. K is
H-regular if, for every a € K, K is H-regular at a.

The H-regularity takes a very important place in the harmonic polynomial approxi-
mation theory [6, 8—10].

Definition 5.[6] We say that a compact K C RY is of a positive capacity ifcyg (K) > 0,
where 1
cy(K) := liminf (cx (K))* ,
k— o0

and cx(K) = inf{||pllx/llpls, p € PH:RY)), B :={x eRY, |x| < 1).

Remark. A H-regular compact is of positive capacity.

2. Relation Between H-Regularity and Lh-Regularity
Subsequently, we need the following lemma:

Lemma 1. Let K be a H-regular compact subset of RY at a and Q an open set
containing K U {a} and the bounded connected components of K*. Let (At)ren be
a sequence of positive reals and ( fi)reN a sequence of harmonic functions on Q. If the
following conditions are fulfilled for a constant M > 0:
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@ |fi(®)| < MM, Vk e N,Vx € Q;
(i) |fr(x)| <1, Vx € K, Vk € N. Then for all ¢ > 0, there exists a positive constant
C and an open neighborhood U of a such that

| fe(x)| < Ce*™, Vk €N, Vx € U.

Proof. Since 2 contains the bounded connected components of K*, we can choose a
compact E in 2 such that K U {a} is in the interior of E and that E* is connected.

According to Bagby and Levenberg [2], there exists » €]0, 1[ (depending on 2 and
E) such that, for all harmonic function f on £,

lim supGnf{|| f — pllg, p € Pa®¥)D* < r.
n—>00

Using this result, we can repeat the proof of Lemma 2.1 in [7] in the harmonic case.
So there exists a positive constant ¢ and a constant r €]0, 1[ such that, for all harmonic
function f,

inf{|| f — plle, p € Pa®™)} < [ fliger”, Vn eN.

Also, we can easily obtain the result, using the last inequality and repeating the proof of
Theorem 2 in [5]. ]

Theorem 2. Let K be a compact in RN of positive capacity such that K* is connected.
Then the following conditions are equivalent:

(1) K is Lho-regular;
(i) K is H-regular.

Proof. (ii) = (i) Let Q2 be an open neighborhood of K and a € K. According to Klimek
[3, Lemma 2.3.2], there exists (¢, )neN @ sequence of numbers such that ¢, — 0 and

x0(2, K, ) = lim xe (2, K, .).
n—> 00

Now, by the Choquet lemma (see, for example, [3, Lemma 2.3.4]), we have, for all
n € N, the existence of (o} )reN, a sequence of positive numbers with oy < en, Yk €N,
and (f7)reN, a sequence of harmonic functions on Q with ayIn| flllx < 0 and
oy Inf| flle < 1 such that

Xe, (22, K, x) = lim sup sup{ay In | ' ()|}, Vx € Q.
k

y—>x

Therefore, we obtain a countable family (f;', o )x,» that we can write (Fj, ;)N and
so we have

Biln|Fi(x)| <1, VIeN, VxeQ
Biln|F(x)| <0, Vx € K.

It follows from the previous lemma that, for every n > 0, there exists a positive constant
C and U, an open neighborhood of a such that

|Fi(x)| < Ce"%, VI €N, Vx € K
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and so, for all 7 > 0 and (n, k) € N2,

of In| f'(x)] < Cof +1, Vx € U.
If we take the supremum, we have

sup{af In | f' ()|} <Cen + 1, Vx € U.
k

Using this inequality, we easily obtain for all # € N the following estimate:
Xa,,(Q, K,a) <Ce + n.

Now, let 1 — oo and n — O to obtain xo(2, K, a) = 0. Q and g are arbitrary, so we
obtain the result.

()= (i) Let x € K and Q2 be a bounded open neighborhood of K. We have
x0(R, K, x) = 0. Then we obtain (from the definition of o) V& > 0,367 > 0,
YO €l0,6p[,3rg >0,V r €]0, rol:

[fO] < ev, Vy € B(x,r), V0’ €]0,0[, Vf € Ha(Q), (1)

iy
7

with || fllg < 1and | fllg < e¥.
Since ¢y (K) > 0, there exists a constant A > 1 (see [9, 10]) such that

PO < A™[Iplx (L + [y)", Vy € RY, ¥p € P,RY), ¥n > 0.
Letp e ’P,,(RN) and denote g(x) := p(x)/| pllx, then ||gllx <1 and

lglle < A"(1+ sup [x|)" = C".
xeQ2

There exists ng such that, for every n > ng, we have ﬁ < 6. Also, if we take

nln C

0 = ﬁ, then we have ||g|q < e = eeL’.By (1), for all ¢ > 0, there exists ny and

a neighborhood V of x such that
Ipllv < lIplixe™™C, Vn = no, p € PuRY).

Using a compactness argument, the last inequality remains true if V is a neighborhood of
K. Moreover, cg(K) > 0, then there exists M > 0 such that, for every n < ng, we have
Ipllv < M| pllx. Now, the H-regularity of K follows from the last two inequalities. m

From the proof of Theorem 2, it is not difficult to prove the following corollary.

Corollary 1. With the hypothesis of Theorem 2 on K, let Q be an open neighborhood
of K. Then for a € Q, the following conditions are equivalent:

@ x0(2, K,a) =0;

(1) K is H-regular at a.

Remark. In Theorem 2, we cannot replace the Lho-regularity by Lh-regularity; indeed,
if K cR%isa piece of the unit circle, then K is Lh-regular and cy(K) > 0 but K is
not H-regular. We only have the following:
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Corollary 2. If K C RY is a H-regular compact such that K* is connected, then K is
Lh-regular.

3. Some Properties of the Function Xo

Proposition 1. Let K C RY be a H-regular compact such that K* is connected. Then
for every open neighborhood 2 of K, we have

K ={xeQ, x( K,x)=0}

Proof. Let © be an open neighborhood of K. From Theorem 2, it follows that
KcCc{xeQ, x(,K,x)=0}=F.

Assume there is a point a € F\K and denote E = K U {a}. We know that, for every
open neighborhood U of E, there exists a positive constant ¢ = ¢(U, E) and a constant
r =r(U, E) €]0, 1] such that, for all f € Ha(U),

inf{(|| f — pllz, p € Pa®™)} < || fllyer”, Vn €N.

rtao
harmonic on a small neighborood (not connected) of E. It follows from the remark above

that, for all n € N, there exists g, € P,(RY) such that

Let « €]0,1 — r[. For n & N, the functions f, = 4 on K and f,(a) = ( ' )" are

r u
i < £ = .
| fo = anlle < I flluer” <c (,.Jra)

Consequently, there exists ng € N, such that, for all n > no,

1 n
( ) (1 —cr") < |gn(a) and |lgallx <1,
r+o

SO

0<In

g S¢x@:=lim Tm sup(-Inlp@)l, p € Pa®™), llplx < 1).

From the results of Siciak [10], it follows that K is not H-regular at ¢ and then
X0(R, K, a) # 0 which contradicts a € F. 0

Proposition 2. Let Q be an open subset in RY and E C Q a compact. Then for any

a €10, 1], ¢ €]0, 1 — o[ and K compact subset of S2q, there exists a positive constant
¢ = c(a, &, K, Q) such that, for every harmonic function f on 2, we have

l—a—
Ik < el fllg e IrIGTe,

where Qy = {x € Q, xo(R2, E, x) < a}.
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Proof. Let K be a compact subset in Q. By Dini’s theorem for all ¢ €]0, 1 — o, there
exists dg > O such that

x0(Q,E,x) <a+e Vx €K, V0 <.
Let f € Ha(Q).If (In|| fllg — In ||f||E)_1 < 6y, then

In|f)| —In|lflle
In|flle —In| flle

<a+eg Vxek.

L :
Otherwise, (Il flle)/(I fllg) < e®, and since || fllo/l| fllg = 1, we have

1f ()] %(ufug)“*a g e
Tz o - e e S

By the arbitrary character of K in €2, we obtain the result. [

Remark. Tt is clear that if xo(2, E, .) # 1, then = E is determining for the harmonic
functions on Q. It is impossible to replace the set 2, by {x € @, E(Q2, E, x) < «}
because there exists compacts E such that 2(2, E, .) # 1 and E is not determining for
the harmonic functions on 2.

We denote B, = {x € RY, |x|| <r}.

Proposition 3.
In|x| —Inr
x0(Br, By, x) < { mR—1Inr
0 if x|l <r

¥ x| >r

Proof. Let f € Ha(Bg). There exists a holomorphic function f on BLg such that
f|BR = f (see [1]), where BLg = BL(0, R) is the Lie ball in C" and where the Lie

norm is L(z) = \/||:||3 + N Izli* — IZ}‘;J ';1 2. We know that
InL(z) —1
- YOI —
w(BLg,BL,,2) = InR —Inr
0 si Lz) <r,

where w(BLg, BL,, .) denotes the extremal plurisubharmonic function associated with
(BLg, BL,). Therefore, forall R > ¢ > r and ¢ > 0,

i ~il—a P
I Flsz, < WA N

where @, = (Inz—Inr(1 —¢))/(InR —Inr). By [1], there exist two constants
¢1 = ci1(g, r) and ¢; = (¢, R) such that

1AL, <A +cOlflls, and [ FllBLe, ., < (1 + el fll,-
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Then there exists a constant c(g, R, r) > 0 such that

£ sz, < CHFlE A, -

Now, let f € Ha(Bg), 6 > OsuchthatIn| f|lzg. < Oand@In| f(lg, < 1.For all
€ > 0, there exists (using the last estimate) ¢ = c(e, R, r) such that

Oln|f(x)| <flnc+a., Yx € B;.

So for every x € B,\B,,
x0(Br, By, x) < g, Ve.

We may now let ¢ — 0 to obtain the required inequality. 5

Using the previous proposition, we can say that Proposition 2 improves the “three-balls
theorem” for harmonic functions (see [4] for more information about the “three-balls
theorem”).
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