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Abstract. For any weight sequence & : {a(k)}r.z and a closed linear operator G on a Banach
space X, we construct a maximal continuously embedded Banach subspace Z;(G) such that
ll(Glz,fcl)*ll < a(k), for all k e Z.We use this to produce many hyperinvariant subspaces for
operators with an appropriate orbit {Gk x}1r.g or one-sided orbit {Gnr}n€N.

L. Introduction and Terminology

We cannot begin to summarize the literature on invariant subspaces for linear operators
on a Banach space, so we will refer the reader to [3] and the references therein.

It is convenient to specify some terminology before continuing.

1.1. Terminology

All operators are linear on a Banach space. The letters X, W arrd Z, among others, will
always represent Banach spaces. We will denote by D(A) the domain of the operator
A, by Im(A) its image, by N(A) its null space, by o(A) its spectrum, and by p(A) its
resolvent set. Denote by B(X) the space of bounded operators from X to itself.

We will say that X is continuously embedded in 17, X ,--> W, if X c I4z and the
identitymapfromX intoW arecontinuous. If B e B(W),thenBly isthepartof BinX,
tha t i s ,  D (B l x ) :  { x  eXnD@) lBx  eX} ,  w i t h  (B la )x  =  Bx ,  f o ra l l x  eD(B lx ) .
If G is an operator on X and B is an operator on I4l, with G : Blx, we will then say
that G is continuously embedded in B.

Assume throughout this paper that G is a closed operator on X.
The subspace W c X is invariant for G if G maps W nD(G) into I4l. The space W

is hyperinvariant for G if it is invariant for R, whenever R e B(X) commutes with G,
that is, RG c Gn. We will say tle (hyper-)invariant subspace W for G is nontrivial if
D(G). W is neither 2(G) nor {0}.
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Decomposable operators come with many closed hyperinvariant subspaces, namely,
their local spectral subspaces. operators whose powers (both positive and negative)
satisfy appropriate growth conditions are automatically decomposable.

If d is a Beurling sequence (see Definition 4.1) and

l lGk l l  :  o(a(k) )  Yk ez,

then G has a functional calculus f t-> f (G) defined by

f  (G) =D i frocr.
keZ

for I in C-(T), where T is the unit circle, whose Fourier series {/(k)} 1,qs decays
sufficiently rapidly, and the local spectral subspaces have an explicit form

E(A) : nt,\f(/(c)) I / € C-(T) has supporr disjoint from O) (Z)

(see [4]).
We show that, for G closed (not necessarily bounded), the set of all x, for which the

discrete orbit {Gft;}p62 satisfies the growth condition

l l G k x l l :  o ( a ( k ) )  ( k  e Z ) ,

can be normed in such a way as to form a Banach space, Z6(G), continuously embedded
in X, on which G satisfies (1).

Thus, when G has a nontrivial discrete orbit {Gk-x}r,ezthat grows like a Beurling
sequence, we may continuously embed a decomposable operator in G. When G* has
such an orbit, we may, after taking adjoints, continuously embed G in a decomposable
operator. On both sides of G, there are numerous hyperinvariant subspaces with the
explicit form (2). This will produce closed nontrivial hyperinvariant subspaces for G.

It is sometimes sufficient to consider only one-sided orbits {G",{}r€N by using another
construction of a decomposable operator in which G is continuously embedded (see
Lemma4.4).

In Sec. 2, we show that, if G is continuously embedded in a decomposable operator
(on a larger space with a weaker norm) B, then G inherits a family of closed invariant
subspaces formed by taking the intersection of X with the local spectral subspaces of
B. In order that one ofthese be nontrivial, it is sufficient that there exist disjoint closed
subsets of the complex plane, O1 and S)2, such that the local spectral subspaces for G
corresponding to O 1 and {22 are both more than the zero vector.

In Sec. 3, we construct, for any weight sequence d, the maximal continuously
embedded subspace of X, Z6(G), on which the powers of G are dominated by d, as in
(  1 ) .

Section 4 applies Secs. 2 and 3 to produce simple sufficient conditions on the orbits
of G and G+ in order for G to have a nontrivial closed hypennvariant subspace. For
the dual G* of a C1,1 contraction (see Definition 4.12), we construct a family of closed
hyperinvariant subspaces with a "pointwise" version of (2); for O, a closed subset of the
unit circle T, define E(C2) to be the set of all x e X such that

N

"  =- \ -r  t1k;1c*;r+'" ;1 :  o 'llfn 111112+66 ll ) I
ly'+m

l . -  x f

( 1 )
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whenever f e C*('f) has support disjoint from O (Corollary 4.13). A similar
construction works for a much larger class of operators (see Theorem 4.1 1).

2. (Hyper-)Invariant Subspaces for Operators Continuously Embedded in a
Decomposable Operator

Proposition 2.6 gives an idea of how latge a family of closed invariant subspaces
we can obtain for G, when it is continuously embedded between two decomposable
operators. Theorem 2.5 is a generalization that only has G continuously embedded in a
decomposable operator. Except for the hyperinvariance, Corollary 2.7 and Proposition
2.8 appeared in [7].

In all these results, "invariant" may be replaced by "hyperinvariant" when we have
the following additional condition.

Def in i t ion 2.1.  SupposeW isaBanachspace,X' -+ W, B e B(W),andG: Blx.
We wiII say that B satisfies the commuting conditionfor G if, whenever R < B(X), with
RG c GR, then there exists S e B(W) such that SB : BS and R : Stx.

The following definitions are from [9] (see also [4, 14-161.

Definit ion 2.2. If x e X,thenacomplexnumber)'gisinthelocalresolventset, p(G, x),
of  G, i f  thereexis tsaneighborhood9,of  ) 's ,andamap. l ,  r+ R(,1. ,  G,x) , f romQinto
D(G), suchthat

(.1. - G)R(.l,, G, x) : v, Vl, e g.

The local spectrum o (G, x) is the complement, in C, of p(G , x).
If Q is a closed subset of the complex plane, then the local spectral subspace

corresponding to Q [9] is

X c ( ( 2 ) :  { x  e  X l o ( G , x )  c  A } .

The operator A e B(X) is decomposable 19, Definition 5.1 and Corollary 6.51 it
whenever {O; }tr is an open cover of. o (A), then there exist subspaces {Xi}i:r, invariant
for A, such that

(1 )  o (A l y , )  c  O ;  0  <  i  <n ) ;and
(2) x:Di:ox,.

The following is from [7].

Lemma 2.3. Suppose Z ,--> W and B is a closed operqtor on W. Then, for any closed
Q c C , x e Z ,

o(8,  x)  c  o(Blz,  x)  and Znl ' (Q) c  lVr(O).

Proposition 2.4. Suppose X'--> W,G : Blx, and B e B(W) is decomposable.
Define, for any closed O c C,

E(O) :Xn I { / r (o ) .



72 Ralph del,aubenfels and Vu Quoc Phong

Then 9 F+ E(S2) has the following properties:

(l) E(9) is closed and invariant under G.
(2) E(i l :  {0}, E(C) : X.
(3 )  X :  E (O)  + . . ' +  E (O^ ) ,wheneve r {Or , . . . ,  O^ }  i s  anopencove r  o f  C .
(+) s(nzr ar) : onr E(ai.
(s) xc(a) c E(o).

If B satisfies the commuting conditionfor G, then E(O) ls hyperinvariant under G.

Proof. Assertions (1)-(4) follow from the properties of S2 + WB({Z) since B is
decomposable. The hyperinvariance, when B satisfies the commuting condition for G,
follows from the fact that Wy(SZ) is a hyperinvariant subspace for B. Assertion (5) is a
consequence of Lemma 2.3.

Remark. We shall see that spaces W, as in Proposition 2.4, arise very easily. For example,
if G is a Ct contraction (this means that G is a contraction) and for any nontrivial x,

,\yc"* 7 o,

and Im(G) is dense, then there exists a Banach space I4l, B e B(W) such that
X ,--> W,G : Blx, and B is an invertible isometry (see [18, Lemma 3.5] or [3,
Chpt. XILIl).

What is missing from (l)-(4) is any guarantee that E(O) is nontrivial. Condition (5)
is all we have to create nontrivial E(f2) as follows.

Theorem 2.5. Suppose X .-+ W,G : Blx, B e B(W) is decomposable andthere
exist disjoint closed Qr, f2z such that Xc(0i) -* l}J, for j : 1,2. Then E(O;) ls
nontrivial for j : l, 2 and E(9t) n E(C22) : {0}.

In particulari G then has a pair of nontrivial closed invariant subspaces with trivial
intersection. If B satisfies the commuting condition for G, then these subspaces are
hyperinvariant.

Remark and Examples. Theorem 2.5 is somewhat a local version of the usual sufficient
condition for producing nontrivial closed hyperinvariant subspaces, having the spectrum
of G separated. But the hypotheses of Theorem 2.5 arc much more likely.

Consider, for example, (Gf)(z) = zf (z) on X defined to be one of the usual
spaces of complex-valued functions on f), a subset of the complex plane, such as
BC({2), Zp(O)(1 < p < oo), a Sobolev space, etc. The hypotheses of Theorem 2.5 are
equivalent to there being nontrivial functions fi, fz e X with disjoint support f2r, Qz.
The spectrum of G is separated if and only if C2 is not connected.

To see the limitations of Theorem 2.5, consider (Gf)(z) = zf (z) on X : H6(D) a
C(D), where D is the open unit disc. G is continuously embedded in (Bf)(z) = zf (z)
on W : C(AD), which is clearly decomposable. However, there do not exist disjoints
Qr, S2z as in Theorem 2.5.In fact, for any closed O c D, Xc(O) is either {0} or X;if
A + D, then X6(C2) : {0}.

When G is embedded between two decomposable operators, that is,

Z,--> X r--> W,
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G : Blx, and both B and Glz are decomposable, then Lemma 2.3 implies that it is
suffrcient to apply Theorem 2.5 to have 261,(91) I {0} for i : I,2. We would prefer
to replace conditions on Gl2 with conditions on G, for example, conditions on the local
spectrum of G.

Proposition 2.6. Suppose there exist nontrivial Banach spaces Z, W, B e B(W), such
that

Z'--> X'--> W,

G : Blx, and both B and Gl7 are decomposable, x e Z, and there exist open
Ot ,  Oz ,V t ,Vz  such tha t

(I) Or and Oz are disjoint;
(2)  o(G,  x)  c  Oi  U V1,  for  j  :  1 ,2;
(3) o(G, x) - Oi and o(G, x) - Vi are nonempty, for j - 1,2.

Thenfor j-: 1,2, E(Oi), defined by Proposition 2.4, is nontrivial, and E(O) n

E(o) = {01.

Proof. Since, by Lemma 2.3, Z(Q) : Zq,(9) g Xc(O), for any closed O, it is

sufficient, by Theorem 2.5, to show that Z(q) I {6} for j : I,2.By Lemma2.3,

o (G ,  x )  9  o (G lz ,  x )  c  o (G l7 ) ,

thus,
o ( G l z )  I  O t U  U r ,

where U1 = [yl U (C - o(G, x))]. Since Gl7 is decomposable, we have

Z:  Z (O)  +  Z (U) ,

o(Gl t r  r )  c  ur ,

o ( G l z )  -  U I :  o ( G ,  x )  -  V r ,

which is nonempty, it follows that Z(Ur) is not all of Z, so that, by (*), Z(O) + {d}.
Identically, Z(O) + {0}. r

Proposition 2.6 is capable of producing large families of nontrivial closed invariant
subspaces, but it sounds technical. The following special case is a much simpler way to
verify the existence of at least a pair of nontrivial closed invariant subspaces with trivial
intersection.

Corollary 2.7. Suppose there exist nontrivial Banach spaces Z,W, B e B(W), such
that

Z,-+ X' - -> W,

G : Blx, and both B and Glz are decomposable, x e Z, and o (G, x) contains at least
two points. Then G has a pair ofnontrivial closed invariant subspaces whose intersection
is trivial.
' 

If B satisfies the commuting conditionfor G, then these subspaces are hyperirwariant.

(*)

and

since
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Proof. Suppose )., e o(G, x), j : l ,2.Let <

(
O 1  = l z  e  C l l z - 1 . ; l  < e ) ,  v j

Now, apply Proposition 2.6.
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: )lx, - ),21, and define, for j - I,2,

:  { z  e C  l l z  -  x t l  r ; l

T

Wheno(G,x)isemptyorasinglepoint,forallx eZ,weneedadditionalinformation
about Gl7.

Proposition 2.8. Suppose there exist nontrivial Banach spaces Z,W, decomposable
B e B(W), suchthat

Z r--> X,--> W,

G : Blx, and Glz is bounded and has a bounded inverse, such that, for some m > 0,

l l (Gl)k l l :  o(k-)  and l l (Gl) -k11:  rotJ i t ,  as k -+ 16p.

Then G has a nontrivial closed invariant subspace. If B satisfies the commuting
conditionfor G, then either G is a multiple of the identity or G has a nontrivial closed
hyp e rinv ariant sub spac e.

Proof. If o(Glz) is a set containing a single point {).6}, then by Corollary 3.5 in [0],
),6 is an eigenvalue of G. Thus, either G : 101 or the eigenspace for G is a nontrivial
closed hyperinvariant subspace for G.

If o (Gl) contains two or more points, note that, since { ll (G l7)r ll}*.2 is dominated
by a Beurling sequence, G l7 is decomposable (see Definition 4.1 and Lemma 4.2). Thus,
this follows from Corollary 2.7.

3. Maximal Continuously Embedded Banach Subspaces on Which an Operator
Has Majorized Powers

In this section, given a weight sequence d, we construct a maximal continuously
embedded Banach subspace Z, of X, on which G is bounded, and has powers whose
norms l l (Gl7)k l l  * "  O(a(k)) .

These spaces are in the spirit of Kantorovitz's semi-simplicity manifold [11, 12] and
Hille-Yosida space [13]; the latter was introduced independently in [13]. We take a
"pointwise"approachanalogoustoChapterVin[5]and[6].Thespecialcaseofa(k) = 1
is in [8], where it was called a discrete Hille-Yosida space (see [7] for a semigroup analog
of this section).

Definit ion 3.1. Coc(c) :a:LoD(Gk\.

Definition 3.2, A sequence d : {o(tc)}n.7 @ne-sided sequence d : 1u1tc117o1ts a
weight sequence (one-sided weight sequence) if a(0) > L and

a(n I  m) < u(n)u(m), Yn, m € Z (n, m € N u {0}).
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Definition 3.3. If & is a one-sided weight sequence, define Z6(G) to be the set of all
x < C@(G) such that

1
llxl lz^rct = sup -r-;;Cexll < oo.

t€NU{01 cv('cJ

Theorem 3.4. If & is a one-sided weight sequence, then

(I) ZaG) is a Banach space continuously embedded in X;
(2) ZaG) is Ieft irwariant by G and

ll(Gl7ug)^llneag)) < a(m), Vm e N;

(3) ZaG) is mecimal-unique, that is, if W '--> X is a Banach space such that
Glw e B(W), with l l(Glw)^ll : o(a(m)) for m e N, then w + Za(G);
and

(4) if B e B(X) and BG c GB, then B maps Z6(G) to itself, and

l lB lzr<c>l l  5  l lB l l .

Proof. (I) It is clear that Za(G) is a normed vector space continuously embedded in X.
To show completeness, suppose {xnl, is Cauchy in Za(G).

Define, for n €N, avector in e Y : l@(N U {0}, X) by

( i ) r , = J - c o * , ( k - l e N ) .
a\K)

Then in is Cauchy, and hence, converges to j e Y.
For any nonnegative integer k, Gkxn + a(k)y* and G(Gkx) --> u(k * 1)y76a1, as

n + oo, thus, since G is closed, it follows that yp e D(G) and

a(k * r)Gyr, = 
ffiro*r' 

(*)'

Let x = cv(O)yo. By (*)' and induction, it follows that x e C@(G) and

G k x : a ( k ) y r ( k - 1 e N ) ;

in other words,

Jooo (*, - x) : li, - ilo.
d\k)

Thus,  s ince j  e  t *  andin + i in l - , i t fo l lowsthat- r  e Z6(G)andxn + x in
Za(G).Thus, Z6(G) is complete.

(2)For  ar ; ry  m,k e NU {0} ,x  e Za(G),

|  ,  . -  a & * m \, ^llG. (G^ x)ll S -# llxllz^rct < a(m)llxll7,61,
alK) d\K)
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thus, G maps Z6(G) to itself and
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l lG^ x l l z,<ct < a (m) l l x l l  su61,

f o r a l l r  e Z 6 ( G ) , m € N .

(3) Suppose l7 is as indicated. There exists a constant M such that

l lG* xl lw < Ma(m)l lx l lw Yx e W, m € N U {0}.

Since W .-+ X. there exists a constant 6 > 0 such that

l l r l lw  >  d l l x l l  Vx  e  17 .

Suppose x eW. SinceGlw € B(W), i t fol lowsthatx e C*(Glw) c C-(G).Forany
/ c e N U { 0 } ,

r  
l lcor l l  .  

I  
l lck.  

M
q ( k ) "  "  -  6 q ( k ) "  

x l l w <  
T l l x l l w '

thus,
M

l lx l l zo  <  
T l l x l lw :

this is to say I4z .-+ ZaG).
(4) Suppose x e Z6.Thenfor any k eN U {0},

|ck  nx| :  + i lBGkxi l  s  l lB l l  l * "oo" t t l  s  t t r t t  txuz^,
d\K) Lcv(rc) J

thus,

l lBxl lz" < l lBl l l lx l lzu, Yx e 26,

as desired. I

Remark. The space C* (G), with the seminorms

l lx l fu  =  l lGk* l l

for k a nonnegative integer, is similarly the maximal Frechet space continuously
embedded in X, on which G is bounded.

Definition 3.5. Now, qssume G is closed and injective, and d : {a(k)h.z is aweight
sequence.

Define ZaG) to be the set of all x e C@(G) O C@1G-t; such thar

I
llxllz,<ct = 

iZE "<All 
Gkx ll < oo.

' 
The same proof as the proof of Theorem 3.4 gives us the following:
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Theorem 3.6. If & is aweight sequence, then

(l) Za(G) is a Banach space continuously embedded in X;
(2) 26@) is left irwariant by G and G-' and

l lG* l la<zu<cl )  < a(m),  Ym eZ;

(3) ZaG) is maximal-unique, that is, if W ,--> X is a Banach space such that Glyy and
G-t lw are in B(W), with ll(Glys)m ll : O (u(m)), for m e Z, then W ,--> Z6(G);
and

(4) if B e B(X) and BG c GB, then B maps Za(G) to itself, and

l lB l zu<c> l l  <  l lB l l .

4. Orbits and Hyperinvariant Subspaces

Without loss of generality, we may assume, throughout this section, that G is injective
and Im(G) is dense; otherwise, Im(G) or "A/(G) would provide a closed nontrivial
hyperinvariant subspace for G.

Also, assume throughout this section that G is not a multiple of the identity operator.
We give sufficient conditions, in terms of orbits of G and G*, for G to have a nontrivial

closed hyperinvariant subspace. Theorem 4.3 requires that an orbit of G and an orbit
of G* be a Beurling sequence. In Theorem 4,3, G need not be bounded. Theorem 4.5
requires that there exist a one-sided Beurling sequence d such that

l lG' l l  :  o(q(n))  (n e N) and l im,*-  l lG 'x l l  >  0,  (3)

and disjoint closed sets f,2;, j : 1,2, whose local spectral subspaces X6(Q;) are
nontrivial. Theorem 4.6 replaces the spectral subspace condition in Theorem 4.5 with
the requirement that an orbit of G be a Beurling sequence. Theorem 4.8 requires (3) for
both G and G*. A special case (a(n): 1) is G being a Cl,1 contraction. Theorem4.ll
constructs a large family of closed hyperinvariant subspaces for G as in Theorem 4.8,
with a pointwise version of the construction of local spectral subspaces for generalized
scalar operators.

Continuous analogs of Theorems 4.3, 4.6 and 4.8 (although not producing
(hyper-)invariant subspaces) appear in [7].

Definition 4.1. A Beurling sequence (one-sided Beurling sequence) is a weight se-
quence (one-sidedweight sequence) d such that

lno(k)
- ( O O
l + k z

77

T
keZ

Lemma 4,2. If e is a Beurling sequence, then G17"61 is decomposable.
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Proof. This is an immediate consequence of Theorem3.6(2) and [4, Chpt.5.2]. r

Theorem 4.3. Suppose D(G) is dense, and there exist nontrivial .{ € Cm(G) n
c-1c- t ; ,  x*  e c@(G*)  n coo((G-r)* )  suchthat

l lGk xll : o (q(k)), l l(G*)k ** l l  : o (u2(k))

for some Beurling sequences di , j : 1,2, and either

(l) for some m > 0,

l lG"xl l :  o(n-) and l lG-"xl l  -  eo(^/ i )  as n --> +@'

(2) o (G, x) contains at least two points.

Then G has a nontrivial closed hyperirwariant subspace.

Proof. First,assumeweareunderhypothesis(1),ando(G,x)isemptyorconsistsofa
single point. Then by Corollary 3.5 in [10], G has an eigenvector, and we are done.

Now, suppose we are under hypothesis (2). In Corollary 2.7,let t :- Zdr (G).By
Lemma 4.2, Gl7 is decomposable. Let Y : Zd,(G*). By Lemma 4.2 again, (G*)ly
is decomposable. Let W = Y*, B : (G*lv)*. Then B e B(W) is decomposable [9,
Theorem 8.11.

If the closure of Y in X* is not all of X*, then by Theorem 3.6(4), this closure is
a nontrivial closed hyperinvariant subspace for G*, and we are done. Otherwise, since
Y ,--> X*, we have

X C X"" ,-+ W,

and G : Blx, thus, we may apply Corollary 2.7. Note that Z andW are nontrivial
because x e Z and x* e I. By Theorem 3.6(4), B satisfies the commuting condition
for G, thus we obtain a hyperinvariant subspace from Corollary 2.7. r

Remark. Theorem 4.3(1), for G e B(X), appears in Theorem 1.1 in [1], except that the
growth condition there is llGkxll : O(lkl-), as /c -+ *oo.

We may replace complete orbits {Gkx}r .s withone-sided orbits {G'.x}n.y, using the
following construction.

Lemma 4.4. Suppose G e B(X), and d is a one-sided Beurling sequence such that

l lG' l l  :  O(a(n))  (n e N),

andfor all nontrivial x e X,

1
l imn-oo  , . l lGnx l l  >0 .

ot\n)

Then there exists a Banach space V and H e B(V) such that

Q)  X , - ->  V ;
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(2 )  G :  H lx ;
(3) l lxl lv :  l im,*-;f i l  l lG"xl l ;
(4) l lH"l l  < a(n): l im^-*ff i , foral ln e N;
(5) llHx llv > llxllv, for all x e V:
(6) X ls dense in V:
(7) H satisfies the commuting conditionfor G.

Proof. The construction of V and 11 satisfying (1)*(6) is in [18] (this is, the discrete
analog of Lemma 3 in [18]). For (7), suppose R e B(X) and RG : GR. It is clear
from (3) that ll Rr ll y < ll R ll rtxt llx ll v, for all r e X, thus, by (6), R extends uniquely
to S e B(V) such that  l lS l larvt  < l lRl larx l .

Remark. Note that a(n) is much smaller, in general, then cv(n). For example, if
u (n ) :n * , f o r  somem >  0 ,  o r  en ' , f o r  0  <  r  <  1 , t hen  a (n ) :1 , f o ra l l / r  €  N .

As an immediate corollary of Lemma 4.4 and Theorem 2.5,we have the following.

Theorem 4.5. Suppose G e B(X), there exists a one-sided Beurling sequence d, and
x e X, such that

l lG' l l  :  O(q(n))  (n e N)

and

l irn-r-- llGnxll > 0,

and there exist disjoint closed subsets Szi, i : 1,2, of the complex plane, such that
xc(O;) + {6}, for j : 1,2. Then G has a pair of nontrivial closed, hyperinvariant
subspaces with tivial intersection.

Proof. We may assume that Eq. (4) is valid for all nontrivial x, otherwise,

1

{x  I  l im - j . l lc " r l l  :  o}
n + @  d \ n )

would be a nontrivial closed hyperinvariant subspace. Thus, we may apply Lemma 4.4

79

(4)

and Theorem 2.5.

Theorem 4.6. SupposeG e B(X).Thereexistsaone-sidedBeurlingsequencedl,and
x e X. such that

l lG' l l  :  O(ar@D (n e N)

and

l i ro,--- l l lGnxll  > o,
dt\n)

and nontriviat y e C* (G-r) such that

l l c ky l l  :O (u2@\  &eZ)

for some Beurling sequence dz and either

(5)
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ar&) =ti^,-*ffi : eocfk) (k e N),

(2) o(G, y) contains at least tvvo points.

Then G has a nontrivial closed hyperinvariant subspace.

Proof. As in the proof of rheorem 4.5, we may assume Eq. (5) is valid for all nontrivial
x .

First, assume we are under hypothesis (1). Let V and H be as in Lemma 4.4. Since we
are assuming Im(G) is dense in X, and by Lemma 4.4, X is dense in V and X .-> V , it
follows that Im (I1) is dense in V. By Lemma4.4(5),it now follows that FI is invertible,
and l l I l -1 l l  <  1.  Thus,byLemma 4.4(4) , l lHf t l l  :  O(as(k)) , fork e Z,wherc

q z & ) :  a t & ) ,  o z ( k ) :  I  Y k  €  N U  [ 0 ] .

As in the proof of Theorem4.3, we have a Banach space

Y,--> X

suchthat l l (Gly)kl l  :  O(qz(k)), forfr  e Z.InProposit ion2.8, let  W : Y*,8 :  (Gl i l* ,
and let Z : V*, so that G*lz : I/*. Then, as in the proof of Theorem 4.3,

Z r--> X* ,--> W,

G* :  B lx . , l l (G. l )k l l :  l l f / r l l  :  o(az&D, for f t  e  Z,and B is  decomposable.  By
Proposition 2.8, we now have a nontrivial closed hyperinvariant subspace for (G*)-1
and hence for G.

Under hypothesis (2), we construct Y , V and 11 as we did under hypothesis (1). By
Lemma 4.4,lHkl : O(qt(kl)), for k e Z. Note thatfi is a one-sided Beurling
sequence. Thus, since y e Y, we may invoke Corollary 2.7, with Z replacedby y, W
by V, and Bby H. r

A corollary is the following result, from Theorem 1.6 in [1] andl2l.

Corollary 4.7. suppose G is a contraction. There exists a Beurling sequence d, and
nontrivial y e C@(G-r) such that llGkyll : O(a(k)), for k e Z, and there exists x
such that

]\ l lckxll + o.

Then G has a nontrivial closed hyperinvariant subspace.

Remark. Corollary 4.7 may also be proven by using [17] to produce x* € X* such that
{ ll (G-)*r- ll }162 is bounded, so that we may apply Theorem 4.3 to G*.



and

cY(l' 
;- u(k * n):): l im,*-ff i - eo\Jit (k e N),

and there exists x e X, x* e X* such that

l - 1
l im,-oo ^  l lG 'x l l  >  0,  and l imn-* j ' l l (C-) , r* l l  =  0.  (6)

or\n) a\n)

Then G has a nontrivial closed hyperinvariant subspace.

Proof. As in the first part of the proof of rheorem 4.6, use Lemma 4.4, this time on both
G and G*, to produce Banach spaces V, IV such that
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Theorem 4.8. Suppose G e B(X), d is a one-sided Beurling sequence such that

l lG"l l  :  o(a(n)) (n e N),

X r--> V, X* ,--> W,

4.6.

As in the proof of Theorem 4.6, let Z = V * so that G * | z : H {, and invoke Proposition
2.8 to produce a nontrivial closed invariant subspace for G*. Note that Lemma 4.4(j)
implies that it is hyperinvariant. I

Remark. when x is reflexive, this result appears in Theorem 5.1.9 in t4l and rheorem
1.4 in [1], except that there cv(k) is O(k-) for some m > 0.

Corollary 4.9. Suppose G is a contraction, and there exist x e X, x* e X* such that

l im l lG 'x l l  10,  l im l l (G*) 'x . l l  10.+ @  n + 6

Then G has a nontrivial closed hyperiwariant subspace.

In fact, for operators satisfying (3.4) for all nontrivial x e X, x* e X*, we may
construct a large family of hyperinvariant subspaces for G*.

Definition 4.10.14, Chpt. 5.21 If d is a weight sequence, define tlldl to be the Banach
algebra of functions in Lr of the unit disc, whose Fourier cofficients {i &)lt .z satisfy
the growth condition

l l  f l luot = lt i  tt >1"(k) < oo.
keZ
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Theorem 4,11. Suppose d is a one-sided Beurling sequence.

l lGkl l  :  o(a(k)) ,

q(k):r i*--{94 - eo(JE) (k e N),
a l n  I

and
l - l

l im,*- - j - l lG 'x l l  >  0.  and l imn-*-^  l l (G*) 'x- l l  >  0,
a\n)  a\n)

for all nontrivial x e X, x* € X*.
For 9, a closed subset of the unit circle "f , define E (Q) to be the set of all x e X

such that
I I

l im l im-n,--^ I f  i( t)(c*)o*"rl l  :0,
N--*oo a\n) t?*

whenever f e Uldzl has support disjoint from {2, where

a3 (k ) :  a r ( k ) ,  az?k ) :  I  V f t  e  NU {0 } .

Then E (Q) is as in Proposition 2.4, with G replaced by G* , and contains F (Q), defined
to be the set of all r € Coo((G* )-t) such that

1 y
lim sup+^ l l  f  l0)(c*;k+r1;; :9,

N.M-a r .L,  at (k)"  
i?N"

whenever f e Uldzl has support disjoint from {2.
We have

r ( o ) c X c ( o ) c E ( o ) .
In p artic ular, E (A) and E (T - O) are a p air of nontriv ial c lo s e d hy p e rirw ar i ant s ub s p ac e

for G*, with trivial intersection, whenever both F (9) and F ("f - 9) are nontrivial.

Proof. By the proof of Theorem 4.8, we have Banach spaces Z, W, B e B(I4z), such
that 

Z '-> X* '--+ w,

G* : Blx. , and both ll Bk ll and ll(G.l)k ll are o (az(k)), for k e Z, with

l l x l lw = l im,*-*  l l (G.) "x l l .
d \n )

By Theorem 3.6(3), we may assume Z : Zd.(G*), so that
1

l lx l lz :  
i t1 "rrAl lckxl l .

The growth condition on the powers of B and (G*)lz imply that these operators are
U(l&D-vrliW [4, Chpt. 5], with functional calculus

f  (B): L i<oluo (f  eutd3t)
k:-rc

and local spectral subspaces

%(o) : 1-lt,lff/tr)) | "f e uldzl, support of / is disjoint from o)

[4, Chpt. 3.1]. Thus, Z<c.a(9) : F(Q) and E(A), as in the statement of this theorem,
equals X n I4IB(A) as in Proposition2.4. r
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Definition 4.12. A contraction G is a C11 contraction if

, l l l [  l lG'xll lo and ,!g l ltc*)'**l l + o,

for all nontrivial x € X, x* € X*.

Putting a(k) : 1 in Theorem 4.11 gives us the following:

Corollary 4.13. Suppose G is a C1J contraction. For 9, a closed subset of the unit
circle T , define E (Q) to be the set of all x e X such that

N

l im lim-n-6ott f i tr lfc*;k+nx;; - o,
N-*oo 

r7u

whenever / e C-(T) has supportdisjointfrom{2.Then E(O) ls asinProposition2.4,
with G replaced by G* , and contains F (Q), defined to be the set of all x e C- (G- I 

)
such that

M

l im sup l l  t  i ( j ) (c \o* ix l l  :0 ,
N.M_@ kel  

_N

whenever f e C* (T) has support disioint from {2.
We have

F ( A ) c X c ( A ) c E ( O ) .

In particular, E(9) and ECf - 9) are a pair of nontrivial closed hyperinvariant
subspaces for G*, with trivial intersection, whenever both F(Q) and F(T - {2) are
nontrivial.
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