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1. Introduction

In this section we introduce some notions used throughout the paper.

1.1. Some Linear Topological Invariants

Let E be a Frechet space with a fundamental system of semi-norms {|| -l }
For a subset B of E, put |u|} = sup{|u(x)| : x € B} foru € E'.
Write || - ||} for B=Ur ={x € E : |lx|lx < 1}.
Using this notation, we say that E has the property
(@ HEVpIgVkIC,d>0 |-IZF<Cl-Iph- 1Y
@ IfVp,d>03gVk>03C>0 |5 <l
@ 1Vp3g,d>0vk3IC>0 |- <cCl-lz0- 15
(IL.B®) If Vo, + co ¥p 3g Yk Ang, C > OVu € E' 3n, € [k; ni]
el o < Clully, el 5P

1.2. Holomorphic Functions

Let E, F be locally convex spaces and D an open setin E. A function f : D — F is
called holomorphic if it is continuous and u o f is Gateaux holomorphic for eachu € F'.
By H(D, F), we denote the space of F-valued holomorphic functions on D equipped
with the compact-open topology. When F is omitted, it is understood to be the scalar
field C, e.g., H(D) = H(D, C).
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Finally, for each compact set K in E, by H(K) we denote the space of germs of
holomorphic functions on K equipped with the inductive topology. In other words,

H(K) := limind H® V),
UDK

where U ranges over all neighborhoods of K and H*°(U) denotes the Banach space of
bounded holomorphic functions on U.

Some authors are interested in the problem of the structure of spaces of germs of
holomorphic functions on a compact set in a Frechet space.

e In [3], Meise and Vogt have proved that a nuclear Frechet space E has the property
(€2) if and only if [H(K)], the strong dual of the space H(K) of germs of
holomorphic functions, has the property (£2).

Later, in [4], when E is nuclear with a basis, they also showed that E has the property
() if and only if H(D) has the property (Q) for some open polydisc D in E’.

e Recently, Khue and Danh [2] have extended the results of type (§2) to the Frechet
case.

Our main aim is to consider this structure problem for spaces having (£, Q). An
application to separately holomorphic functions is given.

2. The Theorems
The main results of the paper are the following:

Theorem 1. Let E be a nuclear Frechet space and B a balanced convex compact set
on E. Assume E has the property (Q B):

(@) Yp3g.d,C>0 |- 17" <l 15015
Then [H(B)] € (LB*™).

Theorem 2. Let E be a nuclear Frechet space with approximation property and B a
balanced convex compact set in E. Then the following assertions are equivalent:

(a) E has the property (53);

(b) [H(B)Y has the property (LB},

(c) B is not pluripolar.

Theorem 3. Let E be a nuclear Frechet ot space with a basis and B a balanced compact
setin E. Then E has the property (235, Q B) if and only if [H(B)]' also has the property
@, Q).

Corollary 1.[4] A nuclear Frechet space A(A) has the property ( 52) if and only if there
exists a € A(A) such that H(D,) has property ().
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Corollary 2. [4] Let Ai(@) be nuclear. For a € Ai(a), HD,) € (S~2) if and only if
1

lim inf a;j > 0.

3. An Application

The well-known Hartogs theorem on holomorphicity of separately holomorphic func-
tions in C" was extended to the infinite-dimensional case by some authors. In particular,
this theorem is true for the classes of Frechet spaces and dual Frechet-Schwartz space.
However, the problem is complicated in the mixed case. By applying Theorem 3, we
obtain a Hartogs type theorem in this case.

Theorem 4. Let E and F be two Frechet spaces having (ﬁ) and (DN), respectively.
Assume E is nuclear having a basis and F is Schwartz. Then every separately
holomorphic function on X x Y, an open set in E x F', is holomorphic.
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