Vietnam Journal of Mathematics 27:1 (1999) 53-59

Vietnam Journal of MATHEMATICS © Springer-Verlag 1999

On Zahariuta's Extremal Function for Harmonic Functions

Jean-Marc Hécart

Laboratoire E. Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex, France

> Received January 5, 1998 Revised September 1, 1998

Abstract. In the study of spaces of harmonic functions, Zahariuta [11] introduced an extremal function and the associated regularity (Lh-regularity). Our purpose is first to study the relationship between the Lh-regularity and the H-regularity [8] and to give some properties of this function.

1. Preliminary and Definitions

We denote $Ha(\Omega)$ the set of harmonic functions on the open set Ω .

Definition 1. [11] Let Ω be an open in \mathbb{R}^N and K a compact in Ω . We pose

$$\chi_0(\Omega, K, x) := \lim_{x \to 0} \chi_{\varepsilon}(\Omega, K, x)$$

where $\chi_{\varepsilon}(\Omega, K, x) := \overline{\lim_{y \to x} \sup\{\alpha \ln |u(y)|}, u \in Ha(\Omega), 0 < \alpha < \varepsilon, ||u||_K \le 1,$ $||u||_{\Omega}^{\alpha} \le e\}.$

Definition 2. [11] Let $(\Omega_s)_{s \in \mathbb{N}}$ be a sequence of open subsets of \mathbb{R}^N such that $\Omega_s \subset \Omega_{s+1}, \cup_{s \in \mathbb{N}} \Omega_s = \Omega$ and $(K_r)_{r \in \mathbb{N}}$ a sequence of compact subsets of Ω_1 such that $K_{r+1} \subset Int(K_r), \cap_{r \in \mathbb{N}} K_r = K$. We define the Zahariuta extremal function $h(\Omega, K, .)$ associated with (Ω, K) by the formula:

$$h(\Omega, K, x) := \lim_{n \to \infty} \lim_{r \to \infty} \chi(\Omega, K_r, x), x \in \Omega,$$

where

$$\chi(\Omega, K, x) := \lim_{s \to \infty} \chi_0(\Omega_s, K, x)$$

Remark. In the case N = 2, Zahariuta proved that $h(\Omega, K, .)$ is the usual harmonic measure $\omega(\Omega, K)$.

It is easy to see that $\chi(\Omega, K, .) \ge \chi_0(\Omega, K, .)$ and $\chi(\Omega, K, .) \ge h(\Omega, K, .)$.

Definition 3. [11] An open subset of $\Omega \subset \mathbf{R}^N$ is called Lh-regular if, for every K compact subset of Ω , we have $h(K^*, \Omega^*, x) = 0$ for all $x \in \Omega^*$ (where $E^* = \mathbf{R}^N \setminus E$).

A compact set $K \subset \mathbf{R}^N$ is called Lh-regular if K^* is Lh-regular.

A compact set K is called Lh_0 -regular if, for every open neighborhood Ω of K, we have the following identity $\chi_0(\Omega, K, .) \equiv 0$ on K.

Zahariuta [11] proved that if a compact is Lh₀-regular, then it is Lh-regular (but the inverse conclusion is not true). The next theorem shows the utility of the Lh-regularity.

Theorem 1. [11] Let Ω be a connected open in \mathbb{R}^N .

- (i) The space $Ha(\Omega)$ is isomorphic to Ha(B(0, 1)) if and only if Ω is Lh-regular.
- (ii) If Ω is Lh-regular and $K \subset \Omega$ is a Lh-regular compact such that K^* is connected, then there exists a common basis for the spaces $Ha(\Omega)$ and Ha(K).

We refer to [11] for more details on the Lh-regularity.

Definition 4. We say that a compact set $K \subset \mathbb{R}^N$ is H-regular at a if, for every b > 1 there exists M > 0 and an open neighborhood V of a such that

$$\|p\|_V \leq Mb^n \|p\|_K, \ \forall p \in \mathcal{P}_n(\mathbf{R}^N), \ \forall n \in \mathbf{N}$$

where $\mathcal{P}_n(\mathbf{R}^N)$ denotes the vector space of all harmonic polynomials of degree $\leq n$. K is H-regular if, for every $a \in K$, K is H-regular at a.

The H-regularity takes a very important place in the harmonic polynomial approximation theory [6, 8–10].

Definition 5. [6] We say that a compact $K \subset \mathbf{R}^N$ is of a positive capacity if $c_H(K) > 0$, where

$$c_H(K) := \liminf_{k \to \infty} \left(c_k(K) \right)^{\frac{1}{k}},$$

and $c_k(K) := \inf\{\|p\|_K / \|p\|_B, p \in PH_k(\mathbf{R}^N)\}, B := \{x \in \mathbf{R}^N, |x| \le 1\}.$

Remark. A H-regular compact is of positive capacity.

2. Relation Between H-Regularity and Lh-Regularity

Subsequently, we need the following lemma:

Lemma 1. Let K be a H-regular compact subset of \mathbb{R}^N at a and Ω an open set containing $K \cup \{a\}$ and the bounded connected components of K^* . Let $(\lambda_k)_{k \in \mathbb{N}}$ be a sequence of positive reals and $(f_k)_{k \in \mathbb{N}}$ a sequence of harmonic functions on Ω . If the following conditions are fulfilled for a constant M > 0:

Zahariuta's Extremal Function for Harmonic Functions

- (i) $|f_k(x)| \leq e^{M\lambda_k}, \forall k \in \mathbb{N}, \forall x \in \Omega;$
- (ii) $|f_k(x)| \le 1$, $\forall x \in K$, $\forall k \in \mathbb{N}$. Then for all $\varepsilon > 0$, there exists a positive constant *C* and an open neighborhood *U* of a such that

$$|f_k(x)| \leq C e^{\varepsilon \lambda_k}, \ \forall k \in \mathbb{N}, \ \forall x \in U.$$

Proof. Since Ω contains the bounded connected components of K^* , we can choose a compact E in Ω such that $K \cup \{a\}$ is in the interior of E and that E^* is connected.

According to Bagby and Levenberg [2], there exists $r \in]0, 1[$ (depending on Ω and E) such that, for all harmonic function f on Ω ,

$$\limsup_{n\to\infty} (\inf\{\|f-p\|_E, p\in\mathcal{P}_n(\mathbf{R}^N)\})^{\frac{1}{n}} \leq r.$$

Using this result, we can repeat the proof of Lemma 2.1 in [7] in the harmonic case. So there exists a positive constant c and a constant $r \in [0, 1[$ such that, for all harmonic function f,

 $\inf\{\|f-p\|_E, \ p \in \mathcal{P}_n(\mathbf{R}^N)\} \le \|f\|_{\Omega} cr^n, \ \forall n \in \mathbf{N}.$

Also, we can easily obtain the result, using the last inequality and repeating the proof of Theorem 2 in [5]. \Box

Theorem 2. Let K be a compact in \mathbb{R}^N of positive capacity such that K^* is connected. Then the following conditions are equivalent:

- (i) K is Lh_0 -regular;
- (ii) K is H-regular.

Proof. (ii) \Rightarrow (i) Let Ω be an open neighborhood of K and $a \in K$. According to Klimek [3, Lemma 2.3.2], there exists $(\varepsilon_n)_{n \in \mathbb{N}}$ a sequence of numbers such that $\varepsilon_n \to 0$ and

$$\chi_0(\Omega, K, .) = \lim_{n \to \infty} \chi_{\varepsilon_n}(\Omega, K, .).$$

Now, by the Choquet lemma (see, for example, [3, Lemma 2.3.4]), we have, for all $n \in \mathbb{N}$, the existence of $(\alpha_k^n)_{k \in \mathbb{N}}$, a sequence of positive numbers with $\alpha_k^n < \varepsilon_n$, $\forall k \in \mathbb{N}$, and $(f_k^n)_{k \in \mathbb{N}}$, a sequence of harmonic functions on Ω with $\alpha_k^n \ln || f_k^n ||_K \leq 0$ and $\alpha_k^n \ln || f_k^n ||_{\Omega} \leq 1$ such that

$$\chi_{\varepsilon_n}(\Omega, K, x) = \limsup_{y \to x} \sup_k \{\alpha_k^n \ln |f_k^n(y)|\}, \ \forall x \in \Omega.$$

Therefore, we obtain a countable family $(f_k^n, \alpha_k^n)_{k,n}$ that we can write $(F_l, \beta_l)_{l \in \mathbb{N}}$ and so we have

$$\beta_l \ln |F_l(x)| \le 1, \ \forall l \in \mathbf{N}, \ \forall x \in \Omega$$

$$\beta_l \ln |F_l(x)| \le 0, \ \forall x \in K.$$

It follows from the previous lemma that, for every $\eta > 0$, there exists a positive constant C and U, an open neighborhood of a such that

$$|F_l(x)| \leq C e^{\eta_{\overline{F_l}}}, \ \forall l \in \mathbb{N}, \ \forall x \in K$$

and so, for all $\eta > 0$ and $(n, k) \in \mathbb{N}^2$,

 $\alpha_k^n \ln |f_k^n(x)| \le C \alpha_k^n + \eta, \ \forall x \in U.$

If we take the supremum, we have

$$\sup\{\alpha_k^n \ln |f_k^n(x)|\} \le C\varepsilon_n + \eta, \ \forall x \in U.$$

Using this inequality, we easily obtain for all $n \in \mathbb{N}$ the following estimate:

 $\chi_{\varepsilon_n}(\Omega, K, a) \leq C\varepsilon_n + \eta.$

Now, let $n \to \infty$ and $\eta \to 0$ to obtain $\chi_0(\Omega, K, a) = 0$. Ω and a are arbitrary, so we obtain the result.

(i) \Rightarrow (ii) Let $x \in K$ and Ω be a bounded open neighborhood of K. We have $\chi_0(\Omega, K, x) = 0$. Then we obtain (from the definition of χ_0) $\forall \varepsilon > 0, \exists \theta_0 > 0$, $\forall \theta \in]0, \theta_0[, \exists r_0 > 0, \forall r \in]0, r_0[$:

$$|f(y)| \le e^{\frac{1}{\theta'}}, \ \forall y \in B(x, r), \ \forall \theta' \in]0, \theta[, \ \forall f \in Ha(\Omega),$$
(1)

with $||f||_K \leq 1$ and $||f||_{\Omega} \leq e^{\frac{1}{\theta'}}$.

Since $c_H(K) > 0$, there exists a constant A > 1 (see [9, 10]) such that

$$|p(y)| \le A^n ||p||_K (1+|y|)^n, \ \forall y \in \mathbf{R}^N, \ \forall p \in \mathcal{P}_n(\mathbf{R}^N), \ \forall n \ge 0.$$

Let $p \in \mathcal{P}_n(\mathbf{R}^N)$ and denote $q(x) := p(x)/||p||_K$, then $||q||_K \le 1$ and

$$||q||_{\Omega} \le A^n (1 + \sup_{x \in \Omega} ||x||)^n = C^n.$$

There exists n_0 such that, for every $n > n_0$, we have $\frac{1}{n \ln C} < \theta$. Also, if we take $\theta' = \frac{1}{n \ln C}$, then we have $\|q\|_{\Omega} \le e^{n \ln C} = e^{\frac{1}{\theta'}}$. By (1), for all $\varepsilon > 0$, there exists n_0 and a neighborhood V of x such that

$$\|p\|_V \leq \|p\|_K e^{\varepsilon n \ln C}, \ \forall n \geq n_0, \ p \in \mathcal{P}_n(\mathbf{R}^N).$$

Using a compactness argument, the last inequality remains true if V is a neighborhood of K. Moreover, $c_H(K) > 0$, then there exists M > 0 such that, for every $n \le n_0$, we have $||p||_V \le M ||p||_K$. Now, the H-regularity of K follows from the last two inequalities.

From the proof of Theorem 2, it is not difficult to prove the following corollary.

Corollary 1. With the hypothesis of Theorem 2 on K, let Ω be an open neighborhood of K. Then for $a \in \Omega$, the following conditions are equivalent:

(i) $\chi_0(\Omega, K, a) = 0;$

(ii) K is H-regular at a.

Remark. In Theorem 2, we cannot replace the Lh₀-regularity by Lh-regularity; indeed, if $K \subset \mathbf{R}^2$ is a piece of the unit circle, then K is Lh-regular and $c_H(K) > 0$ but K is not H-regular. We only have the following:

56

Zahariuta's Extremal Function for Harmonic Functions

Corollary 2. If $K \subset \mathbb{R}^N$ is a H-regular compact such that K^* is connected, then K is Lh-regular.

3. Some Properties of the Function X0

Proposition 1. Let $K \subset \mathbf{R}^N$ be a *H*-regular compact such that K^* is connected. Then for every open neighborhood Ω of *K*, we have

$$K = \{x \in \Omega, \ \chi_0(\Omega, K, x) = 0\}.$$

Proof. Let Ω be an open neighborhood of K. From Theorem 2, it follows that $K \subset \{x \in \Omega, \chi_0(\Omega, K, x) = 0\} = F$.

Assume there is a point $a \in F \setminus K$ and denote $E = K \cup \{a\}$. We know that, for every open neighborhood U of E, there exists a positive constant c = c(U, E) and a constant $r = r(U, E) \in]0, 1[$ such that, for all $f \in Ha(U)$,

$$\inf\{\|f-p\|_E, p \in \mathcal{P}_n(\mathbf{R}^N)\} \le \|f\|_U cr^n, \forall n \in \mathbf{N}.$$

Let $\alpha \in]0, 1 - r[$. For $n \in \mathbb{N}$, the functions $f_n \equiv \frac{1}{2}$ on K and $f_n(a) = \left(\frac{1}{r+\alpha}\right)^n$ are harmonic on a small neighborood (not connected) of E. It follows from the remark above that, for all $n \in N$, there exists $q_n \in \mathcal{P}_n(\mathbb{R}^N)$ such that

$$||f_n - q_n||_E \le ||f||_U cr^n \le c \left(\frac{r}{r+\alpha}\right)^n$$

Consequently, there exists $n_0 \in \mathbf{N}$, such that, for all $n \ge n_0$,

$$\left(\frac{1}{r+\alpha}\right)^n (1-cr^n) \le |q_n(a)| \text{ and } ||q_n||_K \le 1,$$

so

$$0 < \ln \frac{1}{r+\alpha} \le \phi_K(a) := \overline{\lim_{\xi \to a} \lim_{n \to \infty} \sup\{\frac{1}{n} \ln |p(\xi)|, \ p \in \mathcal{P}_n(\mathbf{R}^N), \ \|p\|_K \le 1\}}.$$

From the results of Siciak [10], it follows that K is not H-regular at a and then $\chi_0(\Omega, K, a) \neq 0$ which contradicts $a \in F$.

Proposition 2. Let Ω be an open subset in \mathbb{R}^N and $E \subset \Omega$ a compact. Then for any $\alpha \in]0, 1[, \varepsilon \in]0, 1 - \alpha[$ and K compact subset of Ω_{α} , there exists a positive constant $c = c(\alpha, \varepsilon, K, \Omega)$ such that, for every harmonic function f on Ω , we have

$$\|f\|_{K} \leq c \|f\|_{E}^{1-\alpha-\varepsilon} \|f\|_{\Omega}^{\alpha+\varepsilon},$$

where $\Omega_{\alpha} := \{x \in \Omega, \chi_0(\Omega, E, x) < \alpha\}.$

Proof. Let K be a compact subset in Ω_{α} . By Dini's theorem for all $\varepsilon \in [0, 1 - \alpha[$, there exists $\theta_0 > 0$ such that

$$\chi_{\theta}(\Omega, E, x) \leq \alpha + \varepsilon, \ \forall x \in K, \ \forall \theta < \theta_0.$$

Let $f \in Ha(\Omega)$. If $(\ln || f ||_{\Omega} - \ln || f ||_{E})^{-1} < \theta_{0}$, then

$$\frac{\ln |f(x)| - \ln ||f||_E}{\ln ||f||_{\Omega} - \ln ||f||_E} \le \alpha + \varepsilon, \ \forall x \in K$$

Otherwise, $(\|f\|_{\Omega})/(\|f\|_E) < e^{\frac{1}{\theta_0}}$, and since $\|f\|_{\Omega}/\|f\|_E \ge 1$, we have

$$\frac{|f(x)|}{\|f\|_E} \le e^{\frac{1}{\theta_0}} \left(\frac{\|f\|_\Omega}{\|f\|_E}\right)^{\alpha+\varepsilon}, \ \forall x \in K$$

By the arbitrary character of K in Ω_{α} , we obtain the result.

Remark. It is clear that if $\chi_0(\Omega, E, .) \neq 1$, then = E is determining for the harmonic functions on Ω . It is impossible to replace the set Ω_{α} by $\{x \in \Omega, h(\Omega, E, x) \leq \alpha\}$ because there exists compacts E such that $h(\Omega, E, .) \neq 1$ and E is not determining for the harmonic functions on Ω .

We denote $B_r = \{x \in \mathbb{R}^N, \|x\| \le r\}.$

Proposition 3.

$$\chi_0(B_R, \overline{B}_r, x) \leq \begin{cases} \frac{\ln |x| - \ln r}{\ln R - \ln r} & \text{if } |x| > r, \\ 0 & \text{if } |x| \le r. \end{cases}$$

Proof. Let $f \in Ha(B_R)$. There exists a holomorphic function \tilde{f} on BL_R such that $\tilde{f}_{|B_R} \equiv f$ (see [1]), where $BL_R = BL(0, R)$ is the Lie ball in \mathbb{C}^n and where the Lie norm is $L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |\sum_{j=1}^n z_j^2|^2}}$. We know that

$$\omega(BL_R, \overline{BL_r}, z) = \begin{cases} \frac{\ln L(z) - \ln r}{\ln R - \ln r} & \text{si } L(z) > r, \\ 0 & \text{si } L(z) \le r, \end{cases}$$

where $\omega(BL_R, \overline{BL_r}, .)$ denotes the extremal plurisubharmonic function associated with $(BL_R, \overline{BL_r})$. Therefore, for all R > t > r and $\varepsilon > 0$,

$$\|\tilde{f}\|_{BL_{t}} \leq \|\tilde{f}\|_{BL_{r(1-\varepsilon)}}^{1-\alpha_{\varepsilon}} \|\tilde{f}\|_{BL_{R(1-\varepsilon)}}^{\alpha_{\varepsilon}}$$

where $\alpha_{\varepsilon} = (\ln t - \ln r(1 - \varepsilon)) / (\ln R - \ln r)$. By [1], there exist two constants $c_1 = c_1(\varepsilon, r)$ and $c_2 = c_2(\varepsilon, R)$ such that

$$\|\tilde{f}\|_{BL_{r(1-\varepsilon)}} \le (1+c_1) \|f\|_{B_r}$$
 and $\|\tilde{f}\|_{BL_{R(1-\varepsilon)}} \le (1+c_2) \|f\|_{B_R}$.

Zahariuta's Extremal Function for Harmonic Functions

Then there exists a constant $c(\varepsilon, R, r) > 0$ such that

$$\|f\|_{BL_t} \leq C \|f\|_{B_r}^{1-\alpha_{\varepsilon}} \|f\|_{B_R}^{\alpha_{\varepsilon}}.$$

Now, let $f \in Ha(B_R)$, $\theta > 0$ such that $\ln ||f||_{B_r} \le 0$ and $\theta \ln ||f||_{B_R} \le 1$. For all $\varepsilon > 0$, there exists (using the last estimate) $c = c(\varepsilon, R, r)$ such that

$$\theta \ln |f(x)| \leq \theta \ln c + \alpha_{\varepsilon}, \ \forall x \in B_t.$$

So for every $x \in B_t \setminus B_r$,

$$\chi_0(B_R, B_r, x) \leq \alpha_{\varepsilon}, \ \forall \varepsilon.$$

We may now let $\varepsilon \to 0$ to obtain the required inequality.

Using the previous proposition, we can say that Proposition 2 improves the "three-balls theorem" for harmonic functions (see [4] for more information about the "three-balls theorem").

References

- 1. V. Avanissian, Cellule d'Harmonicité et Prolongement Analytique Complexe, Travaux en cours, Hermann, Paris, 1985.
- T. Bagby and N. Levenberg, Bernstein theorems for harmonic functions, in: Methods of Approximation Theory in Complex Analysis and Mathematical Physics, Lecture Notes in Mathematics, Vol. 1550, Springer-Verlag, 1993, pp. 7–18.
- 3. M. Klimek, *Pluripotential Theory*, London Mathematical Society Monographs, Vol. 6, Clarendon Press, 1991.
- 4. J. Korevaar and J.L.H. Meyers, Logarithmic convexity for supremum norms of harmonic functions, *Bull. London Math. Soc.* 26 (1994) 353-362.
- 5. N.T. Van, Condition polynomiale de Leja et L-régularité dans \mathbb{C}^n , Ann. Polon. Math. **46** (1985) 237–241.
- N.T. Van and B. Djebbar, Propriétés asymptotiques d'une suite orthonormale de polynômes harmoniques, *Bull. Soc. Math.* 113 (1989) 239–251.
- 7. W. Pleśniak, Invariance of the L-regularity of compact sets in \mathbb{C}^n under holomorphic mappings, *Trans. Amer. Math. Soc.* **246** (1978) 373–383.
- 8. J. Siciak, Asymptotic behaviour of harmonic polynomials bounded on a compact set, Ann. Pol. Math. 20 (1968) 267–278.
- J. Siciak, Bernstein–Walsh type theorems for pluriharmonic functions, in: *Potential Theory Proceedings of the International Conference*, Kouty, 13–20 August 1994, J. Král et al. (eds.), Walter de Gruyter, Berlin-New York, 1996, pp. 147–166.
- 10. J. Siciak, *Bernstein-Walsh Theorems for Elliptic Operators*, Jagiellonian University, 1997 (preprint).
- V.P. Zahariuta, Spaces of harmonic functions, in: *Functional Analysis*, Lecture Notes in Pure and Applied Math., Vol. 150, Essen, 1991; Dekker, New York, 1994, pp. 497–522.