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Abstract. For any weight sequence & = {a(k)}xez and a closed linear operator G on a Banach
space X, we construct a maximal continuously embedded Banach subspace Zz(G) such that
||(G|Z&(G))k | < a(k), for all k € Z. We use this to produce many hyperinvariant subspaces for

operators with an appropriate orbit {G*x};cz or one-sided orbit {G"x},<N.

1. Introduction and Terminology

We cannot begin to summarize the literature on invariant subspaces for linear operators
on a Banach space, so we will refer the reader to [3] and the references therein.
It is convenient to specify some terminology before continuing.

1.1. Terminology

All operators are linear on a Banach space. The letters X, W and Z, among others, will
always represent Banach spaces. We will denote by D(A) the domain of the operator
A, by Im(A) its image, by NV'(A) its null space, by o (A) its spectrum, and by p(A) its
resolvent set. Denote by B(X) the space of bounded operators from X to itself.

We will say that X is continuously embedded in W, X < W, if X C W and the
identity map from X into W are continuous. If B € B(W), then B|x is the part of B in X,
thatis, D(B|x) = {x € X N D(B) | Bx € X}, with (B|x)x = Bx, for all x € D(B|x).
If G is an operator on X and B is an operator on W, with G = B|x, we will then say
that G is continuously embedded in B.

Assume throughout this paper that G is a closed operator on X.

The subspace W C X is invariant for G if G maps W N D(G) into W. The space W
is hyperinvariant for G if it is invariant for R, whenever R € B(X) commutes with G,
thatis, RG & GR. We will say the (hyper-)invariant subspace W for G is nontrivial if
D(G) N W is neither D(G) nor {0}.
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Decomposable operators come with many closed hyperinvariant subspaces, namely,
their local spectral subspaces. Operators whose powers (both positive and negative)
satisfy appropriate growth conditions are automatically decomposable.

If & is a Beurling sequence (see Definition 4.1) and

1G]l = Oak)) VkeZ, (M

then G has a functional calculus f — f(G) defined by

fG) =) fG,

keZ

for f in C*°(Y), where Y is the unit circle, whose Fourier series { f (k) }rez decays
sufficiently rapidly, and the local spectral subspaces have an explicit form

EQ) =n{N(f(G))| f € C®(Y) has support disjoint from 2} 2)

(see [4]).
We show that, for G closed (not necessarily bounded), the set of all x, for which the
discrete orbit {G*x )z satisfies the growth condition

IG* x| = O(a(k)) (k € Z),

can be normed in such a way as to form a Banach space, Z; (G), continuously embedded
in X, on which G satisfies (1).

Thus, when G has a nontrivial discrete orbit {G¥x)icz that grows like a Beurling
sequence, we may continuously embed a decomposable operator in G. When G* has
such an orbit, we may, after taking adjoints, continuously embed G in a decomposable
operator. On both sides of G, there are numerous hyperinvariant subspaces with the
explicit form (2). This will produce closed nontrivial hyperinvariant subspaces for G.

It is sometimes sufficient to consider only one-sided orbits {G" x},<N by using another
construction of a decomposable operator in which G is continuously embedded (see
Lemma 4.4).

In Sec. 2, we show that, if G is continuously embedded in a decomposable operator
(on a larger space with a weaker norm) B, then G inherits a family of closed invariant
subspaces formed by taking the intersection of X with the local spectral subspaces of
B. In order that one of these be nontrivial, it is sufficient that there exist disjoint closed
subsets of the complex plane, 1 and 3, such that the local spectral subspaces for G
corresponding to 2; and €2, are both more than the zero vector.

In Sec. 3, we construct, for any weight sequence @, the maximal continuously
embedded subspace of X, Z;(G), on which the powers of G are dominated by &, as in
(1).

Section 4 applies Secs. 2 and 3 to produce simple sufficient conditions on the orbits
of G and G* in order for G to have a nontrivial closed hyperinvariant subspace. For
the dual G* of a Cy; contraction (see Definition 4.12), we construct a family of closed
hyperinvariant subspaces with a “pointwise” version of (2); for , a closed subset of the
unit circle Y, define E(S2) to be the set of all x € X such that

N
lim fim,ooll ) FORNGH x| =0,
N—oo N
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whenever f € C*°(Y) has support disjoint from 2 (Corollary 4.13). A similar
construction works for a much larger class of operators (see Theorem 4.11).

2. (Hyper-)Invariant Subspaces for Operators Continuously Embedded in a
Decomposable Operator

Proposition 2.6 gives an idea of how large a family of closed invariant subspaces
we can obtain for G, when it is continuously embedded between two decomposable
operators. Theorem 2.5 is a generalization that only has G continuously embedded in a
decomposable operator. Except for the hyperinvariance, Corollary 2.7 and Proposition
2.8 appeared in [7].

In all these results, “invariant” may be replaced by “hyperinvariant” when we have
the following additional condition.

Definition 2.1. Suppose W is a Banach space, X — W, B € B(W), and G = Blx.
We will say that B satisfies the commuting condition for G if, whenever R € B(X), with
RG C GR, then there exists S € B(W) such that SB = BS and R = §|k.

The following definitions are from [9] (see also [4, 14-16].

Definition 2.2. Ifx € X, then a complex number Ly is in the local resolvent set, p(G, x),
of G, if there exists a neighborhood 2, of Ao, and a map A — R(A, G, x), from 2 into
D(G), such that

A—G)R(A,G,x)=x, VieQ.

The local spectrum o (G, x) is the complement, in C, of p(G, x).
If Q is a closed subset of the complex plane, then the local spectral subspace
corresponding to 2 [9] is

Xg(Q)={xeX|o(G,x) CQ}.

The operator A € B(X) is decomposable [9, Definition 5.1 and Corollary 6.5] if,
whenever {Q;}!"_, is an open cover of o (A), then there exist subspaces {X;};_,, invariant
for A, such that
(1) o(Alx,) € Q; 0<i <n);and
()=

The following is from [7].

Lemma 2.3. Suppose Z < W and B is a closed operator on W. Then, for any closed

QCCzxeZ
o(B,x) Co(Blz,x) and Zp|,(2) € Wg().

Proposition 2.4. Suppose X — W,G = Bl|x, and B € B(W) is decomposable.
Define, for any closed Q2 C C,

E(Q) = X N Wg(92).
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Then Q — E(2) has the following properties:

(1) EQ)is c!,osed and invariant under G.

@ E@)=({0),EC) =X.

3) X =E(0O1)+ -+ E(Op), whenever {O1, ..., O} is an open cover of C.
@) E(R2 ) = M2y Q0.

(5) Xg(Q2) € E(Q).

If B satisfies the commuting condition for G, then E(Q) is hyperinvariant under G.

Proof. Assertions (1)-(4) follow from the properties of Q > Wpg(2) since B is
decomposable. The hyperinvariance, when B satisfies the commuting condition for G,
follows from the fact that Wz (€2) is a hyperinvariant subspace for B. Assertion (5) is a
consequence of Lemma 2.3. L

Remark. We shall sce that spaces W, as in Proposition 2.4, arise very easily. For example,
if G is a C| contraction (this means that G is a contraction) and for any nontrivial x,

lim G"x # 0,

h— 00

and Im(G) is dense, then there exists a Banach space W, B € B(W) such that
X — W,G = Blx, and B is an invertible isometry (see [18, Lemma 3.5] or [3,
Chpt. XII.1]).

What is missing from (1)—(4) is any guarantee that £ (£2) is nontrivial. Condition (5)
is all we have to create nontrivial E (£2) as follows.

Theorem 2.5. Suppose X <~ W,G = B|x, B € §(W) is decomposable and there
exist disjoint closed Qy, Qp such that X (82)) # {0}, for j = 1,2. Then E(Q;) is
nontrivial for j = 1,2 and E(S1) N E(SQ) = {0).

In particular, G then has a pair of nontrivial closed invariant subspaces with trivial
intersection. If B satisfies the commuting condition for G, then these subspaces are
hyperinvariant.

Remark and Examples. Theorem 2.5 is somewhat a local version of the usual sufficient
condition for producing nontrivial closed hyperinvariant subspaces, having the spectrum
of G separated. But the hypotheses of Theorem 2.5 are much more likely.

Consider, for example, (Gf)(z) = zf(z) on X defined to be one of the usual
spaces of complex-valued functions on €2, a subset of the complex plane, such as
BC(Q), LP(2)(1 < p < 00), a Sobolev space, etc. The hypotheses of Theorem 2.5 are
equivalent to there being nontrivial functions f, f2 € X with disjoint support 1, ;.
The spectrum of G is separated if and only if €2 is not connected.

To see the limitations of Theorem 2.5, consider (Gf)(z) = zf(z) on X = H*® (D) N
C(D), where D is the open unit disc. G is continuously embedded in (Bf)(z) = z f(2)
on W = C(8D), which is clearly decomposable. However, there do not exist disjoints
Q1, Q; as in Theorem 2.5. In fact, for any closed Q@ € D, X5 () is either {0} or X; if
Q # D, then X5 () = {0).

When G is embedded between two decomposable operators, that is,

Z—>X—>W,
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G = B|x, and both B and G|z are decomposable, then Lemma 2.3 implies that it is
sufficient to apply Theorem 2.5 to have Zg|, (2;) # {0} for j = 1, 2. We would prefer
to replace conditions on G|z with conditions on G, for example, conditions on the local
spectrum of G.

Proposition 2.6. Suppose there exist nontrivial Banach spaces Z, W, B € B(W), such
that
Z—>X<>W,

G = B|x, and both B and G|z are decomposable, x € Z, and there exist open
01, 02, V1, V5 such that

1) 0_1 and Oy are disjoint;

(2) 0(G,x) CO; UV}, forj=1,2;

(3) 0(G,x) — Oj and o (G, x) — V; are nonempty, for j =1, 2.

Then for j = 1,2, E (ﬁj), defined by Proposition 2.4, is nontrivial, and E(0p) N
E(0;) = (0}

Proof. Since, by Lemma 2.3, Z(Q) = Zg|,(2) S Xg(R), for any closed £, it is
sufficient, by Theorem 2.5, to show that Z (67 ) # {0} for j = 1, 2. By Lemma 2.3,

o(G,x) S 0(Glz,x) S o(Glz),

thus,
o(Glz) € 01U Ui,

where U; = [V; U (C — 0(G, x))]. Since G|z is decomposable, we have
Z =Z(01) + Z(Uy), ()

and -
G(G|Z(Fl)) c U,

since - -
0(Glz) - U1 =0(G,x)— W,

which is nonempty, it f_())llows that Z(U,) is not all of Z, so that, by (x), Z(01) # {6}.
Identically, Z(0;) # {0}. [ |

Proposition 2.6 is capable of producing large families of nontrivial closed invariant
subspaces, but it sounds technical. The following special case is a much simpler way to
verify the existence of at least a pair of nontrivial closed invariant subspaces with trivial
intersection.

Corollary 2.7. Suppose there exist nontrivial Banach spaces Z, W, B € B(W), such
that
Z—>X—>W,

G = Blx, and both B and G|z are decomposable, x € Z, and 0 (G, x) contains at least
two points. Then G has a pair of nontrivial closed invariant subspaces whose intersection
is trivial.

* If B satisfies the commuting condition for G, then these subspaces are hyperinvariant.
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Proof. Suppose A; € 0(G,x), j=1,2.Lete = %Ml — X2|, and define, for j = 1, 2,
€
0, = {zeCllz—kjl <€), Vi={zeCllz—x]> 5}.
Now, apply Proposition 2.6. |

When o (G, x) is empty or a single point, for all x € Z, we need additional information
about G|z.

Proposition 2.8. Suppose there exist nontrivial Banach spaces Z, W, decomposable
B € B(W), such that
' Z—>X—>W,

G = Blyx, and G|y is bounded and has a bounded inverse, such that, for some m > 0,
(Gl = 0™ and (Glz) ™| = V0 a5 k> +oo.

Then G has a nontrivial closed invariant subspace. If B satisfies the commuting
condition for G, then either G is a multiple of the identity or G has a nontrivial closed
hyperinvariant subspace.

Proof. If 6(G|z) is a set containing a single point {Ag}, then by Corollary 3.5 in [10],
Ap is an eigenvalue of G. Thus, either G = Aol or the eigenspace for G is a nontrivial
closed hyperinvariant subspace for G.

If 0 (G|z) contains two or more points, note that, since {||(G|z)*||}xez is dominated
by a Beurling sequence, G| is decomposable (see Definition 4.1 and Lemma 4.2). Thus,
this follows from Corollary 2.7. [

3. Maximal Continuously Embedded Banach Subspaces on Which an Operator
Has Majorized Powers

In this section, given a weight sequence &, we construct a maximal continuously
embedded Banach subspace Z, of X, on which G is bounded, and has powers whose
norms ||(G|z)*|| are O (a(k)).

These spaces are in the spirit of Kantorovitz’s semi-simplicity manifold [11, 12] and
Hille-Yosida space [13]; the latter was introduced independently in [13]. We take a
“pointwise” approach analogous to Chapter V in [5] and [6]. The special case of (k) = 1
is in [8], where it was called a discrete Hille—Yosida space (see [7] for a semigroup analog
of this section).

Definition 3.1. C*(G) = NX ,D(G").

Definition 3.2. A sequence & = {a(k)}rcz (one-sided sequence & = {a(k)}{2,) is a
weight sequence (one-sided weight sequence) if (0) > 1 and

an+m) <amya@m), Vu,m € Z (n,m € NU{0}).
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Definition 3.3. If @ is a one-sided weight sequence, define Zz(G) to be the set of all
x € C*®(G) such that

| pe"
Ixlzzcop = sup ——IG"x|| < oo.
@ keNujoy @(k)

Theorem 3.4. Ifd is a one-sided weight sequence, then

(1) Z;(G) is a Banach space continuously embedded in X
) Zz(G) is left invariant by G and

(Gl zs)" W Bzs(G)) < @(m), Ym € N;

() Z;(G) is maximal-unique, that is, if W — X is a Banach space such that
Glw € BW), with |(Glw)"|| = O(x(m)) for m € N, then W — Zz(G);
and

(4) if B € B(X) and BG C GB, then B maps Z3(G) to itself, and

| Blzzo |l = IIBIl.

Proof. (1) Itis clear that Z; (G) is a normed vector space continuously embedded in X.
To show completeness, suppose {x,}, is Cauchy in Z3(G).
Define, forn € N, a vector X, € Y = £ (N U {0}, X) by

Gy ——— ITEE R
Gnle = 2 5G 0 k= 1€N).

Then X, is Cauchy, and hence, convergesto y € Y.
For any nonnegative integer k, G¥x, — a(k)y; and G(G*x,) — a(k + 1)yis1, as
n — oo, thus, since G is closed, it follows that y; € D(G) and

_ak+1)
Gy = o)

Let x = «(0)yo. By (*)’ and induction, it follows that x € C*°(G) and

Vi1 (Y

G*x = a()yx (k—1 e N);

in other words, 1
%Gk(xn — )C) = [J-C)n — 5;]/( o
Thus, since § € £*° and ¥, — ¥ in £, it follows that x € Z3(G) and x, — x in
Z;(G). Thus, Z3(G) is complete.
(2) For any m, k € NU {0}, x € Z3(G),

1 oy alk + m)
. @”G (G"0)| = o

1xllzze) < a@m)lxllz: ),
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thus, G maps Z;(G) to itself and
1G™"xllzz6) < a(m)|xllzy(c)

forall x € Z3(G), m € N.

(3) Suppose W is as indicated. There exists a constant M such that

IG"x|lw < Ma(m)||lx|lw Vx € W,m € N U {0).
Since W < X, there exists a constant § > 0 such that
Ixllw = 8llx|| Vx € W.

Suppose x € W. Since Glw € B(W), it follows that x € C*°(G|w) € C*®(G). For any
k € NU {0},

1 M
—IG*x| = ——|IGF Sk )
) 1G" x|l < ) 16" xllw = —llxllw

thus,
M
lxllz; < ?lellw;

this is to say W — Zz(G).
(4) Suppose x € Z;. Then for any k € N U {0},

1 1
—||G*Bx|| = —IBG*x| < | B [— G*x ]< B I8
a{k)ll Il (x(k)” I <|BJ a(k)” ] < IBlxllz,
thus,
|Bxliz, < IIBlllxllz;» Yx € Zg,
as desired. .

Remark. The space C*>°(G), with the seminorms
Ixlle = 1G*x|

for k a nonnegative integer, is similarly the maximal Frechet space continuously
embedded in X, on which G is bounded.

Definition 3.5. Now, assume G is closed and injective, and a = {a(k)}rez is a weight
Sequence.

Define Z3(G) to be the set of all x € C®(G) N C*®(G~!) such that

1 k
lxll ;) = sup —= |G x| < oo.
2 kez (k)

* The same proof as the proof of Theorem 3.4 gives us the following:
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Theorem 3.6. Ifa is a weight sequence, then

(1) Zz(G) is a Banach space continuously embedded in X
(2) Z3(G) is left invariant by G and G~ and

|G™ | B(zse)) < x(m), Ym € Z;

(3) Z;(G) is maximal-unique, that is, if W < X is a Banach space such that G|w and
G~ Yw are in B(W), with |(G|w)™|| = O(a(m)), form € Z, then W — Z3(G);
and

(4) if B € B(X) and BG € G B, then B maps Z;(G) to itself, and

Bzl < Bl

4. Orbits and Hyperinvariant Subspaces

Without loss of generality, we may assume, throughout this section, that G is injective
and Im(G) is dense; otherwise, Im(G) or N'(G) would provide a closed nontrivial
hyperinvariant subspace for G.

Also, assume throughout this section that G is not a multiple of the identity operator.

We give sufficient conditions, in terms of orbits of G and G*, for G to have a nontrivial
closed hyperinvariant subspace. Theorem 4.3 requires that an orbit of G and an orbit
of G* be a Beurling sequence. In Theorem 4.3, G need not be bounded. Theorem 4.5
requires that there exist a one-sided Beurling sequence & such that

— 1
G| = O(a(n)) (n € N) and lim,,_mo——{ }||G"x|| > 0, 3)
aln

and disjoint closed sets €2;, j = 1,2, whose local spectral subspaces X (2;) are
nontrivial. Theorem 4.6 replaces the spectral subspace condition in Theorem 4.5 with
the requirement that an orbit of G be a Beurling sequence. Theorem 4.8 requires (3) for
both G and G*. A special case («¢(n) = 1) is G being a Cy,1 contraction. Theorem 4.11
constructs a large family of closed hyperinvariant subspaces for G as in Theorem 4.8,
with a pointwise version of the construction of local spectral subspaces for generalized
scalar operators.

Continuous analogs of Theorems 4.3, 4.6 and 4.8 (although not producing
(hyper-)invariant subspaces) appear in [7].

Definition 4.1. A Beurling sequence (one-sided Beurling sequence) is a weight se-
quence (one-sided weight sequence) & such that

In « (k) — Ina(n)
Zl+k2 A (Z 1 +n2 *:100).

keZ n=(

Lemma 4.2. Ifa is a Beurling sequence, then G|z,(c) is decomposable.
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Proof. This is an immediate consequence of Theorem 3.6(2) and [4, Chpt. 5.2]. [ ]

Theorem 4.3. Suppose D(G) is dense, and there exist nontrivial x € C*(G) N
C®(G™1, x* € C®°(G*) N C®(G~YY*) such that

IG* x|l = O(a1(k)), [[(G*)x*|| = O(a(k))

for some Beurling sequences o?,-, Jj = 1,2, and either

(1) for somem > 0,
G x| = OW™) and |G "x| = YN 45 n— oo,

or
(2) o(G, x) contains at least two points.

Then G has a nontrivial closed hyperinvariant subspace.

Proof. First, assume we are under hypothesis (1), and o (G, x) is empty or consists of a
single point. Then by Corollary 3.5 in [10], G has an eigenvector, and we are done.

Now, suppose we are under hypothesis (2). In Corollary 2.7, let Z = Zg (G). By
Lemma 4.2, G|z is decomposable. Let Y = Zg (G*). By Lemma 4.2 again, (G*)|y
is decomposable. Let W = Y*, B = (G*|y)*. Then B € B(W) is decomposable [9,
Theorem 8.1].

If the closure of ¥ in X™ is not all of X™, then by Theorem 3.6(4), this closure is
a nontrivial closed hyperinvariant subspace for G*, and we are done. Otherwise, since
Y <> X*, we have

XCTX™ W,

and G = B|y, thus, we may apply Corollary 2.7. Note that Z and W are nontrivial
because x € Z and x* € Y. By Theorem 3.6(4), B satisfies the commuting condition
for G, thus we obtain a hyperinvariant subspace from Corollary 2.7. ]

Remark. Theorem 4.3(1), for G € B(X), appears in Theorem 1.1 in [1], except that the
growth condition there is |G*x|| = O (}k|™), as k — Fo0.

‘We may replace complete orbits {G¥x)rez with one-sided orbits {G"x},eN, using the
following construction.

Lemma 4.4. Suppose G € B(X), and & is a one-sided Beurling sequence such that
IG"|| = O(xx(n)) (n €N),

and for all nontrivial x € X,
— 1 "
lim; . 0c——||G" x| > O.
a(n)

Then there exists a Banach space V and H € B(V) such that
1) X—V,;
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@ G=Hly;

@) lxlly = By oo 785 161

@) | H"| < &) = limp o0 205, foralln € N;
) I1Hxllv = ||xllv, for all x ¢ V

(6) X isdenseinV,;

(7) H satisfies the commuting condition for G.

Proof. The construction of V and H satisfying (1)-(6) is in [18] (this is, the discrete
analog of Lemma 3 in [18]). For (7), suppose R € B(X) and RG = GR. It is clear
from (3) that ||Rx ||y < ||R||gcoll*|lv, for all x € X, thus, by (6), R extends umquely
to S € B(V) such that ||S||B(V) < ||R||B(X)

Remark. Note that @(n) is much smaller, in general, then «(n). For example, if
o(n) = n™, for some m > 0, or ", for 0 < r < 1, then o(n) =1, foralln € N.

As an immediate corollary of Lemma 4.4 and Theorem 2.5, we have the following.

Theorem 4.5. Suppose G € B(X), there exists a one-sided Beurling sequence &, and
x € X, such that
IG* = O(a(n)) (neN)

and

- 1
lim, s 00——[|G"x|| > 0, @
w(n)

and there exist disjoint closed subsets Q;, j = 1,2, of the complex plane, such that
Xc(R25) # {0}, for j = 1,2. Then G has a pair of nontrivial closed hyperinvariant
subspaces with trivial intersection.

Proof. We may assume that Eq. (4) is valid for all nontrivial x, otherwise,

{x| lim —(—)IIG"xII = 0}

would be a nontrivial closed hyperinvariant subspace. Thus, we may apply Lemma 4.4
and Theorem 2.5. n

Theorem 4.6. Suppose G € B(X). There exists a one-sided Beurling sequence o, and
x € X, such that
G|l = O(e1(n)) (n € N)

and

1
hmn—)ooT”an” >0, &)

and nontrivial y € C*®(G™") such that

IG*yll = Oz (k) (k € Z)

for some Beurling sequence o and either
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¢))
a1k +n) _

VP (ke Ny,
a1 (n)

ar(k) = 1_iﬁn—»oo
or
(2) 0(G, y) contains at least two points.

Then G has a nontrivial closed hyperinvariant subspace.

Proof. As in the proof of Theorem 4.5, we may assume Eq. (5) is valid for all nontrivial
x.

First, assume we are under hypothesis (1). Let V and H be as in Lemma 4.4. Since we
are assuming Im(G) is dense in X, and by Lemma 4.4, X is dense in V and X < V, it
follows that Im (H) is dense in V. By Lemma 4.4(5), it now follows that H is invertible,
and ||[H~!|| < 1. Thus, by Lemma 4.4(4), |H*|| = O(a3(k)), for k € Z, where

az(k)y =a1(k), az(—k)=1 Yk e NU{0}.
As in the proof of Theorem 4.3, we have a Banach space
Y—> X

such that || (G|y)*|| = O(aa(k)), fork € Z.InProposition2.8,let W = Y*, B = (Gly)*,
and let Z = V*, so that G*|z = H*. Then, as in the proof of Theorem 4.3,

Z—> X" W,

G* = Blx-, I(G*12)*Il = |H*|| = O(a3(k)), for k € Z, and B is decomposable. By
Proposition 2.8, we now have a nontrivial closed hyperinvariant subspace for (G*)~1
and hence for G.

Under hypothesis (2), we construct ¥, V and H as we did under hypothesis (1). By
Lemma 4.4, ||H*|| = O(aq(Jk])), for k € Z. Note that o is a one-sided Beurling
sequence. Thus, since y € Y, we may invoke Corollary 2.7, with Z replaced by ¥, W
by V, and B by H. u

A corollary is the following result, from Theorem 1.6 in [1] and [2].

Corollary 4.7. Suppose G is a contraction. There exists a Beurling sequence & and
nontrivial y € C®(G™Y) such that |G*y| = O(a(k)), for k € Z, and there exists x
such that

lim |G*x| # 0.
k—00
Then G has a nontrivial closed hyperinvariant subspace.

Remark. Corollary 4.7 may also be proven by using [17] to produce x* € X* such that
{1(G*Y*x*||}xez is bounded, so that we may apply Theorem 4.3 to G*.
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Theorem 4.8. Suppose G € B(X), & is a one-sided Beurling sequence such that
IG"|l = O(e(m)) (n eN),

and
ak+n)
an)

and there exists x € X, x* € X* such that

Y0 (ke N),

@(k) = lim, oo

— 1 — 1
lim, 00— ||G"x|| > 0, and lim,_,oo——|(G*)"x*|| > 0. 6)
a(n) a(n)

Then G has a nontrivial closed hyperinvariant subspace.

Proof. As in the first part of the proof of Theorem 4.6, use Lemma 4.4, this time on both
G and G*, to produce Banach spaces V, W such that

XV XS W,

and operators Hy, € B(V),H, € B(W) such that G = Hj|x,G* = Ha |50,
[ H;" | = O(es(k)). for k € Z, j = 1,2, where @3 is defined in the proof of Theorem
6.

Asinthe proof of Theorem 4.6,let Z = V* sothat G*|z = H. 1, and invoke Proposition
2.8 to produce a nontrivial closed invariant subspace for G*. Note that Lemma 4.4(7)
implies that it is hyperinvariant. ]

Remark. When X is reflexive, this result appears in Theorem 5.1.9 in [4] and Theorem
1.4 in [1], except that there &(k) is O (k") for some m > 0.

Corollary 4.9. Suppose G is a contraction, and there exist x € X, x* € X* such that
. n o E RV 3
Jm [[G"x|| #0, lim [[(G*)"x™| # 0.
Then G has a nontrivial closed hyperinvariant subspace.

In fact, for operators satisfying (3.4) for all nontrivial x € X, x* € X*, we may
construct a large family of hyperinvariant subspaces for G*.

Definition 4.10. [4, Chpt. 5.2] If @ is a weight sequence, define U[] t0 be the Banach
algebra of functions in L' of the unit disc, whose Fourier coefficients { f (k)}rez satisfy
the growth condition

1 lugar = D 1F ()lak) < oc.

keZ
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Theorem 4.11. Suppose ¢ is a one-sided Beurling sequence.

1G* | = O(a(k)),
F(k) = im0 28T _ po® 4 e N,
a(n)
and 1
Tim,, o prs )nG"xu >0, and hmmoﬁn@*)"x*n > 0,

for all nontrivial x € X, x* € X*.
For Q, a closed subset of the unit circle Y, define E(2) to be the set of all x € X
such that

N
: T 1 7 k4
]}gnoohmn%omu k:Z_N Fi(GH x| = 0,

whenever f € U[ds] has support disjoint from Q, where
a3(k) = oy (k), as(—k)=1Vk e NU{0).

Then E(S2) is as in Proposition 2.4, with G replaced by G*, and contains F (), defined
to be the set of all x € C®((G*)™1) such that

4 - G k+] —
ylim sup (k) I Z FHGH x| =0,
whenever f € U[ds] has support szJomt from Q.
We have
F(Q) € Xg(Q) € E(Q).

Inparticular, E(Q2) and E (Y —2) are a pair of nontrivial closed hyperinvariant subspace
for G*, with trivial intersection, whenever both F(2) and F(Y — ) are nontrivial.

Proof. By the proof of Theorem 4.8, we have Banach spaces Z, W, B € B(W), such
that

Z<—> X" W,
G* = B|x-, and both || B¥|| and [|(G*|2)* || are 0(a3(k)) for k e Z, with
lxllw = limy— 0 2 )II(G )" x|l

By Theorem 3.6(3), we may assume Z = ZO,3 (G™), so that

k
lxllz = o 1G"x|l.

(k)
The growth condition on the powers of B and (G*)|z imply that these operators are
U ([or3])-unitary [4, Chpt. 5], with functional calculus

fB)= > f®)B* (f eUlds])
k=—00
and local spectral subspaces
Wa(Q) = ﬂ{N(f(B)) | f € Ulas], support of f is disjoint from £}

[4, Chpt. 3.1]. Thus, Z(g+|,) () = F(2) and E(£2), as in the statement of this theorem,
equals X N Wp(2) as in Proposition 2.4. [ |
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Definition 4.12. A contraction G is a Cy 1 contraction if
Jlim [|G"x|| #0 and  lim I[(G")"x*|| # 0,
for all nontrivial x € X, x* € X*.
Putting az(k) = 1 in Theorem 4.11 gives us the following:

Corollary 4.13. Suppose G is a C11 contraction. For Q, a closed subset of the unit
circle Y, define E () to be the set of all x € X such that

N
E = 7 s\k—+n -
Jim Tim, o k_ZN FERGH x| =0,

whenever f € C*°(Y) has support disjoint from Q. Then E(2) is as in Proposition 2.4,
with G replaced by G*, and contains F(S2), defined to be the set of all x € C (G~
such that

M
lim sup]|| FHIGH x| =0,
N,M—00 7, jzz—:N

whenever f € C*(Y) has support disjoint from Q.
We have
F(Q) € Xg(R) € E(2).

In particular, E(Q2) and E(Y — Q) are a pair of nontrivial closed hyperinvariant
subspaces for G*, with trivial intersection, whenever both F(Q) and F(YT — Q) are
nontrivial.
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